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1. Information systems and classification problems

1.1. An information system (see [8]) is a quadrupel S =(X, 4, V,r),"
where X, A, V are finite sets and r is a mapping of X x A into V. The set X
is interpreted as the set of all objects under consideration, A is the set of all
attributes, and V is the set of descriptors. The mapping r is the so-called
information function.

Let ae A be an attribute; a defines a function

X-V, x-r(x,a),

of X into V. We assume that different attributes define different functions.
This enables us to identify the attribute a with the corresponding function
and to write a(x) instead of r(a, x). Let Ima = {a(x)|x € X} be the image of
the function a, then a can be considered as a function of X onto Ima. By
abuse of language we consider A to be a set of functions a: X — Ima and
write S = (X, A) instead of S =(X, A, V, r). Let f: X — Y be a mapping. We
call f to be dependent on S if the following condition is satisfied:

If a(x,) = a(x,) for all aeA, then f(x;) = f(x;), X1, x;€X.

The mapping f is dependent on S iff there is a function [[Ima —7Y,

aeA
such that the following diagram is commutative:

| X_f)’)l
(u(x))“‘ Mima

oed
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A tripel C = (X, A, f) such that (X, A) is an information svstem, and
J: X — Y is a function dependent on (X, A) is called a classification problem.
The function f is called the classifying function or the classification.

By some technical reasons we will assume throughout the following
paper, that all information systems satisfy the following condition:

S is fully faithfull, i.e, the function X — J]Ima is bijective. This implies
acA

that all functions f: X — Y are dependent on S.

1.2. Examples

1.2.1. Every boolean function f: |0, 1}”"— |0, 1} defines a classification
problem. The underlying information system consists of X = {0, 1]" as set of
objects, A = 11,2, ..., n} is the set of attributes, V =10, ! is the set of
descriptors, r=XxA—-V is the selection function defined by
r((x,, ..., x,), i) = x;, and f is the classifying function.

1.2.2. Let X be a finite aphabet and L be a language over 2. L is a
subset of X* and defines a subset L":= L n 2" for any natural number . Let
fur 2" — 10, 1} be the characteristic function of L" i.e,

fiw)=if wel” then 1 else 0.

Therefore L defines for every n a classification problem with information
function f, and the underlying information system (X", }1,2,...,n}, X, r)
With r((dl, PN Gn), l) = 0"'.

1.23. Let V be a finite set, called the set of vertices and let v,, v, be two
distinguished vertices of V. Take V' = V—{v,}. A V-Maze is a function d: V'
x {0, 1} =V (see [1], [2], [11]). A V-maze can be considered as a directed
graph I'(d), V being the set of vertices and E = {(v, d(v, ))| veV',ie|0, 1}}
the set of edges. This graph has two distinguished nodes v, and v,. The
outdegree of all nodes different from v, is two and v, is a sink of this graph,
its outdegree being zero. The V-maze 4 is called to be threadable, if there is a
path in I'(d) connecting v, with v,.

Let X = Map(V' x {0, 1}, V) be the set of V-mazes. These are the
objects of the following information system:

A=V x{0,1} is the set of attributes,

V is the set of descriptors and

r: X xA—V is the function defined by r(d, (v, i)):=d(v, i).

MAZES(V):=(X, A, V,r) is an information system which is the
underlying information system of the classification problem GAP(V, v,, v,)
the classifying function ¢ of which is defined by

t(d):=if d is threadable then 1 else 0.
Since all GAP(V, vy, v,) with # (V) =n are isomorphic we write GAP(n)
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instead of GAP(V, v, v,). Without restriction of genecrality we can assume V
=11,2,...,n) and vo =1, v, =n.

2. Questionnaires or classifying graphs

2.1. A procedure to classify via a given classifying function are the
questionnaires introduced by C. Picard [9] (see also [2] and [4]). A
questionnaire or a classifying graph over a given information system S
= (X, A) is a quintuple F =(Q, Y, a, 8, q,), where

QO is a finite set, the set of nodes;

Y is a finite set with YN A= and a: Q —» YU A4 is a mapping; the
nodes of act F:=a~'(4) are called questions and the nodes of term F
:=a~1(Y) are the results;

0 =19, geactF}, d,;: Ima(q) > Q describes the strategy of posing
questions;

go is the initial node, i.e., that node, in which all enquiries get started.

X operates partially on Q by the following function:

act FxX =Q, (g, x) —qx:=d,((x(q))(x).

This action can be interpreted as follows: let g be a question; then «(g) is an
attribute, i.e., a mapping a(q): X — V. To pose question g to the object xe X
means to apply a(q) on x. The answer of x to the question q is a(q)(x). This
answer implies a new question or a result, namely 6q(a(q)(x)) which we
called gx. The partial action of X on Q can be extended to X*, the free
monoid generated by X. For xe X take gx"*':=(gx") x if gx"e act F. Let &:
X — Y be the following function

Ee(x):=if qox"eterm F then a(q,x™ else not defined.

The sequence qq, go X, go X2, ..., 4o X"eterm F describes the strategy of F in
asking questions: after having asked for the attribute a(go x™), m < n, F gets
the answer (x(go x™)(x) which makes F move to the node gox™*! if m+1
< n or the result of the enquiry &g(x) = a(qq x").

If F is free of cycles (more precisely if the directed graph

r(F)=(Q, {g. 6,()| geactQ, iclma(qg)})

is [ree of cycles), then gx" # ¢ for all geact F, xe X. In this case &g is fully
defined on X. So il we assume that F is free of cycles, then &y is a fully
defined function, which can be proved to be always (i.e., also in case when we
do not assume that S is fully faithful) dependent on S. We say that F is a
solution of a classification problem C =(X, A,f) if (= f

2.2. Easy to verify that every classification problem admits a solution F
which is, moreover, a tree (for the easy proof of this fact we refer the reader
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to [2]). In [2] and [4] we introduced different measures for the complexity
of classifying graphs. One of these measure was the size of F:

size(F) = #(Q).
Let C = (X, A, f) be any classification problem. We introduce two numbers:
size(C) = min {size(F)| (&= f}, and
Size(C) = min {size(F)| & = fand I'(F) is a tree!.

One of the most interesting and outstanding problems in theoretical
computer science is the determination of the “small size” size(C) of certain
classification problems C. Though also the determination of Size(C) is not
easy, it can be done in certain cases. The following section presents some

results concerning these questions. The detailed proofs of these results can be
read in [2].

3. Classifying graphs for GAP(n) and related problems

3.1. Assume Y = {0, 1] and let F,, F, be classilying graphs with
Fiz(Ql" Y; o;, 5i$ ql'O)’ 1=152

We define Fy A F, and F; v F, in the following straightforward manner:

Obviously

size(Fy, A F,) =size(F, v F,) = size(F,)+size(F,;)—2
and
€F1\/F2=€F1V5F2, CF]AF2=5F1 AéFz'

3.2. Consider the following classification problems:

In 1.2.3 we introduced already the information system MAZES (V) and
the classification problem GAP(V, vy, v,). The latter classification problem
can be considered as a special case of the following classification problem.
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Call a V-maze d k-threadable for a given natural number k, if it is threadable
and if the path connecting v, with v, has a length smaller or equal to k. Let

t, = 4 (V, vo, v,) be the characteristic function of the set of all k-threadable
mazes, l.e.,

t,(d) = if d is k-threadable then 1 else 0.

Let GAP,(V, vy, v,) be the corresponding classification problem. Obviously
GAP(V, vy, v,) = GAP,(V, vo, v,) with k = # (V)—1. It is easy to verify that
one has the following equality: '

I+t = V{tﬁ(I/’ Vo, ve) /\I(V, v, ve)l ve‘/a V:/:VOsV:r‘&Ve} vrl(V’VO’ ve)'
From this equation one gets the following recursion formula for
s(k, n): = size (GAP,(V, v, v,)) with n:= #(V):

n-1
stk+1, )< Y (stk, m+s(l, )—2)—2(n—3)+4-2

i=2
=(n—=2)(s(k, n)+s(l, n—4)+4.
From this formula results:

s(2k, n) < 2(n=2)(s(k, n)—2)+4 < 2(n—1)s(k, n)

and this gives the following upper bound for s(n) = size(GAP(n)). »

s(n) < 4n(n—1)°e"

3.3. Let us give an example: An optimal solution for the classification
problem GAP(3), ie., a classifying graph for GAP(3) with the minimal
number s(3) = 7 of nodes is the following classifying graph:

3.4. The above example is the easiest case of the following solution F for
GAP(n) which is in general not optimal but better than 3.2, for n small:

act F = {(U, n)e2" xN| teU, neU, #(U)-1<n <2#(U)},
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termF ={0,1} =Y,
a(U, n): = n-th element of U x2 in lexicographical order,

Uouiyl,n+l) if n+l1<2#Uuliy)) and y #yv,,

Swm =941 if y=v,,
0 if n+1=2#Uuly),
go = ({vo], 0).

It is easy to sec, that

n—2 _1
size F =2+ ¥, (” | )(H—Z).
i=o \ !
For n=3 we get size F =7, and for n =4, size F = 14. The first value is
optimal and we believe that also s, = 14. But already the proof of this fact
seems to be hard. The importance of the numbers s, is demonstrated by the
following theorem:

35. THEOREM. Let L be the class of all languages, which can be
recognized by u Turing machine with logarithmic tape and let NL be the class
of all languages which can be recognized by a nondeterministic Turing machine
in logarithmic tape. Obviously L= NL. In order that L = NL it is necessary
that s, is polynomial in n.

The proof of this theorem can be found in [2].

4. Classifying trees

4.1. Let S = (X, A) be an (fully faithful) information system. Lel trees(S)
be the set of all classifying trees over the given information system S. To
every attribute ac A with Ima = {y,, ..., y,} there is an n-ary function a:
trees(S)" — trees(S) which is defined in the following way: let F,, ..., F, be
elements of tree(S) with

F; = (@i Y.is 0, gio);
then F:=a(F,,..., F,) =(Q, Y, a, 8, qo) is defined as foll8ws:

¢=faju(U Qi) Y=UY, «@=a @ ik=x.

Then we get act(F) = {a}u(.L_)lact(F;-)x{i}). The function & is defined

by 8. (¥):=1(8,(¥), i) and 8, := (g;0, i). The initial node g, of F is defined

by go:= a, which completes the definition of F. Suppose we are given a fixed

set Y. To every element ye Y we define the following trivial classifying tree:
[y:]:: ({Y}, {y}1 l:y}’ ®’ {y})’
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consisting only of onc node. For the next theorem we consider by set

theoretic reasons only classifying trees F =(Q, Y, a, J, ¢o) with a fixed set Y
of possible results of the classification.

4.2. THEOREM. (trees(S), A) is a free algebra and the set of all [ y] forms a
set of free generaiors.

The proof of this theorem is given in [2].

4.3. Consider the following binary relation £ on the set of all classifying
trees.

(1) for ac A, yeY holds a([y], ..., [y =[y],
(i) if a, beAd then a(b(Fyy, ..., Fi,)s ..., b(Fpy,s ..., Fp)) = bla(Fy,,
'-le . a(Flrn""an));

(i) Let F=u(F,,...,F,) and assume F; contains a subtreeF’

= u(Fy, ..., F,). Let F" be the tree obtained from F by replacing F' by F.
Then F = F",

44. DermitioN. The congruence relation = generated by = will be
called the syntactic congruence ol classifying trees.

Let us consider an example:
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45. Two classifying trees F, and F, will be called semantical equivalent,
F, ~ F,, of their classifying functions are identical: {z = {,. It is obvious
that classifying trees which are syntactical equivalent are semantical
equivalent too. More interesting is the other direction which will be the main
result of the following theorem, the proof of which will be found also in [2].

4.6. THEOREM. Syntactical and semantical equivalence are equal, i.e., for
all classifying trees holds: F, ~ F, if and only if F{ = F,.

WAaRNING. For this theorem the assumption that S is fully faithful is of
significant importance. See example 4.13 of [2].

5. Optimal trees for GAP(n)

5.1. In 2.2 we introduced the notion of the “big size” of a classification
problem C = (X, A, f):

Size (C): = min {size(F)| (= f and I'(F) is a tree).

A classifying tree F is called an optimal tree solution of C or for short an
optimal tree for C if F is a solution of C and if, moreover, size(F) = Size(C).
Since every classification problem has a solution which is a tree, every
classification has an optimal tree solution. The example at the end of 44
gives evidence that it might not be easy to find an optimal tree for C and,
moreover, it may be rather difficult to decide whether a given classifying tree
is an optimal solution. We will find in 7.7 a criterion which allows to answer
the second question in certain cases.

Let us first consider the problem GAP(n).

Let o(n):= Size(GAP(n)). We intend now to give a recursion which
allows to compute these numbers and to give lower bounds for o (n).

5.2. Let V be a finite set with two distinguished elements v, and v,. In
1.23 we introduced FV-mazes as functions d: V' x{0,1) =V with V'
= V\{v.}. A partial V-maze is a partial function d: V' x !0, 11 2>V, As for
V-mazes we can consider the directed graph I'(d) with V being the set of
vertices of I'(d) and E, the set of edges being defined by

E:= {(v,d(v, ) (v, fedomd].

Let d be a partial V-maze. Let reach d be the set of all ve V which are
connected with v, by a path from v, to v. We call d a rrunk if
domd < (reachd) x {0, 1}, and d is called a complete trunk if in this inclusion
equality holds. We call d to be connected if v,ereach d. We call d
disconnected il it is not connected, and stabily disconnected if all extensions
d =2d of d are disconnected.
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Let d be any partial maze. Define d by
d:=d|((reachd) x {0, 1}) ndomd.

Obviously d is a trunk and it is easy to see that d is stabily disconnected if
and only if d is a complete disconnected trunk.

Let F be a tree solution of GAP(V, v,, v.) and let g be any node of F.
Let

qdo J[()"‘Il_’xl 42‘_’:2 e 4y =4

be the path in F connecting the initial node g, of F with g. Since a(g,)e 4
=V'x{0,1}, we have a(g)=(v,i). Consider the set {((v, i), x)
=0, 1,...,n—1} which we call d,.

53. Tueorem. If F is an optimal tree for GAP(V, vy, v,), then d_ is the
graph of a partial function d;: V' x {0, 1} 2=V, ie, d, is a partial maze.
Moreover:

(1) d, is a trunk for all nodes q of F;
(1) for all geactF, d, is not complete nor connected,
(iii) for all geterm F with a(q) = 1, d, is connected;

(iv) for all geterm F with a(q) = 0, d, is complete and disconnected, i.e.,
stabily disconnected.

54. Every bartial maze d defines a point in the grid N? by
n(d): = (# (reachd)+ 1, # (domd)— # (reachd)+1).
Every node g of as optimal tree for GAP(V, v, v,) defines a point r(g):

= n(d,) of N*.
Consider the following graph 4" = (V" E"):
Vr=l(x,y)eN} 0<y<x,2<x<nuil,2,...,2(n-1,

E" = {((x, y), i,(x+1,y))| 1e'1,2 n—‘c}}u

w {((x, ), i,(x,y+1)) iell,2,..,x=1), y<xlu
uilx, ), 1, x+y—1) y <x).

Take A* as an example where we have omitted in the pictorial representation
the edges of the third kind between (x, y) and x+y—1:

(4.9

Ts

(33) 43

‘[2 Ta

(22 (32 1@2
T1 Tz Ta
2 230 1@
T1 ‘[2 13

(20 3 (3,0 & 4,0
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5.5. TueoreM. If F is an optimal solution for GAP(n), then F is a

covering tree of the graph 1", This implies that o(n) = Size(F) is equal to the
number of simple pathes in 1"

5.6. CoROLLARY. o (n) = Q(n"(n—2)!).
For details we refer the reader to [2].

6. Coloured posets

6.1. A finite poset is said to be pure il all maximal chains have the same
length. A pure poset satisfies the Jordan-Dedekind condition: if x and y are
two elements and if x <y, then I, = |z|] z< x|, V, = {z] x <z} and [x, y]
= |z] x £z <y} are pure.

The symbol “<" denotes the covering relation: x <y il x <y and if x
<z < yimplies z = y. If P is a finite pure poset, then a rank function r: P
— N can be defined as follows:

(i) If P has a least element O, then we define r(0) = 0, otherwise we
define r(x) = 1 for all minimal elements x.

() If x <y, then r(y)=r(x)+1.

6.2. A finite simplicial complex K is by definition a nonempty family of
nonempty subsets called simplexes of a set |v) of vertices such that

(i) any set consisting of exactly one vertex is a simplex:
(i) any nonempty subset of a simplex is a simplex.

(For details we refer to [12].) The dimension of a simplex s, dims, is #s—1.
The dimension of K, dimK, is max {dims| se K}. The maximal simplexes,
1.e., those simplexes which arc maximal under inclusion, are called facets. K
is said to be homogeneously n-dimensional if every simplex belongs to an n-
simplex of K. So all facets are n-dimensional.

Every finite simpiicial complex K defines a finite poset (K, <) the
elements of which are the simplexes of K and these are ordered by inclusion.
If K is homogeneously n-dimensional, then the corresponding poset is pure.
Its rank function ¢ satisfies obviously the following condition: ¢(s) = dims
+ L.

Let P be an arbitrary ordered set. It defines a simplicial complex 4 (P) in
the following way: The vertices of 4(P) are the elements of P and the
simplexes of 4(P) are nonempty subsets |xq, X,, ..., X} of P such that x,
<x; <...<x,. If Kis a simplicial coinplex, then K'= A(K) (K to be
considered as poset) is the barycentric subdivision of K.

6.3. ExampLE. Let S =(X, A, V, o) be an information system with N
:= # A—1. We assume as usual that § is fully faithful. An S-condition is
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defined to be a partial function ¢: 4 >—V satisfying c(a)eIma for all
asdome. As usual ¢ can be considered as a subset of the product A xV,

¢ = \(a, v)] aedomc. v =c(a)].

Consider the following simplictal complex:

(i) The set of vertices is A x V.

() The set Cond(S) of simplexes is the set of all S-conditions
(considered as subsets of A4 x V).

The facets of Cond(S) are the fully defined functions ¢: 4 — V. They all

are of dimension N. Hence Cond(S) is a homogeneously N-dimensional
simplicial complex.

6.4. Let P be a finite pure poset. A partial function g: P =—Y is called
a precolouring of P and (P, g, Y) is called a precoloured poser if

(1) all maximal elements of P belong to the domain of g,

(1) if x <y and x, yedomyg, then ¢g(x} = g(y).
If x is an element of domg, then we say that x is coloured and g(x) is the
colour of x.

Let (P, g, Y) (i=1,2) be two precoloured posets. A morphism of
(P, 9., Y1) into (P, g5, Y>) is a pair (n, #) consisting of an order preserving
map n: P, — P, and a function 5: ¥, — Y, such that the diagram

P, Ao Y,
3! In

P, 51,

is cormnmutative. This means more precisely: Whenever x €P; is coloured,
n(x) is coloured and g, m(x) = ng, (x).

6.5. Let (P, g, Y) be a precoloured poset. g is a colouring of P and
(P, g, Y) is called a coloured poser if in addition to properties (1) and (ii) in
(6.4) the following property holds:

(ii)) If xe P and if all z, covering x, are coloured and have the same
colour g(z) = ype Y, then x i1s coloured and ¢(x) = y,.

Let max P be the set of all maximal elements of P. Condition (it1) 1s
equivalent to either one of the following conditions:

(i) If xe P and il all z with x <z are coloured and have the same
colour g(z) = y,e ¥, then x is coloured and g(x) = y,.

(i”) I xeP and if all zeV,nmax P = {yemax P| x <y} have the
same colour g(z) = yp€ Y, then x is coloured and g(x) = y,.

Obviously every precolouring g can be extended in a unique way to a
colouring g by the following procedure: xedomyg iff # g(V, "maxP)=1.In
this case there is a y,€Y with g(V, nmax P) = {y,}. Define g(x):= y,.
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6.6. Every coloured poset (P, g, Y) can be divided into disjoint parts,

P={)g '(yyvCdomg,
yeY
where Cdomg:= P \ domg is the complement of domg in P. Obviously all
g '(y) are ascending (open) subsets of P and Cdomg is a descending
(closed) subset of P.
We define

Pure(g, y):=g" " (),
Mix(g):= Cdomg,
Pure(g) : = |J Pure(g, y) = domg.
yeY

6.7. ExampLE. Let K =(S, Y, f) be a classification problem and let S
=(X, A, V, g) be the underlying information system. As we have already
seen in 6.3, S defines a poset Cond(S). The maximal elements of Cond(S) are

the facets of Cond(S) which in turn are the elements of le a. Therefore we
aeAd
can define the function

g: maxCond(8) = XIma < x L.y,
aed

i.e, a precolouring of Cond(S) which defines in turn by 6.5 a colouring ¢
which we denote by f.

For every yeY we define Pure(X, y):= Pure(f, y):= Pure(f, v) and
Pure(K) : = Pure(f): = Pure(f) which are partially ordered sets and define
therefore via 4 complexes which are subcomplexes of Cond’(S), the
barycentric subdivision of Cond(S).

68. Let S, =(X;, 4, V,0) (=1,2) be two information systems. A
triple »: X, - X,, a: A, = A, v: Vi =V, is called a homomorphism o
=(x,a,v): S — 8, if for all xeX,, ae A, the following equality holds:

02 (x(x), a) = vg, (x, «(a))
or if we consider attributes as functions:
ax (x) = va(a)(x).

Mix(K), which is defined by Mix(K):= Mix(f):= Mix(f) is a simplicial
complex, subcomplex of Cond(S).

The notions of Pure and Mix are motivated by the following: Let ¢ be a
condition and x an object of X. We say x satisfies ¢ if for all aedom ¢ holds
a{x) = c(x). Let Sat(c) be the set of all objects which satisfy ¢. Then
ce Pure(f) iff #f(Sat(c)) =1, i.e, all x satisfying ¢ are of “the same colour”.
Otherwise: ce Mix(f) iff there are objects x and y satisfying ¢ with

fx)# 1y
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Note that neither Pure nor Mix are in general functorial, in many
important cases, however, they are:

6.9. ProprosiTiON. Let A =(x,a,v,n): K, =K, be a homomorphism of
classification problems K, =(S;, Y.,f). S.=(X;, Ai, V., o) the underlyiny
information systems. Suppose one of‘the Jfollowing conditions to be satisfied:

(i) « is injective and v(Ima(a)) = Ima for all acA,.

(1) » is surjective.

(i) K, = K, xK, and A is the diagonal map.

The mapping A, which maps the S,-condition ¢ onto v < a is a simplicial map
of Mix(K,) into Mix(K,;). Moreover, 2, is an order preserving map of
Pure(K,) into Pure(K,) which in turn defines a simplicial map of the
corresponding simplicial complexes A(Pure(K))).

7. Topology of Cond(S), Pure(K), and Mix(K)

7.1. Let K be a simplicial complex. The geometric realization |K| of K is
by definition the set of all functions p defined over the set of vertices of K
with values in the interval (0, 1] < R satisfying the following conditions:

(a) suppp = (1| p(v) # 0} eK;

(b) 3 p(v)=1.

7.2. ProPoSITION. Assume S to be completely fully faithful. Then for the
i-th homology group of Cond(S) with coefficients in Z holds

, Z ifi=0,
H;(Cond(S); Z)=4Z ifi=N,

{0}  otherwise,

where t =(m—D¥*"! with m= #V, N+1 = # A.

If m = 2 (case of boolean functions), then |Cond(S)| is homeomorphic to
the N-dimensional sphere. (B. Graw [6] proved, moreover, that in general
Cond(S) is shellable and |Cond (S)| 1s a bouquet of + N-dimensional spheres.)

7.3. ProposiTioN. Let K be a classification problem with completely fully
faithful underlying information system S. Then Mix(K) is a pure (N—1)-
dimensional subcomplex of Cond(S) and |4(Pure(K))| is homotopic to the
complement of |Mix(K)| in |Cond(S)|.

7.4. ProposiTioN (Lefschetz Duality). If S is completely fully faithful and
m= #V =2 then Mix(K) and Pure(K) are connected by the following
isomorphism of the homology groups:

H;(Pure(K); Z) = Hy_,;(Cond(S), Mix(K); Z).
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This theorem allows to compute the homology groups H;(Pure(K); Z)
knowing H,(Mix(K): Z), and vice versa. To do this use the exact homology
sequence

. — H,,,(Cond(S), Mix(K); Z) — H,(Mix(K}; Z)
— H;(Cond(S); Z} — H;(Cond(S). Mix(K); Z) — ...

and take into account Proposition 3.2.
Let

hi (Pure(K)): = rank H;(Pure(K): Z),  h(Mix(K)): = rank H;(Mix(K): Z)

be the Betti numbers of Pure(K), Mix(K) respectively. Then Proposition 7.4
yields the following:

7.5. CoroLLARY. Assume N = 2. Under the assumptions of 7.4 the
following equalities hold:

ho(Pure(K)) = hy_( (Mix(K))+1,

h.(Pure(K)) = hy_, -;(Mix(K)} if N-1>i>0,
hy_ (Pure(K)) = hy (Mix(K))—1,

h;(Pure(K))=0 if i>N-1.

7.6. Let size(C) be the size of a smallest classifying tree for the
classification problem C. The following result gives evidence that
classification problems which are difficult from the topological point of view
are intractable from the computational standpoint.

7.7. THEOREM.

ho (Pure(C))—1

size(C) =
m—|

7.8. COrROLLARY. If m =2, then
size (C) = ho(Pure(C))—1 = hy_ (Mix(Q)),
i.e., classification problems with many “(N — 1)-dimensional holes” are of high
complexity.

The following theorem is of great importance for the study of
connections between different classification problems.

79. THEOREM. Ler i: C, — C, be a homomorphism of classificarion
problems satisfying one of conditions (i), (1) or (i1) of 2.8. Let D be any sheaf
(cf. [5]) of R-modules (R an arbitrary ring) over Cond(C,). There are two
spectral sequences:

15? = HP(Pure(C,), R*A, D)= I" = H"(Pure(C,), D)
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and
118 = H?(Mix(C,), R*;, D)= 11" = H"(Mix(C,). D).
If ¢ is a condition of C,, then the fiber of RY/, D in ¢ is given by
(R4}, D), = Hi(2Jc. Dy = Hi(i; ' (V). D),
where V. = \d| d a condition of Pure(C,). Mix(C,), respectively, and ¢ a

subcondition of d).

This theorem will be used in the next section to compute the Euler-
Poincaré characteristic.

8. The Euler-Poincaré characteristic

8.1. Let K be a finite simplicial complex. The alternating sum

1K)y = Y (=) # seK|dims =i} = ) (—1)*"¥
i=0 s K
ie., the number of simplexes of even dimension minus the number of
simplexes of odd dimension is a topological invariant because y(K) =

Y (—1)yrank H,{(K; Z). This invariant is called the Euler—Poincaré
i=0

characteristic. For a poset P one defines x(P) = x(4(P)). The Lefschetz
duality (cf. 7.4) has the following straightforward consequence.

8.2. Prorosimion. Let C be a clussification problem and S =(X, A, V, 9)
the underlying information system which is assumed 10 be completely fully
Jaithful, and let #V =2, # A—1=N. Then

2 (Mix(C))—1 = (= H)¥* ! ((Pure(C))—1).

8.3. ProrosiTioN. The Euler-Poincaré characteristic of GAP(N) satisfies
the following properties:

(i) x(Pure(GAP(N), 0)) = ho(Pure(GAP(N), 0)) = h,(Pure(GAP(N)))— 1
=Q(N=-2!(n=1");

(i) Mix(GAP(N)) is shellable (cf. [6]) and therefore x(Mix(GAP(N)))
= 1 +rank Hyy 5 (Mix(GAP(N)); Z).

(For N =3 one gets z(Pure(GAP(3))) = 13)

The next theorem studies the relationship of the Euler—Poincaré
characteristic along "nice’ homomorphisms.

84. THEOREM. Let +: C, —C, be a homomorphism of classification
problems satisfying one of conditions (1), (i1} or (i) of 6.9. Let ¢ be an §,-
condition und define A /e, Z,\c in the following way:
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AJci=1deMix(Cy)| A, (d) 2c} (defined if ce Mix(C,)),
A N\c:=dePure(Cy) A, (dy=c} (defined if ce Pure(C,)).
A Jc and A \c are called the fibers of ¢ along A. Then

rMix(C) = 3 (=1 x4, /o),
ceMix(C2)

x(Pure(C))) = ¥ (=1 x(A,\o)(m—1)y~",
cePure(C3)
This theorem allows to compute the Euler-Poincaré characteristic of
Mix and Pure if one finds ‘nice’ homomorphisms onto easier classification
problems, the fiber of which is also computable.

8.5. The next theorem studies the behaviour of classification problems if
one puts one additional question: Let C = (S, Y,f) be a classification
problem, yeY, and let a be an attribute of the underlying information
system. If one extends f by adding question a in case of y one gets the
following classification Cw;a = (S, Y_lLIma,fi;a), where range (f-;—a)
=Y _ll Ima, and for an object x one defines

ffe i f9#y,
UT“"")"{a(x) it f(x) =y
Let U be an ascending subset of Cond(S). Then we define

U\a:= {ceU| a¢domc}. U\a is obviously a descending subset of U (not of
Cond(S) in general). One gets the following theorem:

8.6. Tueorem. If x(C):= y(Pure(C)), then
1(C4a) = x(O)+x(Pure(C, y)\a).

8.7. It is possible to define a classification f relative to a classification g
in such a way that

x(N=x@+xflg

if f classifies finer than g. Moreover, one gets for C, xC, the formula
2(Cy xCy) = x(Cy) 2(Cy).

These formulas resemble the well-known formulas of the classical Shannon
entropy so that cum grano salis the Euler—Poincaré characteristic can be
considered as kind of structural information.
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