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§ 1. Introduction

This note was inspired by two lectures on cyclic homology given by D.
Burghelea during the Banach Center Topology Semester in May 1984.
Among other things, they were devoted to the calculation of the cyclic
homology groups for group rings kG, k being a field of characteristic zero.

As will be shown elsewhere, the cyclic homology seems to be the right
tool when studying idempotents in group rings. In particular it generalizes
the Stallings—Bass trace functions and hence provides a method of proving
the Idempotent Conjecture for some new classes of torsion free groups.

In the present paper we offer a sell-contained and purely algebraic
calculation of the cyclic homology for group rings.

§ 2. Some homological algebra

In this section we merely fix the notation. We refer the reader to [1] for the
details.

Let A be an associative ring. By a double complex C we mean a
commuting array {C;;}; ;>0 of left A-modules and A-homomorphisms in
which all rows (C;, d,,,) and columns (C,,, d,.) are chain complexes. Maps
between double complexes are defined in a natural way.

With a double complex C we associate its total complex Tot C. It is the

chain complex (TotC),= @ C, d,,|cij=dhor+(—1)‘dve,. Obviously, any
it+j=n

map between double complexes determines a chain map between their total

complexes.

The total complex Tot C has two filtrations:

F\‘L,Tot C" = C‘D Ci.n—i and FﬁorTOt Cn = @ Cn—j,J’ P = 0, 1, ey

isp isp

* This paper is in final form and no version of it will be submitted for publication
elscwhere.
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which give rise to two spectral sequences |E.|, |Ef, ], both converging to
the homology of Tot C. They start from E?, = E{, = C. The table E!, can bc
described as the vertical homology of C. Similarly, E\, is the horizontal
homology of C.

Let |E") be one of those sequences. Any map f: C—> D of double
complexes induces maps f": E"(C)— E"(D), r=0,1,... and also a homo-
morphism f,: H_(TotC) — H, (Tot D). The only fact about spectral se-
quences we are going to use IS

Prorosimion 2.1 (1], Ch. XV, Thm. 3.2). If f" is an isomorphism for some
r=20 then [ is an isomorphism. m

We now briefly review the homology theory of groups. Let G be a group
and let & be a commutative ring with identity. In order to calculate the
homology of G with coefficients in a right KG-module 4 we take any left kG-
projective resolution P —»k — 0 ol the trivial kG-module k& and set H, (G A)
= H,(A @ P,). The result does not depend on the choice of P: given
another resolution P’ there is a chain map f: P — P, covering the identity
on k. Any such a map identifies the homology defined either way.

One can always use the standard resolution § »k —0: S, = kG ®
=k[Gx...xG), d,: S,—S,_, 15 a k-linear map satisfying d,(x,, ..., X,)

nt+1)

=) (=) (xgy ..., X ..., x,) for x;,eG and ¢: kG — k is the augmentation.
i=0
However, for the cyclic group C of order n+1 we can use

P: 0 kG — kC G hC « kC« ...
where X is the right multiplication by a fixed generator of C and N =1+ X
+ ...+ X"

LeMMA 2.2. Assume the order of C is invertible in k. Then for any kC-
module A the sequence ... A «, A< A <, ... is exact.

Proof. Here A is a projective kKC-module, hence H,(C;4)=0. =

From now on we will assume that k is a field of characteristic zero. Let
A be an associative k-algebra with identity. We will use the abbreviation A"

for A®" the n-fold tensor product of A over k.
Recall the Hochschild complex

H O<—A;’TA2;;A3;§A4<—...

where
bn(a0®-‘-®an)
n-1

= Z (—1Dae®.. ®aa,,®..a,+(—1)"a,6,®.. ®a; ®...®a,
i=0

For all n > 0 we have an action of the cyclic group Z/(in+1)Z on A",
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generated by T,(dg®...®a,) =(—1)"¢,®a,® ... ®a,_,. The differentials

b, factor to give the chain complex:
2 2
04—-/1/(1—T0)/1;TA N(1—=T)A 5

The homology groups of this complex are called the cyclic homology groups
of A:

HC,(A) =kerb,/imb,.,, n=0,1,2,..

Following [2] we will identify HC_(A) with the homology of the total
complex of some double complex D(A). Consider a modified Hochschild
complex:

O 0N A22 P83 g

n—1

bylag®...®a,) = Z (—Da®..®aa., ®...®a,.
i=0
It is a contractible complex. Putting .# and %" together, we obtain a double
complex

D{A): ' T ' T

where T,: A"*!' - A"*! were defined earlier and N, = T2+ ... + T".

ProrosiTion 2.3. HC, (A) x H, (Tot D(A)).

Proof. We apply the sequence {E} .} to D(A). The zero degree column of
E!. coincides with the complex (A*/(1—T)A*, b,) defining HC, (A) while
the other columns are zero by Lemma 2.2. Thus the sequence collapses and
H, (TotD(A) x E* x E* = HC,(A). =

The formula H,(TotD(A)) can be used as an alternative definition of
cyclic homology. It proved to be better suited for algebras over arbitrary
rings.

The simplest example of a k-algebra is k itself. It is easy to calculate
from either definition that

k for n even

H =
Calk) {0 for n odd.

§ 3. An algebraic proof of Burghelea’s Theorem

For a group G we denote by TG the set of its conjugacy classes. It
decomposes into T,Gw T, G where T,G consists of classes of torsion
elements (and 1) and T, G includes all other classes.

For any class ce TG choose, once for ever, a representative zec < G.
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We agree to write G, for the quotient group Cg(z)/{z) where Cg;(z)
= {yeG| yz = zy}.
We are going to prove

THeoreM 3.1 (D. Burghelea). Suppose k is a field of characteristic zero.
There is an isomorphism

o: HC,(kG)=> @ H,(G)®@HC, (@ @ H,(G).

ceT oG ceT G

Remarks. H,(G,) stands for the homology groups of G, calculated with
respect to the trivial kG.-module of coefficients k. The tensor product is

graded in the standard way. The isomorphism g respects the gradings of
both sides.

For simplicity, we write A for kG. By Prop. 2.3 we need to calculate
H_(Tot D(A)). We perform that in five steps.

Step 1. Replace D(A) by a new double complex C(A), which is better
suited for homology of groups.

First we construct C(A). We use here the standard complex § intro-
duced in section two, together with its modified (contractible) version §':
S": DAL A2 P B

n—1 .
d:'(xO, ey x,,) = Z (‘—l)l(,"o, ey .i,', ey xn), x,'EG.
i=0

Consider A as a right A-module with the action of G given by Ax = x~ ! ix
for Ace A and xeG. We denote this module by 4. We set

C(A): AR, S TA@,8 “A®,S< ...
with the maps 1, A® ,A""!' - A® ,A"*! defined on generators as

r’l(y ®A(XO’ T xn)) = (_d l)"y ®A(y_] Xny X0y o0 xn—l)

for y, x;e G. They are well defined and satisfy t2*! = id. We also set v, = 10
+ ..o+

LeEmma 3.2. There exists an isomorphism of double complexes
x: C(A)> D(A).
Proof. The map a,: A® ,A""' - A" is given on generators by
Ay (A ® 4 (X05 ooy X)) =X, TAXe ® X0 ' x; ® ... ® x, ) x,

and then extended by linearity. It is a k-isomorphism with the inverse given
by

0 Vo @ ... @V =1 V) @l ¥y, »1Yae ooy ¥y oy for y€G.
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A simple calculation shows that o commutes with horizontal and vertical arrows
of D(A) and C(A). m

CororLary 3.3. (i) C(A) is a double complex;
(i) The odd degree columns of C(A) are exact sequences.

Step 2. Spilit C(A) over the set TG.

Each conjugacy class ce TG is a right G-set via the action y-x = x~ ! yx
for yec, xe G. Extending this action by linearity we obtain a right A-module
k[c]. Clearly, A =~ @ k[c] as right A-mudules. Consequently, each entry in

ceTG
C(A) has a corresponding decomposition. It is easy to see that the arrows of

C(A) respect those decompositions. Thus C(4) * @ C.(A) as double com-
ceTG

plexes. Hence also H, (TotC(A)) > @ H,(TotC, (A)).

ceTG
What is left is to identify H,(TotC.(A)) with H, (G,)® HC, (k) for
ce Ty G and with H_(G,) for ce T G. For that purpose let us choose a class
ce TG. Recall we have picked a representative zec. We write A, for the
group ring k [C,; (z)] of its centralizer. It is a subring of A in the natural way.
Step 3. Simplify the double complex C,(A).
Recall we have the Shapiro isomorphisms

Shy: k[] @A ' S h®, A @A Shk®, A",

Applying Sh, at proper positions of C.(A4), we obtain an isomorphism
Sh: C.(A)> B(A) for

B(A): k®, S(A)' k@, S(A)<k®, S(A)'< ...
where 1,: k ®,,ZA;'+1 —k®,4 A" is given by the formula

T,(1 ® (X0, .y X)) = 1@ (=1)"(z" " X, X, -5 Xp_y)-

v

As before, v, =10+ ... +1"

n- -

It will be even more convenient to work with the double complex
B(A,): k®,4,5(A) k@, S(A) —k®4,5(A) ...
We have an obvious map §: B(A,) — B(A) induced by the {nclusion A, o A
Lemma 34. 8. H, (Tot B(A,))— H,(Tot B(A)) is an isomorphism.
Proof. We show that p': EJ (B(A,))— E,.(B(A4)) is an isomorphism.

From Cor. 3.3(ii) we know that the odd degree columns of B(A), B(A,) are
exact. Thus B': 0~ O there.

In the even degree columns of E., we obtain H,(Cs(z);k) calculated
from the resolution S(A) and S(A,), respectively. But f = id, ®Azﬂ where
B: S(A,) —» S(A) is a map of resolutions, covering id,. Thus g' = B,, IS an
isomorphism. Proposition 2.1 completes the argument. m
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To simplify the notation we further assume that A. = A, 1e. that z is
central in G. Write G for G/{z)> and A for kG.

Step 4. Complete the case ce T, G.
The natural homomorphism n: A — A induces a map n: B(A)— B(A).
Lemma 3.5. n,: H, (Tot B(A))— H, (Tot B(A)) is an isomorphism.

Proof. We use E!. again. As before the odd degree columns of E!, are
zero. In the even degree columns, n' coincides with the inflation homomor-
phism inf: H,(G:k) — H,(G:;k). It is an isomorphism, as ker(G — G) is a
finite group and k is a field of characteristic zero. By Prop. 2.1 n, is an
isomorphism. =

The double complex B(A) can be written as

k@3(S(A) < S (A)<SA) <8 (A .. )
where @,(xq, ..., X)) = (= 1)"(x,, Xg, ..., Xn_ ).
We compare it with
Ag: k®; (S(/I)<—0<—S(A)<—0<—S A)

).
Lemma 3.6. There exists a chain map 7: S(A) — S(A) which makes the
Sfollowing diagram commutative:;

R - - - -
SIA) -2 (7)) - () L (A} ———

A

S(Z}a—O(—S(Z)-«——O(—
Proof. Let X, ,, be the symmetric group permuting the coordinates
(xg, ..., X,) in A" We define 7,: A"*!' - A"*! by the formula

1
C(n+1)!

Z Sign(g)g(-x()’ AR xn)'

gelp 4+

TulX0s - oy Xp)

It is easy to check that 7 is a chain endomorphism of S(A) which covers id,
and such that 7(1 —o) =

Consider the map y = id, ® ;7: B(A) — A,.
Lemma 3.7. y,: H_ (TotB(A))—» H (TotA o) i an isomorphism.

Proof. Use again E},: 7 covers id,, so y' is an isomorphism; Prop. 2.1
again does the job. m

The homology ol Tot 4, can easily be calculated:

H,(Tot Ag) = H,(G) ® H,_,(G) ® ... = (H, (G) ® HC, (k),.
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Returning to the general notation we conclude:
— il ce TyG then H, (TotC.(A) x H (G) ® HC (k).

Step 5. Complete the case ceT, G.

Assume the symplifying assumption: A = A, 1s valid again. We start
with n: B(A) — B(A) as before, although 7, is not an isomorphism this time.
Instead of A, we use

A, k®(S(A) 0000« _.).

Let 5 be the map

- 1- _ - - -

S(H) <2 s/7) = g A) - () e——
S N A

S(A) d———— ) ———————— ] - 0 -

and set & = id, ®70.

We intend to prove that (dn),: H,(Tot B(A))— H, (TotA,) is an iso-
morphism. For that we need two lemmata.

Lemma 38. Let 6 =0, A""' > A""! be given by a(xo, ..., X,) =
(— D"z Y xp Xgu ...y Xnoy). If the order of z is infinite then 1—a is injective.

Proof. Assume that o(u) = a for some ae A" '\{0]. Then a =¢""'(a)
=:"'a, ie. (1—2z)a=0. Thus |—z is a zero divisor in the group ring
k[Gx...xG]. Let H=<z><=Gx ... xG. Considering ag instead of a, if
necessary, we can assume that the support of a intersects H nontrivially. Let a
be the linear projection of ¢ onto KkH = k[G x ... xG]. Then a # 0 and so
1 —z is a zero divisor of kH. But this is impossible, as H > Z is orderable. m

LEMMA 3.9. The sequence
_ dy dy
S: 0 Afl—ao) AL A 1—a,) A2
is a left A-projective resolution of the trivial A-module k.
Proof. It is an easy exercise to show that A"*'f(1—¢"")HA""! =
A" (1—z A" is a free A-module. But the natural epimorphism

An+1/(l_o.rr+])/1rr+l_»An+l/(1_o.)/1n+1

: 1 - o
splits, e.g. by m(l+a+ ...+¢". Thus all terms of § are projective A-

modules.
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To prove the exactness of § -k consider the diagram of chain com-
plexes:

proj.

T

X e— x - O

The previous lemma shows that all columns are exact. Also the first two
rows are exact. Thus so is the third one. m

Lemma 3.10. (6n),: H,(Tot B(A))— H,(Tot A,) is an isomorphism.

Proof. We compare the EZ -terms for B(A) and A,,. First notice that the
E}, -tables vanish outside the zero degree column.

The zero degree column of E}, (B(A)) is equal to

0k @Al -1 k @A —k® A1 -1 )k ® A* — ...

We identify it with k ® ;S where § is the resolution from Lemma 3.9. Thus
EL. (B(A)) has H,(G:k) in its zero degree column and zeros elsewhere. The
same is clearly true for EZ (A,).

Now, (é7)! is induced by a chain map of A-projective resolutions én: §
— §(A). Thus (én)* is an isomorphism and so is (67),. =

Obviously, H, (Tot A,) = H,(G). Returning to the general notation, we
conclude:

— if ceT, G then H,(TotC,(4)) = H,(G,)

what completes the proof of Burghelea’s Theorem.
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