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1. Introduction

The problem under consideration here can be described as follows. If fis a
2n-periodic function and if (C, a), f denotes the vth Cesaro mean of order «
of its Fourier series then we look for smoothness properties of / which ensure
that

(1.1) sup Y, v*|(f—(C, ), f)(x)|' <
x v=1

for some g, 0 <q < oo and some real numbers s. Also we discuss the same
problem if the sup-norm in (1.1) is replaced by the L,-norm, 0 < p < co.

This is a problem of strong summability (approximation) for the means
(C, ), f, which is closely related to the periodic spaces F; ,(T) of Triebel-
Lizorkin type. This was pointed out in [5]-[7] and in H. Triebel and H.-J.
Schmeisser [8]. For the historical background and a comprehensive treat-
ment of the case p = oc we refer to the recent book by L. Leindler {2].

In [5}-{7] the authors discussed such problems (also the inverse ones)
for some classical approximation processes, e.g. for approximation by partial
sums, Riesz—-Bochner means, de la Vallée-Poussin means, and Abel-Poisson
means. Results for (C, a)-means cannot be derived immediately from the
general results obtained in [6], [7] (cf. also [6], Remark 3).

Our aim is to close this gap. It turns out that the same ideas and tools
apply to (C, a)-means. The crucial point is inequality (3.19) below, a pointwise-
estimate of a difference of Cesaro means.

In Section 2 we establish our results. The most interesting is the case of
p < 1. In contrast to [5]-[7] we only consider the one-dimensional case. In
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the n-dimensional case there are some open questions. The proofs are
contained in Section 3.

The work was started during a stay at the Stefan Banach Mathematical
Center in Warsaw in Spring 1986. We take the opportunity to thank our
colleagues for their hospitality.

2. The main result

We start with some notation and definitions. Let 0 < p < c0. As usual we
_put

A 1L = ( § 1f (o)lPdx)’®s
NfIL oIl = ess sup Lf (x)]

for a measurable complex-valued 2r-periodic function f. The corresponding
spaces are denoted by L,. Furthermore, D'(T) denotes the set of all
distributions on the torus T. T is as usual represented by [ —n, ] (with —x
and = identified). The Fourier coefficients of f eD'(T) are given by

Fiky = zif(e-“x), k=0 +1, +2. ...
n

We now define the Cesiro means of order « > 0 of a periodic distribu-
tion f eD’'(T). We put

1 2 ~ )
(2.1) (C,a), f(x)= Fk—z— Ay f(kyer™, xe[—-m,n],v=0,1,...,

where

22) A0 = <v+a) rv+a+1)

T+ @+))
The means (C, a), f can be rewritten in the following way. There exists a

function Q, defined on R, = {x| x > 0} with the properties (cf. J. J. Gergen
[1], W. Trebels [10)):

A4

dQ .
(i) R, and its derivatives a2, y...s ——» ... are continuous on R, with
dx dx
daQ, d'Q,
2.3) 2,0 ==20)=...=—20)=...=0.

dx dx

(i) We have
I'a+x)

2 1.

(24) 2,(x) =

rx+)re+t’
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(iii) There exists a continuous function u, defined on R, and a positive
constant ¢, such that

(2.5) 0,(x) = }(x—t)“ u,(t)dt, xeR,,
0

1
|u, (8)] < ¢, (l—+t7)’ teR,.
(iv) There exist positive constants ¢y, ¢,, ¢, such that
d'Q,

Using 02, we have

(2.6) cy x*7!'g e, x*, 1=0,1,...,[«], if x=c,.

Cafm=y ZOHED py e eronmlv=0,1,..

k=-v Qa (V + 1)
For abbreviation we introduce the functions ¥’ by
2, (v=Ix|+1)
T . 1y 0 < < la
@) Vi =< 2,0+ <y
0, otherwise.

This leads to

28 € af@= Y VKRS0, xe[-nalv=0,1,...,

k=~— o

which is more convenient for us than (2.1).
Next we define the spaces F; (T) and B; (T). Let ¢€C®(R) be a
function with

suppo < (8] 12< (8 <2) and ¥ 0Q@O=1 for |&>1.
j=0

We put .

) 2_1‘, l=0, IIRERE]
(29) ¢1(-)={g( ) I=—1, =2,...

DEFINITION. Let —o0 <s < o0 and 0 <gq < .
(i) If 0 <p < oo then

Fp.a(T) = {f| f €D'(T),
I 1Pl = (X 2] X007 6e) 1L, +17 (01 < o},

k=-o
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Fp.(T) = If] feD(T),

(i) If 0 <p < oo then
B4 (T) = fl f€D'(T),

I IBL (DI =(X 2] Y o0;(k) f (k) e*=| L))" “+If (0] < o,
ji=0 k

B;.(T) = | feD(T),
718Dl = sup 2] 3 0,00 f()€IL,]|+1f (O < oo},

[ k=~ a

Remark 1. In the literature the spaces defined above are called Triebel-
Lizorkin and Besov spaces. They are quasi-Banach spaces and are indepen-
dent of the choice of ¢. Furthermore, we have the embeddings

Foo(cL,nL, and B;, (T)cL,nL,

if s > max(0, 1/p—1). More information about Triebel-Lizorkin and Besov
spaces on the torus or on R,, such as characterizations by differences and
derivatives, characterizations by approximation, or relations to more classical
function Spaces, can be found in H. Triebel [11], H.-J. Schmeisser and H.
Triebel [8], or H.-J. Schmeisser [4].

Now we state our main result.

THEOREM. Let « >0 and 0 <s < 1.
(i) Let 1fa+1) <p<oo and 1f(@+1) <q< . If feL,nL, then

@10) IFIL+[(Z v~ = (C. o )@Y “ILy|| < 00 = S eFyg(T)
(1f 1Lyl +[lsup v* |(f~(C. ), N)IL]| <0 if g = c0).

(i) Let 1/(@+1)<p<oo and 0 <q< oo. If feL,NnL, then:
@11 IfILA+(E v (f~(Co ), N)ILJY)™ < o0 < feBE, ()
v=1
(S 1L+ sup v [|(f=(C, @), f)(R)IL,|| < 0 if g = ).

(i) If 0<g<o0 and 0 <u < oo then
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o 2it1-,
@212 IfILaMI+(Z ] £ v ' ~(C 0 )@ I La(T™)" <o
j=o v=2j

< feB, (T).

Remark 2. The parts = (the so-called inverse results) can be sharpened.
(i)(iii) remain true if 0 <p, ¢ < oo and s >0 (cf. [6], Theorems 1, 2 and
Remark 3). Moreover, the expressions on the left-hand sides of (2.10)+(2.12)
are equivalent quasi-norms in the corresponding spaces on the right-hand
sides. -

COROLLARY. Let 0 <s <1 and 0 <q < o0.

(i) If feL(T) then
(2.13) | Y vt [(f=(C, a), )| Lo (T)]| < 0
v=1

implies f €B%, o (T).
(i) If f €B%, ((T) then

(219 | X v (= (C, 0, )| I Lo (TY| < 0.
v=1

Remark 3. (i) is stated in [6], Corollary 1 and Remark 6. To prove (ii)
one can follow the same lines as in [6], Corollary 3 and Remark 12.
Moreover, as pointed out in [9], part (i) of our corollary can be sharpened. If
1 < ¢ < o the finiteness of the expression in (2.13) implies f € F%, ,(T). Here
F o(T) means the dual space of Fi; (T), where 1/g+1/q' = 1. Note that

By 4(T) © Fio g (T) = B, (T)

and both embeddings are proper (cf. H.-J. Schmeisser and H. Triebel [8],
Chapter 3).

Remark 4. We give some comments on the parameter ranges in our
theorem. If p > 1 then the restriction of s to the values less than 1 is quite
natural. The case s =1 corresponds to the saturation order of Cesaro
approximation (cf. W. Trebels [10], Theorem 4.9). It follows that

s (f—(C, 0, XL =0(v™"), v,

implies f =c if 1 < p < 0. In case 0 < p < 1 such a final answer seems to be
unknown. The restriction of 1/p to the values less than a+1 also appears in
the work of P. Oswald [3] in connection with the boundedness properties of
the maximal operator

(Tf)(x) = sup|(C, a), f (x)
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in some subspaces of FJ,(T). Furthermore, in the case of approximation by
Riesz-Bochner means of order « we have the same bound for 1/p (cf. [6],
Theorem 8).

Remark 5. The theory developed in [6] and [7] works in any dimen-
sion. A consequence of this fact is the correctness of the inverse results (=) in
any dimension. Our direct results are restricted to the case n =1, and
extension to n > 1 seems to be open. We return to this problem in connec-
tion with Lemma 1 in the following section.

3. Proofs

To prove our main result we need some lemmata. Let Bj  (R) be the
nonperiodic counterpart of the spaces Bj (T) (cf. H. Triebel [11], H.-J.
Schmeisser [4]).

LemMA 1. Let a > —1. Let 1 be a real number with 0 <t < 2. Let x be a
C®-function with x(x) =1if 0<x<4 and x(x) =0 if xeR\[—1, 5]. Then

a . a _ (T"x)al(x), T2 X,
Job)i=G=xfi x() = {0 otherwise,
is a uniformly bounded family of functions in B}*Z(R).

Proof. First one checks that f is a uniformly bounded family in W{"(R)
if x—m > —1 (here W{"(R) denotes the usual Sobolev space on the real line).
Let 0>6 > —1. We have

G.1) [ ldn f2(x)ldx < clh'*?

|x—1z| <2|h]

and by the mean value theorem

|4 £2 ()| dx < clhl* (k|h)>~" = c|hf * oK%~
KIh| < |x~1] Sk + DA
for any heR and any k, k =2, 3, ... The last formula leads to
3([1/h)+ 1)

(3.2 f ol ffdx <} ) 145 £ (x)] dx

|x=t|>2|h k=2  klhS|x—t|<(k+1)jh|
©
< Clh|1+6 Z k6—1 < C|h|l+6.
k=2

(3.1) and (3.2) prove that f is a uniformly bounded family in B1*3(R).
By observing that the ([a]+ 1)-th derivative of f* is a function of the
type of f?, the lemma is proved for any noninteger a. But if a is a
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nonnegative integer one checks easily that the derivative of order « is the
product of the characteristic function of an interval and a smooth function
and hence it belongs to B} . (R) (cf. H. Triebel [11], 2.8). This completes the
proof.

Remark 6. One can also prove a radial-symmetric version of the lemma
in dimension n if one modifies y in such a wav that O¢suppy. But
unfortunately the smoothness of such an extended function does not depend
on the dimension. If n > 1 this leads in the following to unnatural restric-
tions on the parameter p.

Let @ eC®(R) be a function with

(33 d(x)=1 if1/2<|x]<2 and supp®cix| 1/4<|x|/<4).
Let « > 0 be fixed. We put

1—u°® j+1
(34) yuur=——$§}—ﬁ¢a*“xx

Lemma 2. If j=0,1,..., 2 <v<2*!, —j<I<], then y,,€Bi/; (R).
Furthermore, there exists a posmve constant c independent of j, v, and | such
that

(3.5) Wyl Bie (R < 27
Proof. Step 1. We estimate IIyV,IL (R)|).

Let jo, be an integer with 2o~ = ¢o, Where ¢, is the number from (2.6).
Let j > j, and let r eR, be such that 27*'r < v/2. As a consequence of (2.6)
and (2.7) we obtain by the mean value theorem

(é) 2ty
R+ 1) =R, (v +1=2""1)
- r,(v+1) = rQ (v+1) '

for v/2+1 < ¢ < v+1. Here the constant c is independent of j and v. On the
other hand, if 2/*'r > v/2, then r > 1/4 and hence

1-ys@*'n| _,

r

a2 t1
(3.6) '1 ¢,£2 )

3.7

Now, (3.6) and (3.7) together with the properties of ¢ lead to the estimate
(3.8) sup 27yl Ly (Rl < ¢

izlo
2gy<ait!
-j<if1

Step 2. We estimate the derivatives of y,,.
Clearly, y,,€C®(R) and hence the following is meaningful. For any

24 — Banach Center t. 22
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positive integer m and x > 0 we have

2 ~imy dm2¢

- (=32 0) iy o @711

(39) ' ()l\.c

0smy,my<m

my +M2 m

2™
+ -
Osmgnsz Qa(v"'l)
l$M3$m
mytmy+my=m
0 . 27" g" e
X ((v+1-2"1x)),) 27 "1x).
dx™ AR

Now, to estimate the derivatives we distinguish two cases.

First we consider all integers | with —j<[/< —3. Hence, if
xesupp®(27'*!-) we have v+1—-2*'x > 2/71 Using again (2.6) with j
2 jo. (3. 7) and the conditions on the support of @ one obtains in this case

(3.10) ”” D) <

< cll—g3* x) 2 me Y

+ ¥ 2""'3'" - ((v+l 2+1xp, ) 27Tt

1Smy<m

<c27im

where ¢ is independent of j >j,, 2 < v <2*!' and —j<I< -3.

If —2<I<1 then 274 < 2* ' x < 2*? for xesupp®(2~'*!:). The
restriction of m to the values with a—m > 1 allows us to use the integral
representation of the derivative of Q, (cf. (2.5)). Using again (3.9) and (3.10)
we obtain for such values of / and m

dr
EXTI | y”(x) dx
< H/(m3=a) 5= lUm=m3+1) P j+1
\C(1+ Z 2 ) ‘ d—ms—(V+1—2 Ix])+ pdx.
1€Smy€m 1-5 X
Because
4 Iqm v+l v+1
{ y (v +H1 =27 x) Ydx <270 | | (vH1—1—0)3 ™ |u, ()| dr dt
2-sldx 0 ,j—-4
v+1

<27 [ (1= "y, (1)l dt
0

<c2em  ifa—m>—1,
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it follows from (3.11), (3.10), and (3.8) that

(3.12) jsup 271 iy, | WP(R| < ¢
2jo

2igyv<2itt
—-j<I<t

If o is an integer then , is a polynomial of degree a for x > 1. Hence
& Q,

poTs ——=(x) =0 for x > 1. Using
+1 v+1da+lg .
j d;xﬁ? (v +l—2’“|x|)+)‘dx 27/ j Ve ————(v+1=1)|dt <27/

we see that (3.12) is true if a—m > —1, too. The continuous embedding
W (R) < BT . (R) proves the lemma if a is an integer.

Step 3. Let o be noninteger. Let —j <I/< —3 and 0 <6 < 1. In Step 2
we have proved

I | W (R)I| < ¢ 207

for any nonnegative m. Since
(B?.E(R), B u)(R))a w = B’"(l 0)(R)

we have the inequality
(3.13) ys1| BT (R)]| < ¢2/0 210 ~m1=0) — plt —m(1-6)

where c is mdependent of y,,. This proves the lemma under the restrictions
j=2joand —j<I< 3.

Let —-2<I<1. Note that the support of y,, is contained in
{x] 27% <|x| <4}. Restricted to this domain, functions of the type
" @

—er (@9):1x”

[11], 2.8). Let x be the function of Lemma 1. Then

™2 are pointwise multipliers for Bj ., (R) spaces (cf. H. Triebel

(3.14) Iyl B < (R

d[a]+l ?v' ‘1
WI ["](R)“ < c(”x(x)(l 'f’a(zj x))lB‘i [a](R)”)

KRC

+ Z 2i(m~a) d;‘: ((v+1 2’“|X|)+)X(x)|Ba_[a](R)”)-

1€Em<[a)+1
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Using (2.5) and Lemma 1 we obtain

(3.15)

e (0+1-2* 2], (9 By (R)“

0||x(x)I(V+1 = 2% X =% "u, () dt| B L (R)||

<c sup |lx(x)(v+1-2*1|xj—0)i" "By B (R

O<t<v+1

< c2*™™  gup
0<t<v+l

< ca-m

1 o~ m
x(x)("—*,;;— lxl) |3 l"‘(R)“

+

for any nonnegative m with a —m > —1. Because

1
A(1—yi2* )=y (2t x) = Q,'(v+l)'A: Q,(v+1-2*1x),)
we have by (3.15) and (3.8)
(3.16) () (1= ) B R)| < c.

Putting this estimate into (3.14) and taking into account that the constants
do not depend on j = j, and v, 2/ < v < 2/*!, we get the counterpart of (3.13)
with —2 << 1, at least if m(1—-6) =a+1.

This proves the lemma.

The next and last lemma we wish to formulate is more or less a
modification of Lemma 3 in [6] and so we omit the proof (cf. also Corollary
2 in [6]).

As usual, Mf denotes the Hardy-Littlewood maximal function of an
integrable function f.

LEmMA 3. Let 0 <r<1 and 1/r <A <. Let y€B} ,(R) and
suppy < ix] Ix| <2, [1=0, 1, £2,...
Let j=0,1,... If
fa¥) =Y &, xeT,m=0,1,...,

k| € 2m

then there exists a constant ¢ independent of f,,, ¥, j, I, and x such that

| X727 0 fu ] < 2Dy B, o (R (M1 ()

where 1 := max(l+j, m).
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Now we are in a position to give the proof of the theorem.

Proof of the theorem. We prove (i). In principle we follow [6]. Let
feF, ()AL, 0<p, q<oo, and s >0. Let 0 <r <min(l, p, q). Analog-
ously to [6], (4.6), we obtain

(3.17) }:1 v (= (C, a), )

<c) 24 sup |((C, ®),j+1 f—(C, a), ) ()

j=0 2gv<2it

where c is independent of fand x € T. Now we define a family of functions by
'ﬂ.v(x) = w;j+1 (x)"'W:(x)’ XGR,j = 0’ l’ [RRX) and 21' gv< 2j+1-

We can write

(C.a)yur f[~(C,0), ) ) = ¥ n5. k(K™ xeT.

k= —

Furthermore, it is not hard to see that the identity
v (k) = Z 5.0 (K) @14 5 (k) Py 4 5 (K)

holds (here ¢,,; are the functions defined in (2.9) and

¢(2_j')’ .’=0’ l, 2,“-’
() {o, j=—1,-2,...,
where & is defined in (3.3)). Now we put
=Y 127" 'Kek f(ke*, xeT,1=0, +1, +2,...
k=—-

Analogously to [6], (4.10), we obtain

G18) | Y m.0f(ker|

k= - o0

1 @®
< Z 2‘| Z |2_1_lk|—l'I?.v(k)¢j+l(k)f}+l(k)e“xl-

I=—-a k= - o
Obviously, we have

M (k) @;+ 1 (K)

I2—j—lkl' =7V.1(2-U+l)k)_))zj+l"(2—u+l)k)‘
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On applying Lemmas 2 and 3, (3.18) leads to

@ 1
319) | ¥ m.fke <c Y 2"y, | BLE R (M| £+ ) (x)

k=- I=-j

1
<c ¥ 2N MIf )

I=-j

for any r, 1/r <a+ 1, with ¢ independent of j, f, and x. With the aid of (3.17)-
(3.19) one can follow [6], formulas (4.12)+4.17) to obtain

I(Z v+~ (= (C. @ )N “IL|| < clif 1P (DIl
v=1

if 1/min(1, p,q) <l/r <a+1, s>0, and 1/r—a—s>0.

This is possible for all s <1 (choose r such that a+ 1—1/r is sufficiently
small).

This proves one direction of the equivalence in (i). The way of obtaining
the other direction is described in [6], Theorem 1 and Remark 3. We omit
the details. ,

The proofs of (ii) and (iii) are again consequences of our basic inequality
(3.19). One has to modify the above proof in the same way as in [6],
Theorems 2, 4, Corollary 3, Remark 6 and 12..

The proof is complete.
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