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Let A be a finite dimensional algebra (associative. with an identity) over an
algebraically closed field. Following Happel and Ringel, we shall call a finitely
generated A-module T, a tilting module if it satisfies the following three
conditions:

(T1) The projective dimension of T, does not exceed one.

(T2) Exti{(T, T)=0.

(T3) There exists a short exact sequence 0 -4, - T, - T, —0 with T
and T direct sums of direct summands of T.

It was shown by Brenner—Butler and Happel-Ringel that there exists
a close connection between the representation theories of the algebras 4 and
B = End T,. This connection is known as tilting theory and these notes are
meant as an introduction to this theory. Most of the basic results are proved
here in detail and several examples are provided to illustrate the methods. Also,
some of the more specialised aspects are surveyed, such as tilting-cotilting
equivalence, and the theory of tilted and iterated tilted algebras.

Introduction

The present notes are a more or less faithful version of a series of five lectures
given in the Banach semester on “Classical algebraic structures”, session II:
“Representations of finite dimensional algebras and related topics”, held in
Warsaw, April-May [988. The aim of this series was to introduce the theory of
tilting modules, as initiated in [27] and [43], and to present some of their
applications in representation theory. We have tried to keep these notes as
self-contained and introductory as possible, thus most of the basic results of
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tilting theory are proved here in detail. Also, several examples are provided. In
order to limit the size of the notes, we have not given the space deserved to
several developments (most notably Happel's results on derived categories
[39]), and we have left out several others, such as the recent generalisations of
the concept of tilting module (as in [58], see also [39], [30], or in [80]) and
tilting objects in other categories (as in [35]. [17].in [62], or in [33]). For the
history ol titting theory. we refer the reader to [40]. [I1.

The organisation of the notes follows closely that of the lectures, even
though the notes are more complete. Section 1 is devoted to the introduction of
tilting medules by means of torsion theories in mod 4. Most of the matenal in
this section ts based on results of [16], [43], [21]. Section 2 contains the main
theorems of tilting theory, as can be found in [27], [43], [21]. In Section 3, we
give necessary and sufficient conditions for a torsion theory to be induced by
a tilting module, as in [3], [70], [49], then we describe the torsion resolutions
as introduced in [75}. In Section 4, we discuss those properties of an algebra
which are preserved under the tilting process. Sections 5 and 6 are devoted
respectively to the classes of tilted and iterated tilted algebras, introduced in
[43] and [5], respectively.

Throughout these notes. k will denote a fixed algebraically closed field,
and A a Ninite dimensional associative k-algebra with an identity. All our
A-modules will be finitely generated right A-modules, and we shall denote their
category by mod 4. The corresponding (projectively) stable module category
will be denoted by mod A, and the standard duality on modA by
D = Hom,(—, k). For an additive category ¥4, we denote by ind¢ a full
subcategory of % consisting of a complete set of representatives of the
non-isomorphic indecomposable objects of 4. If, in particular, ¢ = mod A, we
shall write ind ¥ = ind A. For an A-module M, we denote by add(M) the full
subcategory of mod A consisting of the direct sums of direct summands of M,
and by Gen(M) (respectively, Cogen(M)) the full subcategory of mod A
generated (respectively, cogenerated) by M. The projective (respectively, injec-
tive) dimension of an A-module M will be denoted by pd M (respectively, id M)
and the global dimension of the algebra A by gl. dim A. For each vertex i of the
ordinary quiver of A, we denote by ¢; the corresponding primitive idempotent
of A and by S(i) the corresponding simple A-module. The projective cover
(respectively, the injective envelope) of S(i) will be denoted by P(i) (respectively,
I(i)). We shall use freely and without further reference properties of the
Auslander-Reiten translations T = DTr and t~! = TrD, and of the Auslan-
der-Reiten quiver I', of A such as can be found in [15], [34] and [65].

1. Torsion theories and tilting modules

When the representation theory of an algebra A is difficult to study directly, it
is sometimes convenient to replace A by another, simpler, algebra B and to
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reduce the problem from a problem on A4 to a problem on B. This occurs, for
instance, in the classical Morita equivalence theorem. The latter is, however, of
limited use in representation theory, since in this case, no change occurs on the
level of the module categories. The main idea of tilting theory is, given an
algebra A, to construct a module T,, called a tilting module, such that, if
B = End T,, then the categories mod A and mod B are reasonably close to each
other (but generally not equivalent). Since this procedure can be seen as
generalising Morita theory. we should expect to use the adjoint pair of functors
Hom (T, —) and —®,T to compare mod A and modB. Also, we should
expect the full subcategory Gen(T,) of mod 4 to be of interest, and, indeed, we
shall derive sufficient conditions on T so that Gen(T,) is the torsion class of
a torsion theory in mod A. We thus begin by recalling a few well-known facts
about torsion theories in module categories.

1.1. DerINITION (Dickson [32]). A torsion theory in mod A is a pair (7, %)
of classes of modules such that:

(i) Hom (M, N)=0 for all MeJ and Ne#%.
(i) Hom ,(M, —)|& =0 implies MeJ.
(i1i) Hom ,(—, N)|;> = 0 implies Ne #.

The class J (respectively, #) is called the torsion class (respectively, the
torsion-free class) and its objects are called torsion objects (respectively,
torsion-free objects). Clearly, (7, #) is a torsion theory in mod A if and only if
(DZ, DJ) is a torsion theory in mod A°P. Any class 4 in mod A induces
a torsion theory as follows:

9,_ — {NAlHomA(_! N)l‘] = 0}' 7 = {MA|H0mA(M, _)lﬁ = 0}.

Moreover, J is the smallest torsion class containing . Dually, 2 induces
a torsion theory (7, %) such that % is the smallest torsion-free class
containing 4. Another way to define a torsion theory is by means of an
idempotent radical.

DEFINITION. A preradical t is a subfunctor of the identity functor on mod A4,
that is, it assigns to each module M a submodule tM such that each morphism
M — N restricts to a morphism tM —tN. A preradical ¢t is said to be

idempotent if t* = t and is said to be a radical if t(M/tM) = 0 for every module
M.

A torsion theory (7, %) induces an idempotent radical as follows: for
every module M, tM is the trace of 7 in M, that is, it is the sum of all the
submodules N of M such that Ne 7.

Torsion and torsion-free classes are characterised as follows:

PROPOSITION. Let 7 be a class of modules. The following conditions are
equivalent:

9 — Banach Center & 26, ¢z. |
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(1) There exists a torsion theory (7, #) having J as torsion class.
(i)} There exists an idempotent radical t such that 7 = {M [tM =M}
(i) J is closed under images, direct sums and extensions.

PROPOSITION. Let F be a class of modules. The following conditions are
equivalent:

(1) There exists a torsion theory (7 , #) having & as torsion-free class.
(ii) There exists an idempotent radical t such that F = {N ,|tN = 0}.
(ii1) F is closed under submodules, direct products and extensions.

For the proofs, we refer the reader to [32] or [71]

Thus, each of .7, # and ¢ uniquely determines the others. Also, it follows
directly from the above propositions that to each module M, corresponds
a short exact sequence 0 - tM - M - M/tM -0 with tMe 9, M/tMec %
(called the canonicual sequence for M) such that every short exact sequence
0-M ->M->M'-0with MeZ, M"e# is isomorphic to the canonical
sequence for M. An obvious consequence is that any simple module is either
torsion or torsion-free.

DEFINITION. A torsion theory (7, #) is called splitting if, for every module
M ,, the canonical sequence for M splits.

Clearly, a torsion theory (7, #) is splitting if and only if ExtY{(N, M) =0
for all MeJ and Ne %, or, equivalently, if and only if every indecomposable
A-module is either torsion or torsion-free.

1.2. Let now T, be an A-module. We ask when Gen(T),) is the torsion class
of a torsion theory in mod 4. For this purpose, we may clearly assume that T,
is minimal, that is, if T=T @ T", then T ¢ Gen(T”). Also, we shall let
B =EndT, (so that T can also be considered as a left B-module).

LEMMA. A module M , belongs to Gen(T,) if and only if the evaluation map
ey: Hom (T, M)® ,T— M given by f&t - f(t) is an epimorphism.

Proof. We only need to prove the necessity. Suppose M € Gen(T,) and let
fi»-..,f, be a basis of the k-vector space Hom ,(T, M). Then there exists an
epimorphism [g,, ..., g,]: T™ — M. Since g,cHom,(T, M), we have
g;=24-1Af; with Aiek. Now any xeM can be written as
x=7-1g,t;) with t;e T, but then

s
Ma.

X =

BA) = e (S H@1).

J=1i=1

Remarks. 1. While Gen(T,) is clearly closed under images and direct sums,
it is generally not closed under extensions (thus is not a torsion class). Let
indeed A be any algebra having two non-isomorphic simple modules S,, S,
such that Ext4(S,, S,) # 0. Then Gen(S, @ S,) is not closed under extensions.
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2. To the class Gen(T,) is associated an idempotent preradical ¢ defined as
follows: for a module M, we let tM be the trace of T in M, that is, the sum of all
the submodules of M which belong to Gen(T,).

1.3. Lemma [16]. Let T, be an A-module. Then:

(i) Gen(T,) is a torsion class if and only if ExU\(T. —)|genr.) = 0-
(ii) Cogen(T,) is a torsion-free class if and only if Exty(—, T)lcogenir) = 0-

Proof of (i). Suppose that Gen(T,) is a torsion class, and let M be an
indecomposable torsion module such that Ext} (7, M) # 0. Then there exists an
indecomposable summand T, of T such that Ext4(T,, M) # 0. Let us consider
a non-split extension

0—M-"E > T,—0.

Since M, T,eGen(T,), we have Ee Gen(T,) and thus there exists an epimor-
phism p: T™ — E, for some m. Let us write T"™ = R@ T{™; then the com-
position f—rp: T™ S T, can be written as f=1{g,f,....[, ], with
geHom (R, Ty) and f,e EndTj. Since f is an epimorphism,

To = g(R)+ ) filTy).
i=1

Since v is not a retraction, no f; is an isomorphism and consequently
ST,y < (rad End T)(T) (because the indecomposability of T, implies that
EndT; is local) for all i. So

Ty = g(R)+(rad End T, )(T;).

Applying Nakayama’s lemma to the left End T,-module T, we get T, = g(R), so
that ¢ is an epimorphism. This, however, contradicts the minimality of T.
In order to prove the sufficiency, we must show that Gen(T,) is closed
under extensions, so let 0 - M' - M — M"” — 0 be a short exact sequence, with
M’, M" e Gen(T,). Since Exti(T, M) =0, we have a short exact sequence

0 - Hom (T, M’y - Hom (T, M) - Hom (T, M") - 0.

Applying the right exact functor —®,T. and comparing with the original
sequence, we obtain an exact commutative diagram

Hom ,(T, M")®z T— Hom (T, M)®gT— Hom (T, M) @z T— 0
lﬂm- lc.,, l“u"
0 > M’ r M > M >Q
By 1.2, &, and ¢y, are surjective. By the Five Lemma, ¢,, is surjective as well.
Hence M eGen(T)).

1.4. DerFINITION [16]. Let ¥ be a subcategory of mod 4 which is closed
under extensions. A non-zero module M, in € is said to be Ext-projective




132 I. ASSL:M

(respectively, Ext-injective) in % if Ext}(M, —)|, =0 (respectively,
Ext}(—, M)|, = 0).

Thus, if M is Ext-projective in a torsion class .7, then, for every short
exact sequence 0 > N' - N - N’ -0 with N'e€.7, the induced sequence

0—- Hom (M, N)-» Hom (M, N) - Hom (M, N') =0

is exact. Also, if Gen(T,) is a torsion class, it follows from 1.3 that T, is
Ext-projective in Gen(T,). Dually. il Cogen(T,) is a torsion-free class. then T, is
Ext-injective in Cogen(T,). The following characterisation ol Ext-projective
and Extinjective modules in torsion and torsion-free classes is due to
Auslander and Smale [16].

LEMMA. Let (7, #) be a torsion theory in modA, and t denote its
idempotent radical. Then:

(i) If M e T is indecomposable, then M is Ext-projective in 7 if and onlv if
tMe. 7, and M is Ext-injective in .7 if and only if M > t1 for an injective
1, ¢ 7.

(i) If Ne # is indecomposable, then N is Ext-injective in # if and only if
t~'Ne7, and N is Ext-projective in F if and only if N = P/tP for a projective
P,¢7.

Proof of (i). Suppose that tM e % and let X € 7. By the Auslander—Reiten
formula Exti(M, X) = DHom (X, tM) < DHom (X, tM)=0. Thus, M is

Ext-projective in .7 . Conversely, suppose that tM ¢.% . Then, in the canonical
sequence for TM:

0-t(tM) B TM S tM/t(zM) - 0.
v is not a section, thus, if
0>tMLES M0

is the Auslander-Reiten sequence ending with M, there exists
h: E — tM/t(zM) such that hf = v. Since v is surjective. so is h. We thus obtain
an exact commutative diagram

0 0
Lo,
0—-t(tM)—>Kerth—M -0
Ao
O-tM~> E >M-0
ul h

TM/!(‘L’JI/I) = tM/t(tM)
6
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Clearly, the first row does not split (for, If ¢’ 1s a retraction, so is g). So
Ext4(M, t(tM)) # O implying that M is not Ext-projective in 7. This proves
the first assertion.

Now let [,¢.% be injective and let Xe.9. Applying the functor
Hom (X, —) to the canonical sequence for I yields

0 = Hom (X, I/t) - Ext}(X, tI) » Exty(X, I) = 0.

Thus t! is Ext-injective in 7. Conversely, let M, be Ext-injective in 4 and
I denote its injective envelope. We claim that M is a direct summand of tI.
Indeed. since Hom ,(—, I} ; > Hom ,(—, tI}| ;. we have an exact sequence

0— M 1l >t A - 0. Since (s torsion, so is t1'M, But M 1s Ext-injective
in 7, hence this sequence splits. The proof i1s complete.

1.5. DErINITION. A module T, is called a partial tilting module if it satisfies
the following two conditions:

(T1) pdT, < 1.
(T2) Ext'(T, T) = 0.

LEMMA. Let T, be a partial tilting module. Then Gen(T,) is a torsion class.
Conversely, if Gen(T,) is a torsion class, and T, is a faithful module, then T, is
a partial tilting module.

Proof. Let T, be a partial tilting module. and let M € Gen(T,). Then there
exists an epimorphism T™ — M for some m. By (T1), it induces an epimor-
phism Exti{(T, T) - Ext(T, M). By (T2), we deduce that Ext}(T, M)=0.
Thus T is Ext-projective in Gen(T,). By 1.3, Gen(T,) is a torsion class.

Conversely, suppose that Gen(7),) is a torsion class. Then, by 1.3, we have
Exti(T, T) = 0. On the other hand, if T, is faithful, then there exists an
epimorphism T"™ - (DA), for some m. Therefore DA € Gen(T,). On the other
hand. by 1.3, T is Ext-projective tn Gen(T,). therefore. by 1.4, T is torsion-free.
This implies that Hom (DA, tT) =0, that is, pdT, < 1 (see [65], 2.4, (1))

Remarks. 1. If Gen(T,) is a torsion class, then the corresponding
torsion-free class is # = {M,|Hom (T, M) =0}. Note that, since T, is
Ext-projective in Gen(T,), we always have t1Te #.

2. If Gen(T,) is a torsion class, but T, is not faithful, it 1s generally not
a partial tilting module. Indeed, if 4 is given by the quiver

6LoLd
bound by aff =0, then S(3) generates a torsion class, but pdS(3) = 2.

1.6. DEFINITION [43]. A partial tilting module is called a tilting module if it
satisfies the additional property

(T3) There exists a short exact sequence 0 > A, > T, > T, =0 with
T, T" eadd(T),).
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Thus, trivial examples of tilting modules are provided by the Morita
progenerators. Clearly, if T, is a tilting module, then Gen(T,) is a torsion class.
The torsion theory induced by a tilting module T, will be denoted by
(7(Ty. #(T,) (thus, .7 (T,) = Gen(T,)).

LeEMMA. Let T, be a tilting module. Then 7(T,) = {M | Ext(I, M) =0].

Proof: Since T, s  Ext-projective in 7 (T,). it follows that
F(T,) = {M | Ext}(T, M) = 0}. Conversely, let M, be a module such that
Ext}(T, M) = 0. Applying the functor Hom ,(T, —) to the canonical sequence
for M yields, by (T1), an epimorphism Ext}(T, M) — Ext}(T, M/tM). Thus
Ext(T, M/tM) = Q. Since M/tM € #(T,), we also have Hom ,(T, M/tM) = 0.
Therefore, applying the functor Hom ,(—, M/tM) to the short exact sequence
of (T3) yields an exact sequence

0 - Hom (T", M/tM) - Hom ,(T', M/tM)
— Hom (4, M/tM) — Exti{(T", M/tM).
Hence M/tM ~ Hom (A, M/tM)=0 and M =tMe7 (T,).

COROLLARY. Let T, be a tilting module. Then any injective A-module
belongs to 7 (T,). In particular, the Ext-injective modules in 7 (T,) coincide with
the injective A-modules.

Remarks. 1. We shall see in 3.2 that, conversely, if 7 = Gen(T,) is
a torsion class containing the injectives, then .7 is generated by a tilting
module.

2. It follows from the Corollary that, if T, is a tilting module, then 7 (T ) is
a hereditary torsion class only if T, is a Morita progenerator.

3. Let P, be an indecomposable projective-injective. Then P, is a direct
summand of any tilting module T,. Indeed, since P is injective, there exists an
epimorphism T — P which splits (because P is projective) and therefore
Peadd(T). Thus, if A is self-injective, the tilting modules coincide with the
Morita progenerators. The following is an example of an algebra which is not
self-injective but such that the tilting modules coincide with the Morita
progenerators: let A be the radical-square zero algebra given by the quiver

Fig. 1

of Fig. 1 it is easily seen that every indecomposable non-projective A-module
has infinite projective dimension and so the stated property is satisfied.
Actually, it is not hard to show that, for an algebra A, the tilting 4A-modules
coincide with the Morita progenerators if and only if every indecomposable
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non-projective A-module has infinite projective dimension (see [40]. I,
2.14(h)).

Exampres. (1) The APR-tilting modules. The following construction, due to
Auslander. Platzeck and Reiten [14]. is a generalisation of the reflection
functors of Bernstein, Gelfand and Ponomarev [20]. Let 4 be an algebra and
let S(i), be a simple projective non-injective. Then the module

T[], =17 'SHS(DP()
J#i
is a tilting module called the APR-tilting module associated to S(i). Indeed, any
neighbour of S(i) = P(i) in I' ; is an indecomposable projective P(a) such that
we have an arrow a — i in the ordinary quiver of A. Therefore we have a short
exact sequence
0->PlH»@Pla—-t'Pli-0

which proves (T1) and (T3). Next, since pd7T<1, we have
Ext4(T, T) 3 DHom4(T, tT) = DHom (T, P(i)) = 0, because P(i) is simple.
This shows (T2).

Moreover, ind # (T,) = {P(i)} and indJ (T,) = ind A\{P(i)} (in particu-
lar, (7 (T,), #(T,)) is a splitting torsion theory). Indeed, M e 7 (T,) if and only
if 0 = Ext}(7. M) = DHom ,(M, tT) = DHom (M, P(i), thus if and only if no
indecomposable summand of M is isomorphic to P(i). Since P(i) = tTe # (T),
this shows our claim.

(i) Let 4 be given by the quiver of Fig. 2 bound by
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aff = 0.3 =0.u0 =0. Then ', is shown in Fig. 3, where modules are
represented by their dimension vectors. We claim that

t (] l 1 0 0 1 (] :
l@ { OG-) 1 ()(-B 0 (lJ
0 1 0 0

1

is a tilting module. (Observe that P(4) ="' ! is projective-injective, thus is

0
a summand of any tilting module.)

(T1) To show that pd T, < 1, we need only observe that we have short
exact sequences

0 P(3) - P()® Pd) —°

0-P3)-PO6)BPH4) -

0 P(2) » P(4) -
0 P(3)— P(4)-°,

(T2) To prove that Exti(T, T) = DHom (T, :T) = 0, we must show that

0

HomA(P(l)(—BP(4)®° [ 09 IT) = 0: indeed, the only predecessors of 1T which
0

0
are in add(T) are P(1), P(4) and ® [, Since (tT)e, = (tT)e, = 0, we need only
0

compute

V] 0 0
HomA(" s TT) = Hom,,(o e ?) =0.
0 0 {

(T3) follows from the last two short exact sequences of the proof of (T1} and
the exact sequences
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In Fig. 4, the shaded regions indicate the subcategory .7 (T,) and the dotted
ones the subcategory .# (T,): the summands of T arc denoted by small squares.
A module M is in .7(T,) if and only if Hom (M, tT)= 0: for instance,

| I (]
Homf,(0 | (‘;, rT) = HomA(0 | (';, o, ‘:') =0.
( {

Similarly, N belongs to .#(T,) if and only if Hom (7, N) = 0. The endomor-
phism algebra B=EndT, is given by the quiver of Fig. 5 bound by

aﬁ = -/'()‘ = /;.,Ll, /f\ =0, 0v =0, j = 0.

0 le.7(T,) since
(]

Fig. §

1.7. The following lemma, due to Bongartz [21], justifies the name of
partial tilting modules,

LEMMA. Let T, be a partial tilting module. Then there exists a module X ,
such that T® X is a tilting module.
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Proof. let ¢,.....¢, be a basis of the k-vector space Exti(T, 4), and
consider the exact sequence
(e) 02 A-X->T9S0

defined as the amalgamated sum (“pushout™ along the codiagonal map
A — 4 of the exact sequence @_, ¢;. Since pd T, < L, it follows [rom [25],
8.1, Corollaire 2, that pd X , < 1. Applying the functor Hom (T, —) to (e) gives

... Hom (T, T¥) - Ext}(T, A) - Ext}(T, X) - 0.

By construction, the first morphism is surjective. Hence Exti(T, X)=0.
Moreover, applying respectively Hom ,(—, T) and Hom ,(—, X) to (e) yields

0 = Ext}(T?, T) - Exti(X, T) - Exti(4, T) = 0,
0 = Ext{(TY¥, X) — Ext}{(X. X) - Ext{(4. X) =0.

It follows that Exti(X, T) =0, Exti(X, X) =0 and consequently we have
Exti(T® X, T® X) = 0. Since (e) is the sequence of (T3), T@® X is indeed
a tilting module.

1.8. In the remainder of this section, we shall assume that T, is a tilting
module.

LemMma. For every Me 7 (T,), there exists a short exact sequence
0-K->T, j—“» M-0
with T,eadd(T) and Ke T (T)).

Proof. Let foy, ..., foa be a basis of the k-vector space Hom ,(T, M) and
consider the short exact sequence

0K—-T,8M=0

where T, =TY, fo = [fo1,---»foal: T,> M and K = Kerf,. Applying the
functor Hom ,(T, —) yields

.. > Hom (T, T,) 2™, Hom (T, M) — Ext4(T, K) - 0.
By construction, Hom (T, f,) is surjective. Hence Ext}(7, K) =0 and so
Ke 7 (T,). This completes the proof.

COROLLARY. Let X, be an Ext-projective module in .7 (T,). Then
Xeadd(T). Thus, if T, is minimal (in the sense of 1.2), then it is the direct sum of
all non-isomorphic Ext-projective indecomposable modules in .7 (T,).

Proof. By the lemma, there exists a short exact sequence
0—- K-> T,— X —0with T,eadd(T) and K € 7 (7). Since X is Ext-projective
in J (T), it splits and so X eadd(T). The second statement follows from the fact
that T, itsell is-Ext-projective in 7 (T,), and from the minimality of T,.
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1.9. LEmMMA. A module M is torsion if and only if the evaluaiion map
&y: Hom (T, MY®zT— M is bijective.

Proof. We only need to show the necessity, so let M e (T,). By 1.8, there
exists a short exact sequence 0 - K, - T, > M —» 0 with T,cadd(7) and
K,e 7 (T). Applying 1.8 to K,, we find another short exact sequence
0-K,-> T, - Ky,— 0 with T, €add(7) and K, e.7 (T). Since K, and K, are
torsion, we have short exact sequences

0 - Hom (T, K,) » Hom (T, T,) = Hom ,(T, M) — 0,
0 - Hom (T, K,) = Hom (T, T,) = Hom (T, K,) = 0.

Thus the sequence Hom (T, T,) » Hom (T, T;) = Hom (T, M) — 0 is exact.
Applying the right exact functor — ®,T and comparing with the original
sequence, we obtain an exact commutative diagram

Hom (T, T,)® 3, T— Hom (T, T,)®,T— Hom (T, M)®,T—- 0

T cimeee T,

Qe

oM e 50

Since ¢, is clearly bijective, so are &, and e; . Therefore ¢, is bijective.
CoroLLARY. The torsion submodule of a module M in the torsion theory
(7 (T,), #(T,) is given by tM = Hom (T, M)®,T.
Proof. Since tMe 7 (T,), we have

tM = Hom (T, tM)® , T~ Hom ,(T. M)®, T

2. The main theorems

In this section, we return to our basic problem: given an algebra A4, and
a tilting module T, with B = EndT,, we wish to compare mod A and mod B.

2.1. TueoreM (Brenner-Butler). Let A be an algebra, let T, be a tilting
module and B = EndT,. Then:

(@) zT is a tilting module and A = End(gT), canonically.
(b) The functors Hom (T, —) and — @ T induce mutually inverse equiv-
alences between the full subcategories

T(T,) = {M |Exty(T, M) =0} and #(T,)={N,|Tor¥(N, T) =0},
A Vi 4 J A Y8 J

while the functors Exty(T, —) and Tor?(—, T) induce mutually inverse equiv-
alences between the full subcategories

F(T,) = (M, |Hom (T. M) =0} and #(T,)={NgIN®,T=0).
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(c) We have
Torf(—, T)Hom (T, —) =0 = (- ® 3 T)Ext}(T, —).
Hom (T, —=)Tor{(—, T) =0 = Ext}j(T, =) — @,T7).

Proof. (i) For any module M ,, we have Tor{(Hom (T, M), T) = 0 (thus,
Hom ,(T, M)e (T ).

Indeed, since Hom (T, M) Hom (T, tM), we may assume that
Me7(T). By 1.8, there exists a short exact sequence 0 - K - T, > M -0
with Tyeadd(T) and Ke.7(T). Applying the functor Hom (T, —) yields
a short exact sequence

0 — Hom (T, K) - Hom (T, T,) - Hom (T, M) - 0.

Applying now the right exact functor — ® ;T and comparing with the original
sequence yields an exact commutative diagram

0 - Tor(Hom (T, M), T) » Hom (7. K}®,T— Hom ,(T. T)®,T— Hom ,(T. M)®, T~ 0

l"x l‘:rm l-’-.u
() » K .- » T:I o \I . ‘__.__.)0

since the projectivity of Hom (T, T,) implies that Tor¥(Hom (T, T,), T) = 0.
By 1.9, the vertical maps are isomorphisms. Hence the result.

(ii) pd,T< 1.

Let0—- A, > T, — T - 0 be the short exact sequence of (T3). Applying
Hom ,(—, gT,) yields

0 —-Hom (T". ,T) - Hom (T". ,T,) > Hom ,(4. ,T,)) > ,T—-0.
{(i1i) To each A-module M correspbnds the canonical sequence
0 — Hom (T. MY® , T "> M — Tor¥(Ext {(T. M). T} = 0.

Indeed, let 0 = M - I, — I, — ... be an injective resolution of M ,, and let
0—-Q,—>Q,— 3T—- 0 be a projective resolution of ,T. It follows from (1) that
we have a short exact sequence of complexes

0 —» Hom (T. 1) ®,0, » Hom (T, I)® 30, —» Hom (T, I)®,T— 0.

Since injectives are torsion. the last complex is identified to [ via the evaluation
map. Since I is an exact complex and — ®,Q,, — ® 5Q, are exact functors, we
obtain a long exact sequence

0 - Hom (T, M) ®,0Q, > Hom (T, M\Y® 0, > M
- Ext)y(T. M)y®,0, > Ext){T, M®,0,—0.
Hence we have a short exact sequence

0 — Cokeru 3Hom (T, M)® ,T— M — Kerv 3 Tor{ (Ext4(T, M), ,T) -~ 0.
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By 1.9, this 15 indeed the canonical sequence of M, m the torsion theory
(.7 (1), .7(T)) (thus, MM = Tor(Exti(T. M), T)).
(ivy Fxt\(T. My®,T= 0.
This follows from the surjectivily of the morphism v in (in).
(v) To each B-module N corresponds the canonical sequence
0 - Fxt'(T. Tort¥(N. T) - N, "> Hom (T. N®,T) -0

where o0, x = (1 = x®1).

Indeed, let ...>Q, > Q,—-Ny—-0and 0—- P, » P, > T, - 0 be projec-
tive resolutions in mod B and mod A4 respectively. Since Q, @, Te 7 (T) for each
i, we have an exact sequence of complexes

0 —Hom (T, Q.&®,T)—> Hom (P,. Q.®,T)—»Hom (.0, &,T) -0
where the first complex is identified to Q, via 0. Hence the long exact sequence
0 — Hom ,(P,. Tor?(N. 7)) > Hom ,(P,. Tor¥(N, T)) = N
— Hom,,(Py, N®,T)~—Hom (P,, N®,T) -0

yields the result. (It will follow from the corollary below that (Z(T), #(T)) is
a torsion thecory in modB, so that the given short exact sequence 1s the
canonical sequence of Ny i (21T #(T,))

(vi) Hom (T, Tor¥(N, T)) = 0.
This follows from the injectivity of the morphism u in (v).

(vii) Proof of (c). Since N®,Te 7(T), we have Ext (T, N®zT) = 0. The
other statements are (i}, (1v), (vi).

(vii) Proof of (b). Applying (ii1) to M e 7(T) yields M = Hom (T, MY®,T.
Similarly. if Ne #(T). then Tor¥(N. T) = 0 gives N 5 Hom (T, N®,T). We
prove similarly that Exty(T. )y and Torf(-. 7Y are mutually inverse on .7 (T)
and Z(T).

(ix) Proof of (a). We already know that pd ;T < 1. A projective resolution
0—-P,—»P,—T,—0 gives a short exact sequence

0 - Hom (T, T) - Hom ,(P,. T) » Hom ,(P,, T) = 0,
hence (T3). In order to show (T2), we first observe that
D(;T) > Hom,(,T,® ,A4, k) 5 Hom (T, DA)e %(T,),

so that, applying (b),
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Extpop(sT, T) = Exta(D(5T), D(3T)) 5 Extp(Hom (T, DA), Hom (T, DA))
~ Ext}(DA. DA) = 0.

Thus pT is a tilting left B-module.

It remains to show that the canonical algebra homomorphism
f: 4 — End(,T) given by ¢ — (t = ta) 1s an isomorphism. By (T3) there cxists
an ijection 4 — T with T"eadd(T). Therefore f is mjecuve. On the other
hand, we have vector space isomorphisms 4 5 End DA S End Hom (T, DA)
=~ End D(,T). Hence dim, 4 = dim, End(,T). and we have finished.

COROLLARY. We have DI(T,) = F(5T) and DH(T,) = T (3T). In particular,
(Z(T,), #(T,)) is a torsion theory in mod B.

Proof. This follows from the isomorphisms Tor?(D(zN), T) = DExty(T, N)
valid for all i > 0 (see [29]., 5.1).

DEFINITION. A tilting triple (B, T, A) is defined to consist of two finite
dimensional algebras 4 and B and a B-A-bimodule 4T, such that T, is a tilting
module and B3 End T,.

Exampit. Let 4 be given by the commutative quiver of Fig. 6. Then I' ; is

NN

\

W

N
\\\
AN

N
A

AN
NN

o X
3-

\
\

O

WO

given by Fig. 7, where the indecomposables are represented by their dimension
vectors. It is easily checked that

T, = 0 0@ I 1®o0 0 o@Do 0 0@®o °
1 | 1 i 1 0 1 1 1 1
is a tilting module. We have indicated by shading the full subcategory 7(T),
and by dotting the full subcategory %#(T). Then B = End T, is given by the
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4

M

commutative quiver of Fig. 8, and I'y by Fig. 9, where 2(T) is indicated by
dotting and #(T) by shading. For instance, it is readily verified that

1 1
0 0
Hom { T, o t)=",1% HomyTo 1) =°,1
0 |1 0 0 0 o

and similarly, that

1 ! — ! —0 1
ExtA(T,oo 00) DH0mA(o0 OO,TT) o

0
Ext;(T,. ' o)=DHomA(x ', TT)=°I 3
1 0 1 0 0
Observe that #(T) always contains the projective B-modules.

2.2. THEOREM. Let (B, T, A) be a tilting triple. Then

lgl. dim B—gl.dim 4| < 1.
We shall start by proving the following lemma.
LEMMA. If Me 7 (T,), then pd Hom (T, M) < pd M.
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Proof. By induction on n = pd M. If n =0, then M is projective; hence,
since M e.7 (T), we must have M e add(T). Therefore, Hom ,(T, M) is projec-
tive and we are done.

Next assume n > 1. By 1.8, there exists a short exact sequence

(*) 0-K-T,-M-0
with T,eadd(T) and Ke 7 (T). Therefore we have a short exact sequence
0 — Hom (T, K) - Hom (T, T,) -» Hom ,(T, M) - 0.

We claim that, if n=1, then Keadd(T). Indeed, applying the functor
Hom ,(—, N) with NeZ(T) to () yields

0 = Ext4(T,, N) » Ext}(K, N) » ExtZ(M, N) = 0.

Therefore Ext4(K. —)|s ) =0, that is, K is Ext-projective in .7 (T) and so
Keadd(T). In particular. if n =1, then Hom (7, K) is projective so that
pd Hom (T, M) < 1. Finally, if n > 2, it follows from the sequence (*) and [25],
8.1, Corollaire 2, that pdK <n—1. Hence it follows from the induction
hypothesis that pd Hom (T, K) < n—1 and so

pd Hom (T, M) < 1 +pdHom (T, K) < 1 +(n—1) = n.

Proof of the theorem. Let Ny be an arbitrary B-module. Then there exists
a short exact sequence 0— Y, —» Py - Ny;— 0 with P, projective. Since
Pge#(T) which is a torsion-free class, Ye#(T) as well. Hence there exists
a module M, e7(T) such that Y, =Hom,(7, M) and, by the lemma,
pdY, < pdM, Thus

pdN,<1+pdYy<1+pdM, < I+gldimA.

We have thus that gl.dimB < 1+4gl.dim A. Since ;T is a tilting module
as well, we also have gl.dimA4 < 1 +gl.dim B and we are done.

Remark. We have the following other relations between the homological
dimensions in mod A and mod B.

(i) If M, e#(T), then pd Ext}(T, M) < 1 +max(l, pd M).
() If M,eZ(T), then idHom (T, M) < 1 +id M.
(i) If M e Z(T), then id Ext}(T, M) <id M.

For a proof of (1), we refer to [65], 4.1, (6), and for a proof of (ii) and (iii) to
[21]. 1.7

Exampris. In the example in 1.6 (it), gl. dim 4 = 2 while gl. dim B = 3. In
the example in 2.1, gl.dimA =2 = gl.dim B.

2.3. LeMMA (The Connecting Lemma). Let (B, T, A) be a tilting triple and
let P (respectively, 1) be the projective cover (respectively, the injective envelope)
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of the simple A-module S. Then
t~'Hom (T, I) = Ext4(T, P).
In particular, Peadd(T) if and only if Hom (T, I) is an injective B-module.
Proof. Since T, is a tilting module, there exists a short exact sequence
(¥) 0P, -T,5T750

with T, T"eadd(T) (by (T3)). Applying Hom ,(—, T) yields a short exact
sequence

0 — Hom (T, )™\ Hom ,(T", T) —» Hom (P, T) > 0

which is a projective resolution for Hom (P, ;T). Now the transpose of
Hom ,(f, T) is clearly Hom (7, f). On the other hand, applying Hom ,(7, —)
to () yields

0 — Hom (T, P) » Hom (T, T') ™™ ™1\, Hom (T, T") » Ext4(T, P) - 0.

Hence Ext4(T, P)= TrHom (P, T), by definition of the transpose. But
Hom ,(P, T) 3 DHom (T, I). Therefore we have Ext}(T, P) > TrD Hom ,(T, I)
= 1" "Hom (T, I).

Remarks. 1. Tt follows from the Connecting Lemma that any J ;e #/(T) which
is an indecomposable injective B-module is of the form Jg= Hom (T, I(i)
with P(i)eadd(T). Indeed, since Je#(T), we have J = Hom (T, M) with
MeZ(T) Let f: M—-E be an injective envelope of M. Then
Hom (T, /). J;— Hom (T, E) is a monomorphism, hence splits, because Jg is
injective. Therefore f Hom (T, f)® g T splits again; that 1s, M is injective, say
M = I(i). But then P(i)eadd(T) for, otherwise, the Connecting Lemma would
contradict the injectivity of Hom 4(7, I{i)).

2. Let now P and I be both in add(T). Then, clearly, Hom (T, I) is
projective-injective. Conversely, any indecomposable projective-injective B-mod-
ule is of this form. Indeed, since such a module is projective, it is of the form
Hom (T, T(j)) for some T(j)eadd(T). In particular, it lies in #(T). Since it is
injective, the previous remark implies that it is of the form Hom 4(T, I(i)}, wiin
P(iyeadd(T). Therefore I(i) > T(j)eadd(T) as well.

COROLLARY. Let P, I be as in the Lemma, with P¢add(T) and consider the
Auslander—Reiten sequence in mod B

0 — Hom (T, I) » E; — Ext4(T, P)- 0.
Then the canonical sequence of E, in the torsion theory (Z(T), H(T)} is
0 — Ext}(T, rad P) - E; > Hom (T, 1/S) - 0.

Proof. We shall consider two cases, according as § is torsion or torsion-free.

10 — Banach Center t. 26, cz. 1
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() If Ses(T), then Exti(T,S)=0, so the short exact sequence
0—-S—-1-1/S-0 induces a short exact sequence

0 - Hom (T, S) = Hom (T, I) > Hom (T, I/S) - 0.

On the other hand, since P¢add(T), we have P¢.7 (T). It follows that every
morphism from T, to P, has its image contained in rad P. That is to say,
Hom (7T, P) 3 Hom (T, rad P). Therefore the short exact sequence
0—-radP - P— S —0 induces a short exact sequence

0 —» Hom (T, S) — Ext}(T, rad P) - Ext (T, P) - 0.

Since the epimorphism Ext}(T, rad P) —» Ext4(T, P) does not split, we have an
exact commutative diagram

0 0
! !

0 — Hom,(T, S) — Exty(T, rad P) — Ext(T, P) - 0
! ! I

0 — Hom (T, I > E >Exti(T, P) -0
! l

Hom (T, I/S) = Hom ,(T, I/S)

| l
0 0

and the middle column yields the result.
(i) If Se#(T), then Hom (T, S)=0 and so we have short exact
sequences

0 - ExtL(T, rad P) » Ext(T, P) - Ext\(T. S) >0,
0 - Hom (T, I) » Hom (T, 1/S) - Ext(T, S) — 0.

Since the monomorphism Hom ,(T, I) = Hom (T, I/S) does not split, we have
an exact commutative diagram

[0 0
i !

Exti(T,radP) = Ext4(T, rad P)
l !

0 Hom (T, )——E » Ext'(T, P) - 0
|| | l

0 — Hom (T, I)»Hom (T, I/S)——— ExtL(T, S) - 0
H |
0 0

and again the middle column yields the result.

ExaMmpLE. Let us consider, in the example of 2.1, the indecomposable
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0 0

projective A-module P = 2 Then =0 P I/§ =o 00 1, while
1

radP = . ‘ )0 The Auslander—Reiten sequence ending with Ext}(T, P) in
mod B is
1 1
0_'111_’121_’010_'0'

| 1 0

Clearly, the canonical sequence for the middle term is

0 1
050,051 151 150
| 1 0

and it is readily verified that

L1 0
Hom (T, I/S)=" "' while Ext}(T,radP)="° ¢,

0 1

2.4. PrROPOSITION. Let (B, T, A) be a tilting triple. Then
F(T,) = Cogen(tT).

Proof. Since 1Te # (T), by 1.4, we have Cogen(zT) < # (T). Conversely,
let M,e%(T). There exists a .B-module NeZ(T) such that

M = Tor¥(N, T) = D Exthop(T, DN).

Let ;P — 4(DN) be a projective cover. Since pd(;T) < 1, we have an epimor-
phism Extjep (T, P) —» Extgoe(T, DN), which induces a monomorphism

M 5 D Extgor(T, DN) — D Ext}op(T, P).
Thus the torsion-free 4-module M is cogenerated by modules of the form

D Extgon(T, P(i)), where zP(i) is indecomposable projective. Let zI(i) denote the
corresponding indecomposable injective. By the Connecting Lemma,

DExtkop(T, P(i)) = D Tr D Homgop(T, 1(i)) = tD Homgop(T, 1(i))

~NT HomBop(P(l), T) 3 TT(E)A

where T(i), is the indecomposable summand of T, corresponding to the
projective module pP(i). This completes the proof.
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25. THeorReM. Let (B, T, A) be a tilting triple. Then the mapping
S1 Ko(A) — Ko(B) defined by

f(dim M) = dim Hom ,(T, M)—dim Ext}(T. M)
is an isomorphism of the Grothendieck groups.

Proof. A short exact sequence 0 = M' = M - M"” — 0in mod A4 induces an
exact sequence

0 — Hom (T, M’} » Hom ,(T, M) - Hom (T, M")
— Exti(T, M") - Ext{(T, M) - Ext (T, M") > 0.

Thus, f defines a homomorphism K,(A4) — K,(B). Let § be a simple B-module.
Since (Z'(T), @(T)) is a torsion theory, we have SeZ(T) or Se%(T). In the
former case, S 3 Hom (T, S®,T) and in the latter, S = Ext}(T, Tor}(S, T)).
Hence dimS is in the image of S. Consequently, [ is surjective and
rank Ko(A4) > rank Ko(B). Since T is also a tilting module,
rank K,(B) > rank K,(A4) and thus f is an isomorphism.

2.6. COROLLARY. Let T, =T ®...®T"™ with the T, indecomposable
modules such that T, &5 T, whenever i # j. Then T, is a tilting module if and only
if T, is a partial tilting module and satisfies

(T3) t = rank K,(A).

Proof. If T, is a tilting module and B = End T, then ¢t = rank K,(B). It
follows from 2.5 that ¢t = rank K,(A). Suppose conversely that T, is a partial
tilting module satisfying (T3'). By 1.7, there exists X , such that T&® X is a tilting
module. But then it follows from the necessity part that T@® X has the same
number of non-isomorphic indecomposable summands as T. Hence X € add(T)
and T is indeed a tilting module.

2.7. Another consequence of 2.5 is the invariance of the (homological)
quadratic form of an algebra of finite global dimension under the tilting
process. Recall that the Euler characteristic of an algebra A of finite global
dimension is defined to be the bilinear form ( , >, on K,(A) given by

(dim M, dim N>, = ) (-1)dim,Ext}(M, N)
520
for all 4-modules M and N (the sum above being finite due to our hypothesis
on A). The (homological) quadratic form of A is the form g, on K,(A) defined by

q4(dim M) = {(dim M, dim M} ,.

PropoSITION. Let (B, T, A) be a tilting triple, with A of finite global
dimension, and let f: K,(A) — K,(B) be the homomorphism of 2.5. Then we have

(dim M, dim N}, = {f(dim M), f(dim N)} .
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Proof. Let T(i), 1 <i < n, denote the pairwise non-isomorphic indecom-
posable summands of 7. We claim that the vectors dim 7(i) form a basis of
Kq(A). Indeed, since A 1is of finite global dimension, the vectors
dim P(a), 1 € a < n, form a basis of K,(A). Now, for each a, we have a short
exact sequence '

0-Pa)-T -T'-0

with 7', T"eadd(T). Thus K,(A4) is generated by the vectors dim 7(i). On the
other hand, for each |,

f(dim T()) = dim Hom (T, T()).

Since the modules Hom (T, T(i)) are just the indecomposable projective
B-modules, and B has finite global dimension, the vectors f- (dl_lll T(i)) form
a basis of K,(B), and this implies our claim.
Also, the projectivity of the B-modules Hom ,(7, T(i)) implies that, for any
1<i,j<n,
{f(dim T(i)), f(dim T(})) 5 = {dim Hom (7, T(i)), dim Hom ,(T, T(j)))5
= dim, Homy(Hom (T, T(i)), Hom (T, T(j)))
= dim, Hom ,(T(i), T(j))

= (dim T(), dim T(j)) ,.
The conclusion now follows from our claim above.

CoROLLARY. Let (B, T, A) be a tilting triple with A of finite global
dimension. Then the quadratic forms q, and qgy are Z-congruent.

2.8. The BB-tilting modules. The following construction, due to Brenner
and Butler (see {27] or also [56]) further generalises that of Auslander,
Platzeck and Reiten (see 1.6, example (i)). Let A be an algebra, and let S(i) be
a simple A-module such that:

(a) pdt™'S() < 1.

(b) Ext4(S(i), S(i)) = 0.

Then the module T, = ‘r"S(i)@(@j#P(j)) is a tilting module (called the
BB-tilting module associated to S(i)). Indeed, since (T1) follows from (a), and
(T3) is tnivially satisfied, we only need to show (T2). Now, for each j # i,

Exti(t™*S(), P())) = DHom (P(j), S(i)) = 0.
Thus it suffices to prove that
Ext}y(z~'S(i), t7'S(i)) 3 DHom ,(z ™' S(i), S(i)) = 0.

It follows from (b) and the Auslander—Reiten formula that
Hom ,(z™ ' S(i), S(i)) = 0. Thus, any non-zero morphism f: t~'S(i) — S(i) fac-
tors through the projective cover p: P(i) — S(i), that is, there exists
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g: ©~18(i) = P(i) such that /' = pg. We claim that Im g = rad P(i). For, if this is
not the case, then g is surjective, hence splits, and so, since 7~ 'S(i) is
indecomposable, we obtain 7~ !S(i) =3 P(i), an absurdity. Thus Img < rad P(i)
and consequently f='pg = 0.

Observe that, if T, is as above, then ind % (T) = {S(i)} (by 2.4). Also, it is
not hard to prove that T, is a BB-tilting module if and only if ;T is a BB-tilting
module, and also that a module of the form 7 'S()@® (P ;+;P(j)) is a tilting
module if and only if the simple module S(i) satisfies (a) and (b). We refer to
[27] or [74] for the proofs.

Examples of BB-tilting modules are provided by the APR-tilting modules.
The following is an example of a BB-tilting module which is not an APR-tilting

module. Let 4 be as in the example in 2.1. The simple A-module S(i) = o , I )0

satisfies (a) and (b). Then

T, =1 0 0@ o 0@ 0 0@ l 1 @Po 0 i
0o 0 10 1 1 1 1 1 1
is the corresponding BB-tilting module. Its endomorphism algebra is given by
the quiver

6 .
o<—-o<—’0<j0<io

bound by afiyd = 0.

3. Torsion-theoretical properties of tilting modules

3.1. Our first task in this section is to characterise those torsion theories
(7", #) in mod 4 such that there exists a tilting module T, with 7 = 7(T))
and & = #(T,). This is quite useful in practice, since in many applications it is
easier to start by constructing the torsion theory, then finding the correspond-
ing tilting module. This problem was first considered by Hoshino [49] who
gave a sufficient condition. The necessary and sufficient conditions stated here
were obtained independently in [3] and [70]. We shall need the following
lemma from [16].

LEMMA. (i) If 7 = Gen(X,) is a torsion class, then the numbers of
isomorphism classes of indecomposable Ext-projectives in & and of indecom-
posable Ext-injectives in J are finite and equal.

(i) If # = Cogen(Y,) is a torsion-free class, then the numbers of isomor-
phism classes of indecomposable Ext-projectives in % and of indecomposable
Ext-injectives in & are finite and equal.

Proof of (i). Since X , is clearly faithful as an A/ann(X)-module, and we
have the embeddings 7 — mod(A4/ann(X)) — mod 4, it suffices to prove the
statement in case X is faithful. By 1.3 and 1.5, the module X , is a partial tilting
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module and is Ext-projective in .. Moreover, since X is faithful, ali the
indecomposable injective A-modules are torsion and so, by 1.4, coincide with
the indecomposable Ext-injectives in 7.

Let u,, ..., u, be a basis of the k-vector space Hom ,(4, X) and consider
the morphism u = [u,, ..., 4,]": A, > X9, Since X is faithful, u is injective
and so we have a short exact sequence

(%) 05 A, % XDy, 0
where Y= Coker(u). Observe that YeZ . Also, by [25], 8.1, Corollaire 2,

pdY, < 1. We shall now prove that Y is Ext-projective in . Let M€ 9 and
apply the functor Hom (—, M) to (). The resulting sequence

0 - Hom (Y, M) -» Hom (X, M)™"™ ™ Hom ,(4, M) — Ext}(Y, M) > 0

1s exact. We claim that Hom ,(u, M) is surjective. Since M €.7, there exists an
epimorphism g: X, —» M with X,eadd(X). Since 4, is projective, the mor-
phism Hom (A4, g): Hom (A4, X,) - Hom ,(A, M) is surjective. On the other
hand, since X,e€add(X), it follows from the definition of u that the morphism
Hom (u, X,): Hom (X, X,) - Hom (A4, X,) is surjective. Therefore, the
composition Hom ,(u, g): Hom (X, X,) - Hom ,(A4, M) is surjective. Since

Hom ,(u, g) = Hom (1, M)Hom ,(XV, g),

we infer that Hom ,(u, M) is surjective. Therefore ExtA(Y, M) =0 and so Y is
Ext-projective in .

We deduce that T, = X @ Y is a tilting module. Indeed, pd T, < 1, and the
Ext-projectivity of both X and Y implies that Ext}(T, T) = 0, while () is the
short exact sequence of (T3). Since X, Ye .7, we have 7 (T)< J, while if
M e T, then Ext}(T, M) = 0 (because T is Ext-projective in ), thus M e 7 (T).
Therefore .7 = 7 (T). Since T, is a tilting module, it follows from 1.8 that the
non-isomorphic indecomposable Ext-projectives in 4 coincide with the
non-isomorphic indecomposable direct summands of T. Therefore, by 2.6, their
number equals the rank of K,(A4) and thus equals the number of non-isomor-
phic indecomposable Ext-injectives in .

3.2. DerFINITION. A torsion theory (7, #) in mod A is called a tilting
torsion theory if there exists a tilting module T, such that & = 7 (T,) and
F = F(T,).

THEOREM. Let (7, %) be a torsion theory in mod A. The following

conditions are¢ equivalent:

() (7, F) is a tilting torsion theory.
(i} = Gen(M), for some A-module M, and J contains the injectives.
(i} # = Cogen(N), for some A-module N, and J contains the injectives.

Proof. (1)=(i1) is obvious, while (i) = (iii) follows from 2.4.
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(iy={). Let T;,.... T, be a complete set of non-isomorphic indecom-
posable Ext-projectives in <, and let T, = @®i{-, T. Then T, is a tilting

module. Indeed, (T2) is immediate, while (T!) follows from the [gct that
Hom (DA, tT) = E_l-)I Hom (DA, tT) =0

(because tT; is zero or torsion-free, while DA€ J by hypothesis). Finally, by
3.1, t equals the number of non-isomorphic indecomposable Ext-injectives in .7,
thus the number of non-isomorphic indecomposable injective 4-modules.
Therefore ¢ = rank K,(A4) and so T, is a tilting module.

Since M, is itself Ext-projective in .7, its indecomposable direct sum-
mands are summands of T Therefore 9 < 7 (T). Since Te Gen(M ,), we also
have (T)< 7 and so J =9 (T)).

(iif) = (1). Let N, ..., N, be a complete set of non-isomorphic indecom-
posable Ext-injective modules in .% . Since no N, is injective, 7~ ! N, is non-zero
and Ext-projective in .7 . On the other hand, let P,, ..., P, be a complete set of
non-isomorphic indecomposable Ext-projectives in 7 which are also projec-
tive A-modules. Let

Clearly, T, is Ext-projective in .7 and is in fact the direct sum of a complete set
of non-isomorphic indecomposable Ext-projectives in .7. We claim that T, is
a tilting module. Indeed, (T2) is clear, while (T1) follows from the fact that

Hom (DA, tT) = @ Hom (DA, N)=0
i=1

(because DAe.J and N;e# for all i). There remains to show that
r+s =n (where n = rank K,(A)). Now, by 3.1 and 1.4, r equals the number of
non-isomorphic indecomposable Ext-projectives in -#, that is, ol the modules of
the form P/tP for P, indecomposable projective not in .7 . Hence r = n—s and
T, is a tilting module.

Finally, since N is Ext-injective in %, its indecomposable summands are
summands of @7, N, = tT Hence # < % (T). Since tTe %, we infer that
F = .#(T) and so 7 =7 (T).

Remark. The condition that .7 contains the injectives may clearly be
replaced in (i) by the condition that M is faithful, and in (iii) by the condition
that pd(z™'N) € L.

CoroLLARY (Hoshino). Let (7, %) be a torsion theory such that 9 con-
tains the injectives and either .7 or .# contains only finitely many non-isomorphic
indecomposable modules. Then (7, %) is a tilting torsion theory. In particular, if
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A is representation-finite, then a torsion theory (7, #) in mod A is a rilting
torsion theory if and only if .7 contains the injectives.

3.3. An important property of tilting torsion theories is the possibility of
approximating an arbitrary module by torsion modules.

DeriniTion (Tachikawa-Wakamatsu). Let 7 = Gen(T,) be a torsion
class. Given an 4-module M. a short exact sequence of the form

0-M U, ">T, -0,
with U,e.7 and T,eadd(T), is called a torsion resolution for M.

Clearly. if a module M , admits a torsion resolution as above, then it is not
unique since, for each Tyeadd(T), we have another resolution

0oM“U,®Ty > T, Ty —0.

0 1
is such that every A-module M has a torsion resolution, then 7 is necessarily
the torsion class of a tilting torsion theory (for, the torsion resolution for DA,
splits, therefore DA, e .7 ; we then apply 3.2). The next theorem asserts the
existence of minimal torston resolution for tilting torsion theories. We shall
follow the proof in [75].

q 0
with u = [lto], = ljl(;’ ] On the other hand, if a torsion class .7 = Gen(T),)

THeoreM (Tachikawa--Wakamatsu), Let (B, T, A) be a tilting triple. Then,
for every module M 4, there exists a torsion resolution in (7 (T), #(T))

0-> M = U(M) = T(M) -0
such that T(M) = P®,T where P, is a projective cover of Exti(T, M), and
moreover such that, for any other torsion resolution of M
0-M*U T -0,
there exists T"eadd(T) such that we have an exact commutative diagram

0O-M -2 U —X—T >0
| 1 I
0->M-SHSUMOT H>TIM® T —0

. | um _ vy O
wzrhu—[o:l,U—[O lil'

Proof. (a) Existence. (i) If M € 7 (T), then we set U(M) = M and T(M) = 0.
(if) Suppose M e # (T) and let p: P, — Ext}(T, M) be a projective cover
with kernel K. Applying — ®,7T to the sequence

0 K-> PLExt)(T, M)->0
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we obtain an exact sequence
0 — Tor?(Ext}(T, M), T) » K®,T— P®,T— Ext\{(T, M)®,T— 0.

The first term is M, the last is zero (by 2.1) and since P ® pTeadd(T), we put
UM)= K®,Te.Z7(T) and we have the wanted sequence.

(i) Let M be arbitrary and consider its canonical sequence
0->tM->M->M/tM—-0 as an element e of Exti(M/tM,tM). Since
M/tM e #(T), (i1) gives an exact sequence

0> MM —->UM/tM)-> TM/tM)—0

with T(M/tM)=P®,T, where P, is a projective cover of
Exty{(T, M/tM) = Ext}(T, M) (because ExtL(T, tM) = 0). Applying the functor
Hom ,(—, tM) to this sequence yields an isomorphism

Exti(U(M/tM), tM) = Exty(M/tM, tM)

and hence an exact commutative diagram

0 0
! !
tM = tM
! !
0—M—0T T(M/tM) — 0
{ ! i
0 - M/tM — U(M/tM) — T(M/tM) — 0
| !
0 0

where the first column is e. Since tM and U(M/tM) are torsion, so is U and we
have the required sequence.

(b) Minimality. Let 0 — M > U’ T" — 0 be another torsion resolution of
M. Since U’ and U(M) are torsion, we have Ext}(T(M), U)=0 and
Exty(T', UM)) =0. Hence, applying respectively the functors
Hom ,(T(M), —) to the previous torsion resolution of M, and Hom (T’, —) to
the torsion resolution of M obtained in (a), we get the following exact
sequences:

0 — Hom ,(T(M), M) - Hom ,(T(M), U’) - Hom ,(T(M), T")
— Ext}(T(M), M) -0,
0 — Hom,,(T", M) — Hom ,(T", U(M)) — Hom ,(T", T(M)) — Ext4(T", M) > 0.

Considering our two torsion resolutions of M as extensions, we see that they
are induced one from the other via morphisms T(M)— T' and T' —» T(M). We
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thus have an exact commutative diagram
0- ML UM)2T(M) -0

|| ' lf ‘ la
0_)M L \U! 1] TI 0
H lf' ly'

0> M2, UM)-2 T(M)—0
Applying Hom (7T, —), we deduce a commutative diagram

Hom (T, T(M))-> Ext4(T, M) -0

h ||
Hom (T, T(M))5 Ext4(T, M) -0

with h = Hom,(T, g'g). Since Hom,(T, T(M)) is a projective cover,
Hom,(T. ¢'¢g) is an isomorphism. Therefore so is g'g and hence so is f'f. Thus
S and g are sections while /7 and ¢’ are retractions.

Remarks. Let f: M—-N be a morphism. Then there exist
Ju: UM) = U(N) and f;: T(M)— T(N) such that we have an exact com-
mutative diagram
0— M- UM~ T(M)—0
fl ful frl
0> N"5UN)2T(N)-0

Indeed, applying Hom ,(—, U(N)) to the minimal torsion resolution of

M yields an exact sequence (with w = Hom ,(u,,, U(N)))

0 — Hom,,(T(M), U(N)) — Hom,,(U(M), U(N))—> Hom (M, U(N)) 0.

We take f;, to be a preimage of u, f under w, and f; follows by passing to the
cokernels.

ExamPLE. Let A4 be given by the quiver of Fig. 10 bound by

2

Y
Fig. 10

yaf =0, affya = 0. Then I', is as shown in Fig. 11, where indecomposables are
represented by their Loewy series, the horizontal dotted lines denote the
Auslander-Reiten translations, and we identify along the vertical dotted lines.
For the BB-tilting module T corresponding to S(3) (see 2.8), the summands of
" T are indicated by squares, the subcategory 7 (T) by the shaded regions and
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Fig. 11

the subcategory #(T) by the dotted one. The torsion resolutions of the
non-torsion indecomposable A-modules are:

0535325250,

2
3 2
2

3.4. We shall see in 3.6 a simple application of the torsion resolutions. The
most important, however, deals with the trivial extension algebras, which have
played a prominent réle in the classilication of the sell-injective algebras of
polynomial growth (see [69]). Recall that the trivial extension Ax DA of an
algebra A by its minimal injective cogenerator bimodule ;DA , is the algebra
whose additive structure is that of the group A @ DA, and whose multiplication
is defined by

(a, f)(b, g) = (ab, ag+/b)

(for a, be A and f, ge ,DA,). Then Ax DA is a self-injective and, actually,
symmetric algebra. Tachikawa and Wakamatsu have proved the following
theorem.

THEOREM [75]. Let (B, T, A) be a tilting triple, Then there exists a stable
equivalence S: mod(A4 x DA) 5 mod(B x DB) such that S|sr, = Hom (T, —).

In the proof. the torsion resolutions allow one to construct explicitly the
stable functor S and its quasi-inverse. An important consequence is as follows.
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Let A be the repetitive algebra of A4, that is, let 4 be the infinite matrix algebra
(see [52])

0
. P W

CEi A;
E; Ais

0

where matrices have only finitely many non-zero coefficients, 4, = 4 and
E;, = DA for all ieZ, addition is the usual addition of matrices, and multi-
plication is induced from the canonical bimodule structure of DA and the zero
map DA® ,DA — 0. This is a self-injective, locally finite dimensional algebra
without identity. The identity maps 4; — 4;-,, E; = E;_,, for each i, induce an
automorphism v, of A4 and clearly, 4 is a Galois covering of Ax DA with the
infinite cyclic group generated by v,. In particular, mod A is equivalent to the
category of Z-graded (4 ix DA)-modules. Now Wakamatsu has shown that the
stable functor §: mod (A DA) — mod(Bx DB) is compatible with the grading,
so that we have:

THEOREM [79]. Let (B, T, A) be a tilting triple. Then mod A ~ mod B.

If A has finite global dimension, this also follows from Happel's results on
the derived category of a [inite dimensional algebra (see 4.3 below).

3.5. DEFINITION. Let (B, T, A) be a tilting triple. Then T, is said to be
a separating (respectively, splitting) tilting module if the torston theory
(7(T,), #(T,)) splits in mod A (respectively, the torsion theory (Z'(T,), #(T,))
splits in mod B).

Thus a tilting module T, is separating (respectively, splitting) if and only if
the tilting module ,T is splitting (respectively, separating). Also, the tilting
module T, is separating (respectively, splitting) if and only if the torsion-free
class # (T) (respectively, #(T)) is closed under the action of the Auslan-
der—Reiten translation 7, or, equivalently, if and only if the torsion class 7 (T)
(respectively, &'(T)) is closed under the action of 7 1.

Examples of separating tilting modules are the APR-tilting modules. An
example of a splitting tilting module is given in 3.6 below. Construction
procedures for separating tilting modules are given in [3].

Separating and splitting tilting modules are particularly useful as they
allow one to keep a good measure of control on the tilting process. Indeed, if T,
is separating, then all the indecomposable A-modules are mapped into
indecomposable B-modules by the functors Hom (T, —) and Ext4(T, —) (so
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that B has at least as many non-isomorphic indecomposables as A). On the
other hand, if T, is splitting, then all the indecomposable B-modules are images
under the same functors of indecomposable 4-modules (so that B has at most
as many non-isomorphic indecomposables as A). In this latter case, we also
have a complete description of the Auslander—Reiten sequences in mod B.

THEOREM. Let T, be a splitting tilting module, and B = End T,. Every
Auslander—Reiten sequence in mod B either lies completely in Z(T), or lies
completely in Y (T), or is of the form

0 - Hom (T, 1) » Hom ,(T. I/S)® Ext}(T, rad P) » Ext}(T. P) > 0

where P, is an indecomposable projective A-module not in add(T), S, its simple
top and I, the injective envelope of S. (Such a sequence is called a connecting
sequence).

Proof. Let 0 > Ej— Eg; — Ep— 0 be an Auslander—Reiten sequence in
mod B. Since the torsion theory (Z(T), #(T)) splits, we have one of the
following cases.

(a) E"e%(T). Then both E" and E belong to #(T) as well, and the
sequence lies completely in #(T).

(b) E€e4(T). Then both E and E” belong to Z(T) as well, and the
sequence lies completely in Z(T).

(c) EEe#(T) and E"eZ(T). In this case, let M, = E ®,T and let I,
denote the injective envelope of M. Then, since Me 7 (T),

ExtL(I/M, M)~ Ext}(Hom (T, I/M), Hom (T, M))
2 Extg(Hom (T, I/M), E)
~ DHomy(t ™ E’, Hom (T, I/M)) = 0

since 1 'E' = E” e X' (T), while Hom ,(T, I/M)e#%(T). Therefore, M , is a direct
summand of I,, so that I, = M, In particular, I is indecomposable and
Hom (T, I) 5 Ej. By the Connecting Lemma 2.3, Ej =5 Ext4(T, P), where P,
is the projective cover of §=socl,. Also, P¢add(T). Thus the given
Auslander-Reiten sequence is of the form

0 - Hom (T, 1) > E; — Ext4(T, P) > 0
and by 2.3, Corollary, the canonical sequence for Eg in (Z'(T), #(T)) is
0 — Ext4(T, rad P) » E; — Hom ,(T, I/S) - 0.

Since (Z2(T), #(T)) splits, Ez~ Hom (T, I/S)@® Ext4(T, rad P) and we are
done.

3.6. The following criterion, due to Hoshino [51], allows one to decide
whether a tilting module is separating, splitting, or not. The proof given below’
follows [76]. Another proof is given in [40], III, 4.12.
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THeOREM. Let (B, T, A) be a tilting triple.

(i) T, is separating if and only if, for each Xge X (T), pd X, = L.
(1) T, is splitting if and only if, for each M ,e #(T),idM = 1.

Proof of (i). The torsion theory (7 (T), # (T)) is splitting if and only if, for
each M e Z# (T), we have Exti(M, —)|s = 0. Consider thus the minimal
torsion resolution of M e % (T)

(*} 0-M->UM)->TM)-0.

Apply the functor Exti(—, N), where NeZ (T), to this sequence. Since
Ext4{(T(M), N) = 0, we have an isomorphism Ext}(M, N) = Ext}{(U(M), N).
Thus Exti(M, =)y, =0 if and only if Ext}(U(M), —)is = 0. Since
U(M)e .7 (T), this amounts to saying that U(M) i1s Ext-projective in .7 (T) or,
equivalently, that U(M)eadd(T).

Applying the functor Hom (7, —) to (*) yields an exact sequence

0~ Hom (T, U(M)} - Hom ,(T, T(M)) - Ext4(T, M) -0

with a projective middle term. It follows from the above remarks that T, is
separating if and only il, for each M e % (T), U(M)e add(T). Now this is the
case if and only if, for each M e . #(T). pd Ext}(T. M) = 1. Since each X ,e.4(T)
can be written as X = Exty(T, M), for some Me % (T), we are done.

Remark and examples. The above criterion is particularly easy to check if
T, is a BB-tilting module: indeed, the BB-tilting module corresponding to the
simple module S(i), is splitting if and only if id S(i) = 1. For instance, if 4 is as
in the example in 2.1 and T, is the BB-tilting module corresponding to the

simple module o l )0 then T, is a splitting tilting module. On the other

hand, if 4 and T, are as in the example in 3.3, then id S(3) = 4 and so T, is not
splitting.

COROLLARY. Let A be a hereditary algebra. Then every tilting A-module is
splitting.

3.7. Tt is natural to ask whether the converse of the above Corollary is true,
that is, whether an algebra such that every tilting module is splitting is
necessarily hereditary. While this statement is clearly false in general (as is
shown by the case of the self-injective algebras, see also the example in 1.6,
remark 3), we shall show that it is true if the algebra is triangular (that is, its
ordinary quiver has no oriented cycles).

THEOREM [4]. Let A be a triangular algebra such that every separating
tilting module is splitting. Then A is hereditary.

Proof. We shall suppose that A4 is not hereditary, and construct a separa-
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ting tilting module which 1s not splitting. Since A4 is triangular, we may order
the points of its quiver as (1.2, ..., n} so that Hom ,(P(s), P(1)) # O implies
s <t If 1 1s not hereditary, there exists a smallest i such that id S(i) > 1.
Letting P = @', P{j), we define

T,= T_1P®(,,€?,-P(a))'

Observe first that P is a hereditary projective: indeed, if j < i, we have
a short exact sequence

0—>S(j)—>1(j)—>‘@j1(a)—>0-

Hence, for any h s j, Hom (P(h), I(j)) = @,-;Hom ,(P(h), I(a)), or equival-
ently, Hom ,(P(j), P(h)) = @,-;Hom ,(P(a), P(h)). That is, j is not the terminal
point of a relation on the quiver of 4. This clearly implies that P is a hereditary
projective and its indecomposabie submodules are just P(l), ..., P(i). There-
fore Hom (DA, tT) = Hom (DA, P) = 0 and so pd T < 1. On the other hand,
if j<iand a>i we have

Exti(t™'P(j), P(a)) 5 D Hom ,(P(a), P(j)) = 0

and also, if h,j<i, we have Exti(z™'P(j), 7" 'P(h)) =0, which gives
Ext4{(T, T) = 0. Since the number of non-isomorphic indecomposable sum-
mands of T equals n, T is indeed a tilting module.

Next, T, is separating. Indeed, % (T) is cogenerated by 17T P and thus
ind #(T) = {P(1), ..., P(i)}. On the other hand, the isomorphisms

Ext}(T, M) = DHom (M, tT) ~ D Hom ,(M, P)

show that, for an indecomposable module M ,, M¢.7 (T) if and only if
Hom (M, P) # 0, that is to say, il and only if Me.Z(T).

To show that T, is not splitting, it suffices to show that the injective
dimension of an indecomposable torsion-free module is larger than one. Now,
since P(i) 1s a hereditary projective, its radical rad P(i) is projective and a simple
inductive argument shows that idrad P(i) < 1. Thus, applying the functor
Hom ,(M, —) to the short exact sequence

0—-rad P(i)— P(i)— S()—0
yields Ext3(M, P(i)) 5 Ext(M, S(i)). The proof is now complete.

4. Tilting-cotilting equivalence

4.1. We shall now apply the preceding results to the study of the
representation theory of certain classes of finite dimensional algebras. The idea
is to start with one class whose representation theory is known, then to enlarge
it by applying finitely many times the tilting process. Since we have a large
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measure of control on this process, we can study the wider class using our
knowledge of the first one. [t is useful, for many practical purposes, to be able
to reverse the cotilting process while staying within the same class. We are thus
led to define the concept dual to that of a tilting module.

DEFINITION. Let A be an algebra. A module T, is called a cotilting module if
it satisfies the following conditions:

(T1*)d7T,< 1.

(T2) Exti(T, T)=0.

(T3") The number of non-isomorphic indecomposable summands of T,
equals the rank of K (A).

Thus, if 4 is hereditary, every tilting module is a cotilting module and
conversely. More generally, if A is any algebra, T, is a cotilting A-module if and
only if (DT) is a tilting A°"-module. We may now make the following
definition.

DEFINITION. Let A and B be two algebras. Then 4 and B are said to be
tilting-cotilting  equivalent if there exist a sequence of algebras
A=A, . A,...., A, =B and a sequence of tilting or cotilting modules
T®, 0<i<m, such that A;,, = End TY for each i. This is evidently an
equivalence relation.

4.2. The following procedure due to Hughes and Waschbiisch [52] is
useful to construct examples of tilting-cotiiting equivalent algebras. Let 4 be
a triangular algebra, i a sink in its ordinary quiver, and e¢; the corresponding
primitive idempotent. Consider the one-point extension

0
w0d=| 1 4

Clearly, the bound quiver of this algebra contains the bound quiver of A4 as
a full bound subquiver and exactly one additional vertex, which is a source
corresponding to the new idempotent. We define the reflection of A at the sink i
to be the quotient of A[I(i)] by the two-sided ideal generated by the
idempotent e, that is,

S7A = A[I(HI/Ke>.

Dually, starting with a source j, we can define the reflection S; 4 at the source j.
Observe that, if i is a sink (respectively, j is a source) in the quiver of A4, then the
repetitive algebras of A and S;"A4 (respectively, A and S; A) are isomorphic.
Also, it is easily seen that the trivial extensions of 4 and S;" A (respectively,
A and S; A) are isomorphic. The following result is due to Tachikawa and
Wakamatsu (see [76]).

PROPOSITION. Let A be triangular and let i be a sink (respectively, j be

11 — Banach Center 1 26, ¢z. 1
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a source) in the ordinary quiver of A. Then A and S;" A (respectively, A and S; A)
are tilting-cotilting equivalent.

ExaMPLE. Let A be given by the fully commutative quiver of Fig. 12. The

1 3

Fig. 13

reflection S{ A of A at the sink 1 is given by the quiver of Fig. 13 bound by
Py = 0e and afy =0. On the other hand, S5 A4 = A°P.

Observe that the reflection procedure is easier to carry out than tilting, as
it only requires the knowledge of the bound quiver, while computing the
endomorphism ring of a tilting module requires some knowledge about the
module category.

4.3. Let now DP(A) denote the derived category of bounded complexes
over the abelian category mod A, in the sense ol Verdier [78]. The following
theorem was first shown by Happel [39] in the case where the global
dimension of A is finite, a restriction later removed by Cline, Parshall and Scott

[30].

THEOREM. Let A and B be tilting-cotilting equivalent. Then D®(A) = D®(B)
as triangulated categories.

Note that, using this theorem, one can give alternative proofs for most of
the fundamental results of tilting theory (see [40], III).

Also, Happel has given a concrete description of DP(A), for 4 of finite
global dimension. Let A be the repetitive algebra of A. Then, since A is
self-injective, the stable category mod A can be given the structure of
a triangulated category. We have:
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THEOREM. Let A be a finite dimensional algebra of finite global dimension.
Then D*(A) s mod A as triangulated categories.

For the proof, we refer the reader to [39] or [40]. As a consequence of this
theorem and the previous one, if 4 and B are tilting-cotilting equivalent with
A of finite global dimension, then mod A = mod B as triangulated categories
(compare with 3.4).

As a consequence of the invariance under tilting of the derived category,
Happel obtains the invariance ol the Hochschild cohomology of a finite
dimensional algebra. Let A be an algebra. We shall denote by H'(A) the ith
Hochschild cohomology group of A4 with coefficients in the bimodule. ,4 , (see

[29]).

THEOREM [41]. Let A and B be tilting-cotilting equivalent. Then
Hi(A) = H(B), for all i.

44. 1t is conjectured in particular that the first Hochschild cohomology
group H'(A) is trivial if and only if the algebra A is simply connected. If true,
this statement and the preceding theorem would imply that an algebra
tilting-cotilting equivalent to a simply connected algebra is also simply
connected. Recall from [9] that a triangular algebra A is simply connected if, for
any presentation A = kQ/I of A as a bound quiver algebra, the fundamental
group 7,(Q, I) of the bound quiver (Q, I} (in the sense of Martinez and de la
Pena [57]) is trivial. Equivalently, a triangular algebra A is simply connected if
and only if it has no proper Galois covering. If A is representation-finite, this
notion of simple connectedness is equivalent to that introduced by Bongartz
and Gabriel in [24], that is, a representation-finite, basic and connected algebra
is simply connected il and only if the geometric realisation of its Auslan-
der—Reiten quiver is simply connected as a simplicial complex. In this case, we
have the following partial result from [2].

PROPOSITION. Let A be a representation-finite simply connected algebra and
let T, be a splitting tilting module. Then B = End T, is simply connected.

Proof. In this proof, we shall denote by [X] the point of the Auslan-
der—Reiten quiver corresponding to the indecomposable module X. Let us
assume that B is not simply connected. Then the Auslander—Reiten quiver I'y of
B must contain a closed walk w which is not contractible. We can of course
assume w to be of minimal length. Observe that I’y contains no oriented cycles:
indeed, such a cycle cannot lie completely in (T,) or in #(T,), by the simple
connectedness of A4, and thus it must contain a module X,e%(T,) and
a module Y,e%(T,) such that Hom,(X, Y) # 0, an absurdity. In particular,
the absence of oriented cycles implies the existence of sources and sinks on w.
One can suppose that every sink corresponds to a projective module. Indeed, if
the sink [U] is such that Uy is not projective, then we can replace [U] by [tU],
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and each arrow o [V]—=[U] on w by the corresponding arrow
oa: [tU] - [V]. This process does not affect the length of w. On the other
hand, applying repeatedly this procedure, we cannot reach another point of the
original walk w: this follows from the minimality of w, and the fact that it is not
contractible.

Let now [ Y] be a point on w which is not a sink. There exists a path on
w from [Y] to some sink [P]. But Py is projective, hence Pe#(T,). Thus
Ye®(T,) as well. This shows that all the modules on w belong to #(T,).

Let [Z] be a source on w and put N, = Z®,T,. By 3.5, if N, is not
injective, then the Auslander—Reiten sequence starting with- Z; = Hom (T, N)
lies entirely in %(T,). We may thus replace [Z] by [t~!Z], and each arrow
B: [Z]-[Y] on w by 67 '}: [Y]— [t 'Z], thus obtaining a new path,
homotopic to w, of the same length and still lying in #(T,). Applying this process
as many times as necessary, we obtain a new walk w’ in #(T,) homotopic to w,
of the same length and such that, for any source [Z;] on w, the A-module
N,=Z®,T, is injective. Observe that w' may have sinks which do not
correspond to projectives; what is important for our purposes. however, is that
w' still lies in %(T),).

Applying the functor —®,T,, we obtain a closed walk ¢ in T,
corresponding to the walk w’ in 'y (because A is representation-finite). Since
A is simply connected, v’ is contractible. Now let [Z] be a source on w'. Then
the corresponding A-module N, = Z®,T, is injective. Hence there exists on v’
a single arrow [N]—[M] with source [N]. If MeZ(T,), then
Hom ,(T, M)e%(T,) and so [Hom ,(T, M)] lies on w’, which contradicts the
fact that w' has minimal length. Therefore M ¢ 7 (T,). On the other hand, the
arrow [N] - [M] corresponds, because N is injective, to a surjection of N on
a direct summand of N/soc N. But Ne 7 (T,), hence Me.7 (T,), a contradic-
tion which completes the proof.

5. Tilted algebras

We shall always assume in the sequel our algebras to be basic and connected,
and our tilting and cotilting modules to be minimal in the sense of 1.2.

S.1. In two cases, we have a good knowledge of the module category,
namely if the algebra is hereditary, or if it is tubuiar canonical in the sense of
[65]. Tt is thus natural to study algebras which are tilting-cotilting equivalent
to a hereditary algebra or to a tubular canonical algebra. The first, simplest,
case deals with those algebras which are obtained from a hereditary algebra by
a single tilt.

DEerNITION. Let A be a finite connected quiver without oriented cycles. An
algebra A is called a tilted algebra of type A if there exists a tilting module T,
over the path algebra B = kA4 such that A = End Tj,.
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Observe that, by 3.6, such a tilting module is necessarily splitting.
Equivalently, the algebra A is tilted of type 4 if there exists a (necessarily
separating) tilting 4°"-module ,U such that End(,U) = k4. Actually, as shown
by Happel, a tilted algebra may be obtained using only partial tilting modules:

THEOREM. Let B be a hereditary algebra, and let Ty be a partial tilting
module. Then A = End Ty is a tilted algebra.

The proof, for which we refer to [40], IIl, 6.5, uses the technique of
perpendicular categories of [36].

It follows directly from the definition and 2.2 that tilted algebras always
have global dimension at most two (but it is easy to find algebras of global
dimension two which are not tilted).

ExaMpLES. The algebras of examples in 1.6(ii) and 2.1 are tilted algebras,
respectively of type D and Dg. Indeed, let B be the path algebra of the quiver
of Fig. 14 and T, =P()EMBIN)DI2)@®I(5)@tI(6), where M is the

1 5

Fig. 14

unique indecomposable B-module with dimension vector dimM = Y

1 |

(thus, M 1s simple regular non-homogeneous). Then T is a tilting module
having as endomorphism ring the algebra of 1.6(ii).

Similarly, let C be the path algebra of the quiver of Fig. 15 and

Fig. 15

Us=P)BPS)D1 'PQR®t 2P(1)®I(1). Then U, is a tilting module
having as endomorphism ring the algebra of 2.1,

5.2. In both of the above examples, the Auslander—Reiten quiver of the.
tilted algebra contains a full connected subquiver which is sectional (that is,
does not factor through an Austander-Reiten sequence) and which is isomor-
phic to the quiver of the original hereditary algebra. Such a subquiver is called
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a complete slice and its existence characterises tilted algebras. The following
definition is due to Ringel [65]. For earlier attempts, we refer the reader to
[43], [21] and [50].

DEFINITION. A class & of non-isomorphic indecomposable A-modules is
called a complete slice in mod A if it satisfies the following axioms:

(CS) U = @,,_, M is a sincere module (that is, Hom ,(P, U) # 0 for any
projective A-module P).

(CS2) If My— M, —...—~ M, is a sequence of non-zero non-isomor-
phisms in mod A with My, M, €%, then M, e¥ for all 0 <i<m.

(CS3) If0—-L—> M — N -0 is an Auslander—Reiten sequence, then at
most one of L and N lies in .. Furthermore, if an indecomposable summand of
M lies in &, then either Lor N lies in &.

Observe that, if & is a complete slice, then U = @, _, M is a separating
tilting (and also cotilting) A-module. It 1s called the shce module of &. It is
a consequence of the following theorem that the endomorphism ring of a slice
module is always hereditary.

THEOREM [65]. If B is hereditary, and T, is a tilting module with
A =End T, then the class of all indecomposable A-modules of the form
Homg(T, I), with I, indecomposable injective, is a complete slice in mod A.
Conversely, if & is a complete slice in mod A, then U, = @ ,,_, M is a tilting
module with B = End U , hereditary and thus & is isomorphic to a complete slice
of the previous form.

Examples of complete slices which do not occur in a preprojective or
a preinjective component can be found among the tame one-relation algebras
obtained by glueings, as described in [64], 2.7.

Remark and example. The previous theorem allows one not only to recover
the hereditary algebra from which a given tilted algebra derives, but also the
corresponding tilting module. Indeed, consider the following easy example: let
A be given by the quiver of Fig. 16 bound by aff = 9, uff = 0 and iy = 0. Then
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I' , is illustrated in Fig. 17. As shown, it contains a complete slice & of type E.
The endomorphism ring of the slice module of & is the hereditary algebra
B given by the qutver of Fig. 18 and Iy is shown in Fig. 19. Now it is known

T(3) Ti2) T(6)

Fig. 19

that & is of the form Homg(T, I(i)), for i a point in the quiver of B. Thus

0 0
HomB(T) 1(1)) =, 0 HomB(T’ ’(4)) =010
0

0 0
Homy(T, I(2)) =,',,, Homy(T, I(5)=,°,

Q?
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1 0
Homy(T, I(3) =, ' ,,» Homu(T,I(6) =,
Q

1

and so the indecomposal-)le summands T(j)} of Ty (where T(j) corresponds to
the point j in the quiver of A) are given by

T(l) = 00<l)oo, T(4) = 11}11,
T(Z) = 01:11, T(S) = 01800,
T(3) = 11%00, T(6) = 00801-

The above theorem may be applied in particular to the following case. Let
us recall from [65] that a cycle in modA is a sequence of non-zero
non-isomorphisms X, - X, —... = X, = X, between indecomposable A-mo-
dules. We say that mod A4 is directed if no indecomposable A-module lies on
a cycle. It is easily seen that, if mod A4 is directed, then A is representation-finite
(see [65], 2.4, (9)). We have

COROLLARY [43], [65]. Let A be such that mod A is directed, and assume
that A has a sincere indecomposable module. Then A is a tilted algebra.

For the proof, we fix a sincere indecomposable module M ,, and consider
the set & of all indecomposable A-modules X such that there exists a sequence
of non-zero non-isomorphisms X — ... = M, and moreover, no such sequence
is of the form X —»... - tN - x > N - ... - M. We then check that & satisfies
the axioms of a complete slice.

A tilted algebra as in the Corollary is called a sincere directed algebra. This
class of tilted algebras has been extensively studied. We refer the reader to [65],
6, for more results and comments.

5.3. The following characterisation of tilted algebras is due to Bakke [19].

THEOREM. Let A be an algebra. The following conditions are equivalent:

(1) A is a tilted algebra.
(i) There exists a separating tilting module T, such that, for all M e 7 (T),
Hom,(x"'M, T) = 0.
(i) There exists a separating tilting module T, such that, for all M e 7 (T),
idM < 1.
(iv) There exists a sincere A-module M such that there is no chain of
non-zero morphisms between indecomposable modules of the form '

M—>...aNox>1t N> - M

with M’ and M" in add(M).
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Proof. (i11)=(i1). Since idM <1 and M e 7 (T), we have
Hom (t~'M, T) = DExt (T, M) = 0.

(ii) = (1). We claim that B = End T}, is hereditary, and for this, it suffices to
show that any Ygze &(T) such that Homg(Y, B) # O is projective. This amounts
to proving that any M €.7 (T) such that Hom (M, T) # 0 lies in add(T). This
is clear if M 1s projective. So suppose it is not. Then tM ¢ .7 (T) since otherwise
we have a contradiction to Hom, (M. T)= Hom,(t '"(zM), T)=0.
Therefore, since T is separating, we have tM € .# (T). But then, by 1.4, M is
Ext-projective 11 .7 (T), so it lies in add{(T).

(i) = (iv). Let % be a complete slice in mod A. Then M= @
obviously satisfies (iv).

(iv) = (11). We first define a sphtting torsion theory (4, %) in mod A4, then
show it is induced by a tilting module. Let 4 be the full additive subcategory of
mod A4, generated by the indecomposable modules N such that there is a chain
of nonzero morphisms between indecomposable modules of the form
M —...— N, and let .# be generated by the remaining indecomposables.
Clearly, (7, &) is a torsion theory, and is splitting by definition. Moreover,
since M is sincere, DAe 7.

Observe that, by the given condition, we have for all Ne 7

Ext4(M, N)x DHom ,(t"'N, M) = 0.

Ne¥ N

Therefore M 1s Ext-projective in 7. Now, any Ext-projective T, in I 1s
a partial tilting module: indeed, Ext4(T,, T,) = 0 by definition, while 1T e I
and DAe.7 yield Hom (DA, tT;) = 0, so that pd T, < 1. This implies that the
number of non-isomorphic indecomposable Ext-projectives in T is finite and
does not exceed the rank n of K,(A4). For, otherwise, there exists an
Ext-projective module T, with ¢ > n non-isomorphic indecomposable sum-
mands. Since Tj, is a partial tilting module, by 1.7, there exists a module X such
that T,@® X 1is a tilting module, thus has n indecomposable summands,
a contradiction.

Let thus T, denote the direct sum of a complete set of non-isomorphic
indecomposable Ext-projectives in .7 . Since T is a partial tilting module, there
exists, by 1.7, a short exact sequence

(*) OﬁAALEAiT%)aO,

where d = dim, Ext}(T, A). Since (7, %) is a splitting torsion theory,
E=X®Y with X7 and Ye#.

We claim that Y= 0. Indeed, assume Y # 0. Then Hom (Y, T) # 0. For, if
the restriction to Y of the morphism g of () is zero, then Y, is projective and so
Hom (Y, M) # 0 (because M is sincere), thus Hom ,(Y, T) # 0. On the other
hand,

Hom (Y, tT) = DExtL(T, Y) = 0.
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Let thus #,: Y— T, be a non-zero morphism, with T, € add(T) indecomposable.
We shall obtain inductively morphisms v;; Y— T; and irreducible morphisms
u;: T+, = T, with T,eadd(T) indecomposables such that u,u,...u;_ v, #0.
Indeed, since v, is not a retraction, it factors through the minimal almost split
morphism K, @ L, - T, where K,e.7 and L,e ¥. Observe that L.eadd(zT);
for, L,e % is not injective, so Hom ((T;, 17 'L,) # 0 implies z *L,e.7, thus
1~ 'L, is Ext-projective in .7, that is, t ' L,e add(T). Since Hom ,(Y, tT) = 0, we
infer that v;: Y- T, factors through u;: K;—» T,. On the other hand,
K,eadd(T). This is clear if K; is projective, so suppose it is not: if T, is not
projective, then Hom,(tK;, tT) #0 implies that K,e# so that K, is
Ext-projective in .7, while, if T is projective, the sincerity of M implies that
Hom ,(T;, M) # 0, so, if tK,e #, we would get a chain of non-zero morphisms
between indecomposable modules of the form

M- ... -1iK,>*x>K,»-T,-M"

with M’, M” eadd(M), a contradiction which shows that 7K,e % and so,
again, that K; is Ext-projective in 4. We thus set T,,, = K; and let
V;+1: Y— T, be such that v; = u.v;,,. This yields the wanted morphisms, and
therefore a contradiction, since all the u; belong to rad End(7), which is
a nilpotent ideal. Thus Y=0.

This implies that the short exact sequence (x) i1s of the form

02A4,-X,-TY->0
with X ,e.7. Applying Ext}(—, N), with NeJ, to this sequence yields
0 = Ext{(T“, N) - Exti(X, N) » Exti(4, N)=0

and so X is Ext-projective in Z, thus lies in add(T). This shows that T, is
indeed a tilting module.

We now show that (7, ) = (7 (T), #(T)). For, let Ne 7 ; since T, is
Ext-projective in 7, we have Ext4(T, N) = 0 and so N € 7(T). Conversely, if
N e Z(T), then there is an epimorphism 7' — N with T'eadd(T) < 7, thus
NeJ, because J is a torsion class. Hence 9 = 7 (T), and so & = % (T).

It remains to prove that id N < 1 for all Ne 7. If this is not the case for
some Ne7, then Hom (" 'N, P} # 0 for some indecomposable projective
A-module P. Since M is sincere, there exists an indecomposable summand
M" eadd(M) such that Hom (P, M") # 0. On the other hand, since Ne 7,
there exists a chain of non-zero morphisms between indecomposable modules of
the form

M- o N-osx—o>1 NP M’

with M’, M"”eadd(M), a contradiction which completes the proof.

Remark. Corollary 5.2 above follows directly from the implication

(iv) = (1).
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5.4. Classification theorems are known for various classes of tilted
algebras. If 4 is a Dynkin quiver, so that kA is a representation-finite hereditary
algebra, a complete classification exists in the cases where 4 = A, (see [1],
[31]) and 4 =D, (see [31]).

Let now A be an Euclidean quiver, so that B =kd is a represen-
tation-infinite tame hereditary algebra. The essential properties of the tilting
B-modules are given in [44]. In particular, it is shown that no tilting module is
regular (also, no regular homogeneous module can be a summand of a tilting
module). Thus, any tilting module must contain a non-zero preprojective or
preinjective direct summand, so we have, up to duality, the following
possibilities for a tilting module:

(i) Ty is preprojective.
(i) T,=T,®T, with T, # 0 preprojective and T, # 0 regular.
() To=T,®@TL®T, with T, # 0 preprojective, T, regular and T; # 0
preinjective.

It is shown in [44] that the tilted algebra A = End T; is represen-
tation-finite if and only if T, is of the form (iii} above. The cases (i) and (ii)
correspond to representation-infinite tilted algebras. The case (i) is the case of
the so-called tame concealed algebras: an algebra A is called tame (respectively,
wild) concealed if it is the endomorphism ring of a preprojective (or preinjective)
tilting module over a tame (respectively, wild) hereditary algebra. Concealed
algebras are characterised as follows:

THEOREM. An algebra A is concealed if and only if there exist two different
components of the Auslander-Reiten quiver of A containing a complete slice.

For the proof of the necessity, we refer the reader to [65], 4.3, and for the
proof of the sufficiency, to (40], III, (7.2).

The tame concealed algebras were classified by Happel and Vossieck [47]
and also, independently, by Bongartz [23]; these algebras can be used to give
an effective criterion allowing one to decide whether an algebra is represen-
tation-finite or not [22].

A constructive procedure allowing one to construct all representa-
tion-infinite tilted algebras of Euclidean type is given in [65], 4.9. A complete
classification of the tilted algebras of type 4, for 4 = A,, including the
representation-finite case, has been obtained by Roldan [67] (see also [8]). The
calculation of the torsion and torsion-free classes if the tilting module has
non-zero regular summands is given in [61].

The situation is known to be completely different if 4 is a wild quiver. In
fact, one has the following theorem, due to Ringel.

THEOREM [66]. Let B be a wild hereditary algebra with at least three
non-isomorphic simple modules. Then there exists a tilting module Ty with only
regular direct summands.
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A constructive procedure for such regular tilting modules is given in [18]
using the technique of perpendicular categories [36]. Using the same technique,
Strauss has shown in [72] that, if a tilted algebra of wild type is not wild, then
the tilting module has a non-zero preprojective and a non-zero preinjective di-
rect summand. He also shows that a tilted algebra of wild type has a projective
component if the tilting module has no preinjective direct summand. In [53],
Kerner shows how to reduce the general case to the latter case, then, in [54], he
studies the preprojective components of the tilted algebras arising in this way.
His reduction also allows him to obtain characterisations of the tame and wild
tilted algebras of wild type [53]. Certain classes of wild concealed algebras
were classified in [77] and also, independently, in [S5]. The wild concealed
algebras always have a representation-infinite concealed factor algebra:

THEOREM [46]. Let A be a concealed algebra of type A, where 4 is a wild
quiver having more than 2 vertices. Then there exists a primitive idempotent e of
A such that A/{e) is representation-infinite concealed of type A', and A" is a full
connected subquiver of A.

6. Iterated tilted algebras

6.1. We shall now embed the class of tilted algebras into a wider class,
closed under the tilting process.

DEFINITION [5]. Let 4 be a finite connected quiver without oriented cycles.
An algebra A is called an iterated tilted algebra of type 4 if there exist
a sequence of algebras A=A, A,,...,A,=kd and a sequence
T (0 < i < m) of separating tilting modules such that 4;,, = End T for each i.

It follows directly from the definition that, if 4 is a Dynkin quiver, then an
iterated tilted algebra of type 4 is necessarily representation-finite (moreover, by
44, it is even simply connected). Similarly, if 4 is an Euclidean quiver, then an
iterated tilted algebra of type 4 is either representation-finite or tame represen-
tation-infinite (and in the latter case, it is even domestic and [-parametric). Also,
by 2.7, the quadratic form of an iterated tilted algebra of type A is congruent to
that of k4. Consequently, it is either positive definite (if 4 is a Dynkin quiver),
positive semidefinite of corank one (if A is an Euclidean quiver), or indefinite (if
A is a wild quiver). Finally, by 2.2, iterated tilted algebras have finite global
dimension.

ExampLE. The algebra A4 given by the quiver of Fig. 20 bound by
aff =90, uA =0, la =0, iy =0, v{ =0 and {6 = 0 is an iterated tilted algebra
of type E, (actually, A is representation-finite of global dimension four, as is easy
to check). Indeed, letting 4 = A, and putting

TO =t 2{P(1)@ PQ)® P3)} @1 'P(5)® P(4)® P(6)® P(7)® P(8)
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Fig. 20

we see at once that T'Y is a separating tilting module and that 4, = End TY) is

given by the quiver of Fig. 21 bound by affly =de, uyy =0, va =0, vé6 = 0.

Fig. 21
Next, let

TY) =17 5P()@®1 *{PQ)®PB)@ P(5)} @1 *P@A)@ PO)DP(T)® 1 2P(8).

Then TY) is again a separating tilting module and its endomorphism algebra
A, =End TY) is given by the commutative quiver of Fig. 22. Finally, the

o o _Cf O O 1

Fig. 22

Auslander-Reiten quiver of 4, contains a complete slice of type E., so that 4, is
a tilted algebra of that type.

6.2. Let A be an iterated tilted algebra of type 4. Then it follows from 4.3
that D®(A) = D®(k4) as triangulated categories. This made it possible to use our
knowledge of the structure of the derived category of a hereditary algebra,
described by Happel in [39], in order to obtain information on the iterated tilted
algebras.

PROPOSITION. Let A be an iterated tilted algebra. Then A is triangular. If
moreover A is representation-finite, then mod A is directed.

For the proof, we refer to [39]. Another proof of the first part, using the
repetitive algebra and covering techniques, is due to Skowronski [63].

It was natural to ask whether, conversely, an algebra A such that
Db(A) = DP(kA) as triangulated categories is necessarily iterated tilted of type 4.
This was proved by Happel in [39] in the case where 4 is a Dynkin quiver, and
in [38] in the case where A is an Euclidean quiver. It also follows from the proof
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of the latter result that. if 4 is iterated tilted of type A. where 1 is a Dynkin
(respectively, a Euclidean) quiver, then 4 may be transformed to a hereditary
algebra of Dynkin (respectively, Euclidean) type by a finite sequence of
APR-tilting modules (respectively, a finite sequence of APR-tilting modules
followed by a finite sequence of APR-cotilting modules). In the general case, we
have the following result of Happel, Rickard and Schofield [42].

THEOREM. Let A be a finite connected quiver without oriented cycles, and let
A be an algebra. The following conditions are equivalent:

(i) A is an iterated tilted algebra of type 4.
(i) A is tilting-cotilting equivalent to kA.
(i) D°(A) = D®(kA) as triangulated categories.

The proof is done by induction, using perpendicular categories. In par-
ticular, it follows from this theorem that the class of iterated tilted aigebras is
closed under the tilting process. Also, an algebra A is iterated tilted of type 4 if
and only if the opposite algebra A° is iterated tilted of type A.

6.3. In [39], Happel shows that one can define for a triangulated category
a notion of Auslander—Reiten triangles which extends, in an obvious way, the
notion of Auslander-Reiten sequences in mod A. He then proves that D®(A) has
Auslander—Reiten triangles. We may thus define the quiver of D®(A) to have as
vertices the isomorphism classes [ P.] of the indecomposable complexes P in
D®(A) and to have an arrow [P.] - [Q.] whenever there is an irreducible
morphism P, » Q_in D°(4). A component I' of the quiver of D°(A) is called
a tube (see [65]) if it has no multiple arrows, contains a cyclic path and its
geometric realization |I'] = S' x R§ (where S! is the unit circle and R§ the set
of non-negative real numbers). Finally, we shall say that D(A) is cycle-finite if,
for any sequence of non-zero non-isomorphisms P? —» P! — ... - P! = P? be-
tween indecomposable objects in D(A). the objects P/ lie in one tube of D®(A).

It follows from the structure of the quiver of D"(C) for C hereditary of
Dynkin or Euclidean type (see [39]), or for C tubular canonical (see [45]) that in
both of these cases, D°(C) is cycle-finite. Therefore, if A is tilting-cotilting
equivalent to an algebra C as before, then D®(A) is also cycle-finite. Surprisingly,
the converse is also true. '

THEOREM [10]. Let A be an algebra. The following conditions are
equitalent:

(i) D®(A) is cycle-finite.

(1) There exists an algebra C which is either hereditary of Dynkin or
Euclidean type, or else tubular canonical, such that D®(A) =~ D®(C) as trian-
gulated categories.

(it) There exists an algebra C which is either hereditary of Dynkin or
Euclidean type, or else tubular canonical, such that A and C are tilting-cotilting
equivalent,
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An easy and natural corollary of this theorem and 6.2 is

COROLLARY. Let C be a tubular canonical algebra. Then D®(A) = D*(C) as
triangulated categories if and only if A and C are tilting-cotilting equivalent.

6.4. Another characterisation of the same classes of algebras uses repetitive
algebras. Recall from 3.4 that the repetitive algebra 4 of 4 is a Galois covering
of the trivial extension Aix DA with the infinite cyclic group generated by the
automorphism v,, and mod A4 is equivalent to the category of Z-graded
(Ax DA)-modules. We shall say that A is exhaustive provided the pushdown
functor mod 4 — mod(Ax DA) associated with the covering 4 —» Ax DA (see
[24]) is dense, that is, every (Ax DA)-module is gradable. We may now state

THeoREM [13]. Let A be an algebra. The following conditions are equivalent:

() A is tame and exhaustive.
(11} There exists an algebra B which is tilted of Dynkin type or represen-
tation-infinite tilted of Euclidean type, or tubular, such that A ~ B.
(ili) There exists an algebra C which is either hereditary of Dynkin type, or
of Euclidean type, or tubular canonical, such that A and C are tilting-cotilting
equivalent.

6.5. Apgain, many classes of iterated tilted algebras are completely
classified. The following result shows that, if A is a Dynkin or an Euclidean
quiver, then the classification splits into two cases, the simply connected case,
and the case A,.

THEOREM [9]. Let A be an algebra such that D®(A) is cycle-finite. Then A is
simply connected if and only if A is not an iterated tilted algebra of type A,.

The same statement holds true if the assumption that D*(A4) is cycle-finite
is replaced by the assumption that A is tame and exhaustive [13]. This theorem
shows that, if 4 is iterated tilted of Dynkin or Euclidean type # A,, then A4 is
simply connected. The iterated tilted algebras of type A, are completely
classified in [8). A constructive procedure allowing one to construct the
representation-infinite iterated tilted algebras of Euclidean type, and the
representation-infinite algebras which are tilting-cotilting equivalent to a tubu-
lar canonical algebra, is given in [10]. The following handy criterion allows one
to decide whether or not a representation-finite algebra is iterated tilted of
Dynkin type or of Euclidean type # A,.

THEOREM [11]. Let A be a representation-finite algebra.

(i) A is iterated tilted of Dynkin type if and only if A is simply connected and
its quadratic form q, is positive definite.

(ii) A is iterated tilted of Euclidean type # A, if and only if A is simply
connected and q, is positive semidefinite of corank one.
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Part (i) was also obtained independently by Happel (private communica-
tion). No similar characterisation is presently known for the representa-
tion-finite algebras which are tilting-cotilting equivalent to a tubular canonical
algebra. The iterated tilted algebras of Dynkin type A, were classified in [5],
those of Dynkin type D, were classified in terms of theis bound quivers in [12]
and in terms of their Ausiander—Reiten quivers in [82]. Also, S. Brenner has
obtained a simple and effective combinatorial construction which determines if
an algebra can be tilted to a hereditary algebra by a finite sequence of
APR-tilting modules (thus, in particular, if an algebra is iterated tilted of
Dynkin type} and, if this is the case, allows one at the same time to determine
the type of the tterated tilted algebra [26]. For other characterizations of the
iterated tilted algebras of Dynkin type, we refer the reader to [37] and [39].
Almost nothing is known about the iterated tilted algebras of wild type.

The following conjecture, due to Roldan, would allow one, if true, to
reduce the study of the representation-finite iterated tilted algebras of Euc-
lidean or wild type to the study of the representation-finite tilted algebras of
that type. Let A be a representation-finite iterated tilted algebra of type 4,
where 4 is not a Dynkin quiver. Then the conjecture states that there exists
a sequence of tilts A = A,, A,, ..., Ap_y, A, = kA, as in Definition 6.1, but
with A, _, representation-finite.

6.6. Tilted and iterated tilted algebras are applied naturally in the
classification of the self-injective algebras of polynomial growth [69], and in
particular of the trivial extension algebras. Recall first that the trivial extension
Ax DA of A is a symmetric algebra. Thus, by Riedtmann’s theorem [63], if
A DA is representation-finite, then the stable part of its Auslander—Reiten
quiver is isomorphic to ZA4/G, where 4 is a Dynkin diagram (called the Cartan
class of Aix DA), and G is an admissible group of automorphisms of Z4. Then
we have

THEOREM. Let A be an algebra. The following conditions are equivalent:

(i) Ax DA is representation-finite of Cartan class A.

(i) There exists a tilted algebra B of Dynkin tvpe A such that
Ax DA =5 Bx DB.

(ili) A is an iterated tilted algebra of Dynkin type A.

Here, A is an arbitrary orientation of the Dynkin diagram 4. Indeed, since
the Dynkin diagrams are trees, all orientations of 4 give rise to the same strip
ZA.

The equivalence of (i) and (i) was shown in [52], [28], [48], and the
equivalence of (i) and (iii) in [6].

Proof of ()<= (iii). If 4 is an iterated tilted algebra of Dynkin type A and
H = k4, then we have mod(A4 x DA) = mod(H x DH) by 3.4. Since Hx DH
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is representation-finite of Cartan class 4, by [73], so 1s AxDA. Thus (i)
implies (i).

Conversely, let Ax DA be representation-finite of Cartan class 4. Then
A is also representation-finite. Let n(A4) denote the number of isomorphism
classes of indecomposable A-modules. Tt follows from [81] that A4 1s triangular.
Therefore, by 3.7, if 4 is not hereditary, then there exists a separating tilting
module T, which is not splitting. Let B=EndT, Since we have
mod(A x DA) = mod(Bx DB) by 3.4, Bix DB is representation-finite, and hence
so is B. Since T is separating but not splitting, we have n(B) > n(A). Repeating
this operation, we arrive, by induction, at a hereditary algebra H which is
necessarily representation-finite. (Here, we are using the fact that there are only
finitely many non-isomorphic representation-finite algebras with the same
number of simple modules.) Finally, since the Cartan class of Hx DH equals
that of A x DA, namely 4, H is hereditary of type 4 for some orientation of 4.

6.7. It was natural to expect similar results in the tame represen-
tation-infinite case. Actually, Tachikawa showed that, if H is hereditary of
Euclidean type, then Hx DH is domestic and even 2-parametric [73]. The
converse, however, is not true. Indeed, let A be given by the quiver

oéo bound by af=0 and Pa=0. Then it is easily seen that
p

Ax DA x Hix DH, where H is the path algebra of the Kronecker quiver o 3 o.
In particular, Ax DA is 2-parametric, but A is not iterated tilted, because it is
not triangular (see 6.2). We thus have to split the classification into two cases,
according as A4 is simply connected or not. In the simply connected case, the
following two theorems characterise the trivial extension algebras of polyno-
mial growth.

THEOREM [7]. Let A be a simply connected algebra. The following conditions
are equivalent:

() AX DA is domestic and representation-infinite.

(i) Ax DA is 2-parametric.

(iliy There exists a representation-infinite tilted algebra B of type D, or EP
such that Ax DA ~ Bix DB.

(iv) A is iterated tilted of type ﬁ,, or Ep.

THEOREM [60]. Let A be a simply connected algebra. The following
conditions are equivalent:

(i) Ax DA is.non-domestic of polynomial growth.

(ii) There exists a tubular algebra B such that Aix DA = Bix DB.

(iii) There exists a tubular canonical algebra C such that A and C are
tilting-cotilting equivalent.

Finally, the polynomial growth trivial extensions of non-simply connected
algebras were classified by J. Nehring {59].

12 -~ Banach Center t. 26, cz |
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