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The theory of optimal control of the processes in dynamic systems is
presented in a number of fundamental monographs [20], [4], [6], [8],
[11]. One of the central problems of the theory of optimal control is the
problem of construction of the controlling effects, ensuring the realization
of the programmed process. This problem is closely connected with that of
‘stability of motion and is a further development of the theory of stability
in the control of motion problems.

A number of problems in the theory of optimal control from the point
of view of the practical stability of motion theory [6], [7], [10], [15],
[18], [24] is successively presented here on the basis of the Lyapunov’s
function method [12] and the principle of comparison [13}-[17], [23].

As a basis of this article the author takes a series of lectures delivered
at the International Mathematical Banach Centerin Warsaw in November—
December 1980.
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§ 1. Problems analysed

YWe consider equations of controlled motion in the form

(1.1) & = X, +H, ),
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where # € R® is a vector-parameter characterizing motion, %(f) e U « R™
are the values characterizing the controlling forces. Let z = y(f) be the
programmed trajectory, the motion along which must be ensured by an ap-
propriate choice of forces u,(t), ..., 4, (t). We shall make a substitution
z = x—y(?) in system (1.1); the new equation will be the following:

dz
(1.2) Et— =F(t,z)+A(1,u,u,t),

where

F(t,2) = X(t, 2+ p0)—X(t, v(2),
B(t, v) = p(t) _X(t) "I’(t))r
A(p, u,t) = H(t, u)—B(t, v).

It is obvious that ¥(¢,0) = 0 and the solution z = 0 corresponds
to the unperturbed motion of the system

(1.3) i‘;—i = F(, 7).

Let us suppose that systems (1.1) and (1.3) are defined in the domain Q:
t>0, |zil<H, H =const>0,

where ||+ is the Euclidean norm and there exist solutions at (15, T, = 2,)
e€int 2 and they are unique.

We shall consider the practical stability of unperturbed motion
of systems (1.3) or (1.2) with respeet to domains S,(t), 8(t), I. Here
S,(t), 8(1) are connected, open, bounded sets of the space R", and they
are continuous at all ¢ € I. Let §(t) be the closure, #S(f) the boundary of
the sct S(t); suppose that

Sy(t) = 8(t) & 88,n38 =@ VielZ 1y, +)
and denote
S(t)\8,(t) = {x € B", x € 8(1), = ¢ 8,(t)}.
So, we shall consider the following two problems [6], [16], [17].
PrOBLEM I (On practical stabilization of programmed motion). Let the
left end {2(t,), 2,} of a trajectory z(t) be fixed in a set S,(t,). It is necessary
to define the controls «(t) € U ensuring the right end {2(T), T}, t,< T

< oo, belongs to the terminal set S(7T'). Here S,(t) = S(t) Vt e [1,, &
08,nésS = @.

PrROBLEM II (On optlimal practical stabilization of programmed motion).
Suppose that together with equation (1.2) we are given the functional

(1.4) W(z(), u() = [ {o(t, 2(t) +u*Bu)dt,
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where o(t,2) is a non-negative function defined in the domain £2; let
#*Bu be a given positive definite quadratic form. It is necessary to find
the control «° e U ensuring:

(a) the uniform practical stability of unperturbed motion of system
(1.3);

(b) the minimal value of the functional (1.4) on all trajectories of
system (1.3) starting from the set 8,(f,) and reaching the set S(t).

The solution of the problems mentioned is to be based on the Lyapu-
nov’s function method together with the results of the principle of com-
parison in the integral form.

1.1. Definitions and additional estimations. Basing ourselves on pa-
pers [7], [10], [15], (18], [25]-[27], [30], [31], we formulate the defi-
nitions necessary for further work.

DEFINITION 1.1. The controlled system (1.1) is practically stable on
a program trajectory x = y(t) if under the given assumptions on the domains
So(t), 8(t), I the inclusion z(t, t,, 2,) € int S(¢) holds for all ¢t € I provided
2, € Sy(tq).

DEFINITION 1.2. The controlled system (1.1) is uniformly practically
stable on the programmed trajectory ® = y(t) if for each solution 2(¢, ¢, z,),
starting from the domain §,(t,), i.e., #; € 8,(t,) for ¢t = ¢,, the inclusion

z(t, 1, 2,) €int8(2)

holds for all t>1t,, t,¢, € 1.
We consider the Cauchy problem

d
(15) 2 —flytow), vt —ve, yeE:

Let its solution y(¢, ¢y, ¥,) be defined on [¢,, 7).

Function f(t, w) has the property of mized gquastmonotonicity [28] if
fo(t,w), 8 =1,2,...,1, neither decreases in w, (4 #s,p=1,2,...,1)
nor increases in w, (v =141, ..., k) and f,(¢t, w), s =1+1, ..., k neither
increases in w, (4 =1,2,...,1) nor decreases in w, (v =1l+1,...,k,
Y #8).

Let y(t, t,, ¥,) be a solution of the Cauchy problem (1.5) such that

Yaltytoy Yo) <Yty boy %)y 8 =1,2,..,,1;
Yo(ty oy Yo) = ¥alty Loy Yo)y 8 =1+1,...,k
for all ¢t € [t,, 1), or
Ya(ty Toy Yo)
)

Ya(ty Loy Yo
for all ¢ e [1,, 7).

(1.6)

Yoty toy %)y 8=1,2,..,,1

=
1.7
< a(t tos Yo)» d =l+1p---,k

25 — Banach Center t. 14
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Having fulfilled conditions (1.6), we obtain the solution ¥(t, ¢,, ¥,),
which ig called an I-maximal solution of the Oauchy problem (1.5); in case
(1.7) the solution ¥%(t, t,, ¥,) is called I-minimal or (k —I)-mavimal. Both
in case (1.6) and in case (1.7), ¥(¢, %y, ¥,) i8 called a mimiman solution.

LeMMA 1.1. Let the following conditions be fulfilled:

(1) function f(t, w) £3 continuous, defined in an open domain A < I x R*
and has the property of mized gquasimonotonicity;
(2) the imequalilies

[
L <o)+ [flt, L) +y.(t), &=1,2,...,1;
to

!
L= o)+ [flt, CO)@+y,(te), 8 =1+1,...,k
tg

hold;

(3) the functions {(t), o(t) are continuous for all t € [1,, 1), (¢, {(2)) € 4,
(t, o(t)) e A and

Lt <y =Flt), 8=1,2,...,1;
Calte) = Yoo = U,(ty), & =1+1,...,k.
Then for all te[t,, ) we have the estimations
L) < Y,(tyto, Yo)+o,(t), 8=1,2,...,1;
E(8) = 4,8, o, o)+ 0,(8), 8 =14+1,...,k.
For the proof see [1], [2], [28], [30].

(1.8)

§ 2. Theorem on practical stability of programmed motion

Together with system (1.3) we shall consider Lyapunov’s vector-function
V(t, z) with the components v,(t, 2),j =1, 2, ..., k; 9;: I x R*~>R?, locally
large [14] and continuously differentiable at (?,2) in the time-varying
domain I x8(?),

al)

4
Vo, =
1V, £ ||

<M, M;,=const>0, j=1,2,...,k,
for all teI and 2z e S(£)\S,(¢).

We define the derivative of the component function v,(?, 2) by means
of the formula

do ov .
T;--:#‘}‘VU;FU, z)’ J =1!2""’k’
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and we dcfine the majorant functions f;(¢, v,, ..., ;) in the domain A
cIx®, f;: IxR*>R. Let the function f(¢,7,...,9) for each
j=1,2,..., % have the property of mixed quasimonotonicity.

We introduce one more vector-function,

oty = M [ ||4(v(0), nt), Y@, t>1,
b

where M = colon(M,, ..., M,), u(t) € U, assuming that (¢, g) € A.
Further on we shall use Lemma 1.1 for an estimation of the components
of the vector-function V (¢, z). Namely, the following assertion holds.

LEMMA 2.1, Assume thal
(1) the above-mentioned functions V(t, z), f(t, v), o(t) exist and

t
(@) o, 2®) < oW+ [fit, Vit 2())dt+y.(0), 8=1,2,...,1;
t
¢
(0) o,(t, 2(0) = 0,0+ [filt, V¢, 2@)))dt+y,(0), 8 =1+1,...,k;
4

(2) the functions v,(t, z(1)), o,(1) are continuous at all ¢ € [t,, 1), (L, v,)
€d, (t,q,) €A and

(a) 'vs(tn z(tl))gyao ='°§s\u§°(t1)_°'s(t1)a s=1,2,...,1,
(b) v, (tu z(tl)) Z Ygo = vmo(tl)-aa(tl)f 8 =1+1,...,k.

Then for the components of the vector-function the following estimations
hold:

(2.1) (a) ’D,(t, z(t)) i ga(tf ty Yso) +0,(8), &=1,2,...,1;

(b) v,(t, z(t)) Yo(ly tay Ypo) T 0,(8), 8 =1+41,...,k

for all t € I and z(t) € 8(1)\ 8, (t), where ¥,(1, 1,, Y,0) are the minimax solutions
of the Cauchy problem

d
(2.2) ==l y+ot), Y =gy >t

Proof. We obtain conditions (1) (a)~(b) of Lemma 2.1 from the supposi-
tion of the realization of the differential inequalities

dv

_dtig-fa(t) V)+'Ma”A('p) u” t)"! ) =1!27"” l;

dv,
H>f'(t, )+ M, Ay, u, 1), s =1+1,...,F,
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which estimate the full derivatives of the components v;(t,2),j=1,2,...
...y k, of the vector-function V(¢,2) in virtue of system (1.2). Passing
on from these inequalities to the integral ones, we obtain

[
L <L) —a )+ [t co)a+L,m, s=1,..,1
t
and
[
L) = L) — o (t)+ [fi{t, CO)dt+E,0), 8 =1+1,...,F,
1

where ,(t) = v,(,2(t,1,2)), 8 =1,2,...,k. We now obtain the esti-
mations (2.1) using Lemma 1.1.

THEOREM 2.1. Suppose that
(1) the above-mentioned functions V (i, z) and f(1, V) exist and

dv,
(a) 7 <f.(t, V) for s=1,2,...,,1;
(b) @, =18, V) for 8 =1+1,...,k

dt

for all teI, 2 e 8(1)\S,o(t);

(2) on a convex-compact bounded set U the function o(t) 18 bounded on
each finite interval I, c [1,, + o0);

(3) a minimax solution ¥(1,1,,y,) of the Cauchy problem

dy —
= =f{t,y+a®)), yt) =12

18 defined for all t > 1,.
Then for any vector of conirol u® e U ensuring the inequalilies

(2.3) (a) o,(t) > D,ﬁ(t)—ﬁs(t, oy Uso)s 8 =1,2,..,1;
T D) e, (< 00— Tyt tey Yee)y 8 =141, ...k,

the controlled system (1.1) ¢8 practically stable on a programmed trajectory.

Proof. Let us consider case (b) in condition (1) and, eonsequently,
inequality (b) in (2.3). In this case the Cauchy problem (from condition
(3) of the theorem) is the following:

4y,
di = fn (t! ya+da(t))'

Yolte) = Yoo = ”::,g(to)—“a(to)r 8 =1+1,..., k.
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Let the left end {z(,),1,} of the trajectory 2(t) of system (1.2) be
fixed in the domain 8,(t,), i.e., 2z(f,) €intYy(2,) = S(1,)&08,No8 = O
Yt eI. We assume that the trajectory z(f) reaches the boundary of the
domain S(¢) at t =¢,, i.e., z(t,) € 08(t,), ¢, €[ty, +o0). Then the right
end {z(t), t} of the trajectory z(t) does not leave the inside of the domain
S(t) for t € {8y, t,). Let us verify if it is possible for the trajectory z(i) to
reach the boundary of the domain while fulfilling the conditions of the

theorem. In virtue of conditions (1)—(2) of the theorem we have an esti-
mation

2, (t, 2(8) = Fo (%) Loy Yso) +0,(t) for all >4, 8 =1+1,..., k.

The control «#° € U (satisfying condition (2.3)) for a given wvalue ?,
€ [ty, +oo) leads to the inequality

”agfp(tl)<”a(t1, z(tl))y s =1+1,...,k,

which contradicts the existence of ¢, e I for which 2(t,) € a8(1,). This
fact proves that the controlled system (1.1) is practically stable on the
programmed trajectory. We have a similar scheme of the proof of stability
in the case of inequality (a) in condition (1) of the theorem; that is why
it is not necessary to repeat it here.

§ 3. Theorem on optimal stabilization

In the applied problems of dynamies of controlled systems, parallel with
the requirement of practical stability of unperturbed motion, there arise
problems of optimization of the transient. In a great number of cases they
can be expressed in the form of minimality of an integral

(3.1) Wia(), u() = [oft, vft, (), a(), u())dt,

t
where w(t,v,x, ) is 2 non-negative function; its other properties will
be defined more exactly later on. As in [6] by the symbol u[t] we denote
the controls which are realized in the system

(3.2) % = X(t,»,u), xekR"
where X: I X2 x U—R" By the symbol z[t] we denote the motions of
system (3.2) corresponding to the controls «[t]. If the motion is generated
by any fixed value of control, then this fact will be marked by a super-
seript *, i.e., z*[t], u*[t].

The choice of the function w(t, v, ¢, #) in expression (3.1} is realized
every time in conformity with the conditions of the problem considered.
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However, as a rule, the following three principles remain unchanged:

(A) The condition of minimum of integral (3.1) must ensure the quickest
possible return of the solution into the domain S,(t) (8,(t) = (1) Vit e I)
in- case of damping of motion or the slowest possible transition from the
domain 8,(t) into that of S(¢) in case of an increase of motion.

(B) Function @ must be, on the one hand, such as to ensure the
applicability of the corresponding theorems on differential inequalities
and, on the other hand, such as to provide the solution of the Cauchy
problem appearing here in an explicit form or to solve the question of
stability of the zero solution of the system of comparison effectively.

(C) The value of the integral W must satisfactorily estimate the
outlay spent on the realization of the motion needed.

Thus, let the quality criterion (3.1) be chosen and let the convex-
compact bounded set U be given. It is necessary to determine the con-
trolling effects 4°(¢, #) € U which ensure the practical stability of unper-
turbed motion of system (3.2) in the sense of one of the definitions 1.1,
1.2 and, for any other values of the vector u*(f, ) € U which solve the
problem of stabilization, the inequality

f w(t, v(t), 2°[t], w[t])dt < f w(t, v(t), z*[t], u*[¢])dt
% to
must be fulfilled for all initial conditions (t,, ,) €int (I x 8,y(t,)).

. Let us call attention to the fact which is inherent in the whole theory
of practical stability of motion: namely, the domain §,(t) must be formed
of the technical conditions of the functioning of the controlled system
(3.2) and the domain S(t) must be defined from the quality conditions
of the synthesized controls. It has been accepted to call the vector-function
v = u°(t, z), which solves the problem of optimal stabilization, the optimal
control.

Ve compose the expressions [6]

do, -
7 +o,t, V,z,u), 8=1,2,...,k,

Ba[V§ ly @, U, 0] = d

where the full derivative of the function »,(f, ) with respect to system
(3.2) is denoted by the symbol dv,/dt.
Let the inequalities

(3.3) B,[Vit,z,u, 0] <0, 8=1,2,...,k

be fulfilled for a certain choice of components of the vector-function V (¢, x)
and a vector of controls ¥* € U in the domain I x S(¢). This means that for
a given vector of controls #* € U the variation of the components of the
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vector-function V (¢, ) on the solution x*[tf] can be estimated by the
inequalities

dv,
at

(3.4) <—ow,t,V,z), §8=1,2,...,k.

On the basis of Chaplygin’s theorem on differential inequalities
we find the estimations

(3.5) "a(t’m(t))gga(t’tmyo): 2=1,2,...,k,

where ¥,(t, %5, ¥,) i8 the y-upper solution of the Cauchy problem

d
(3.6) %+w(t,y, 2) =0, Y(t) =0,

defined in [t,, 7), where
”a(tm-""(to))gyao: 8 =1,2,...,,k.

In addition, the function w(?, ¥, ) must satisfy Wazewski’s condition
on the domain A:

w,(t, Yy 2) < w,(¢,y", ®) for Ye =y2', v, <y,
(» #8, v,8=1,2,...,k).

We summarize the above by the following assertion.

LeymA 3.1. Suppose that for system (3.2) there exist Lyapunov’s vector-
Junction V(t,x) and a majorizing function w(t, V, z) and

(a) inequalities (3.3) hold for u* e U;

(b) the y-upper solution of the Cauchy problem is defined for all t > t,.

The estimation (3.5) holds in the joint domain of the existence of the
y-upper solution of the Cauchy problem (3.6) and the fulfilment of inequali-
ties (3.4).

Now we pass to the main theorem on optimal stabilization.

TEEOREM 3.1. If the differential equations of perturbed motion (3.2)
are of such a type that we can find a vector-function V(t,z) together with
positive definite locally large components v,(t, z), 8 =1, 2, ..., k and functions
u(t, x) € U of such a type that:

(1) the function w(t, V,2) = w(t, vy, ..., v, ©°[t], u°[t]) satisfies Wa-
Zewski’s condition tn the domain A for (t,z) € I xS8(t) and is non-nega-
tive;

(2) there exists a solulton of the system i = X (t, x, 4°) and it i8 unique
and conltnuous for all ¢ > iy;
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(3) the inequalities
B,[V;t, 2z, ww]<0, 8=1,2,...,Fk

are vald;
(4) the inequalsties

B,[V;t,z,u,0] >0, 8=1,2,...,k

are valid for any meanings of u € U;
(B) the y-upper solution of the Cauchy problem is such that

(a) Ys(l) toy o) < "’aalgf(t) Vi t;

(b) im %,(3,%,%) =0, ¢=1,2,...,k,
=00

then the vector u®(1,x) € U ensures the solution of the problem of oplimal
stabilization of conirolled motion. In this case the motion x°[t] =0 ¢8
practically stable and the inequality

(3.7) fw,(t, V, x°[t], u*[t])dt = min fow,(t, V,a*[t], v*[1]) @t <
to to

gv,(t,,,w(t.,)), 8=1,2,...,k,
holds.

Proof. In order to determine the validity of the theorem it is necessary
to verify two facts. Firstly, the functions 4° € U must ensure the practical
stability of unperturbed motion of system (3.2); secondly, relation
(3.7) must be fulfilled. The practical stability of unperturbed motion can
be derived from Lemma 1.1 and conditions (1), (2), (4), (a) of Theorem 3.1,
Indeed, suppose that, for ¢ = t,, the left end of the trajectory {z(t,), ¢,}
is fixed in a set Sy(f,), i.e., (1) € 8,(ty) = 8(1,). If we assume that there
exists a moment ¢, € I for which z(t,, ¢y, z,) € dS(1,;), then

'Da(tzy (ty, ty wo)) < ﬂ,(tz, to) yo) < va?ﬁ:(tz); 8=1,2,...,k.

This inequality contradicts the supposition of the existence of i, € I for
which z(1;, t,, @) € 08(t;). This proves practical stability.

Now, let us verify the relation (3.7). In virtue of conditions (4), (b)
and estimations (3.5) we have
(3.8) limo, (¢, z°[t]) =0, ¢ =1,2,...,k.

(-
Taking into account (3.8), we find the estimations
o
(3.9) vt 3(te))> [ ,(t, V,aot], w[thdt, s=1,2,...,k

¢
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from inequality (3.4). Let us now solve the problem of optimal stabili-
zation by means of the vector u* € U. There are two possible variants:

(1) the motion z*[¢] of system (3.2) does not leave the domain S,(?)
at any 1> 1,;

(2) motion z*[t] eventually leaves the domain §,(t).

According to condition (4) of the theorem we have

do,

(3.10) -

= —w,(t, V,o*[t],u*[t]), 8=1,2,...,k.

Taking into account the relations

(3.11) limo,(t, 2*[t])) =0, 8=1,2,..,%k
§{—o0

once more, we obtain

(312) ,(te, 2(t)) < [ @,(t, V, 20 [t], wot]dt, & =1,2,...,k.

to
If vrel, ty< 7, is the last moment of time at which the motion z*[r]
€ ext8y(7) (for all ¢t > ¢,, 2*[t] €int 8 (1)), then we find from (3.10) that

(3.13) o,(r, () < [ o,(t, V,2*[t], ur[t])dt, 8=1,2,...,k.

T

In virtue of the estimation
sup (v, (¢, o) for € 88,(1), 8 =1,2,..., k)<
< inf(v,(t, ») for z € 88(t), 8 =1,2,..., k),
where S‘,,(t) c S(1)&S,NIS = B, it is not difficult to determine that
(3.14) 0, (to, 2(1y)) < 0, {z, 2*(7)), s =1,2,...,k.

Since the function @ is non-negative, we have

316) [ w,(t, V,a*[t), )@t < [ w,(t, V,a*[t], w*[t])dt,
to

s =1,2,...,k.
Combining estimations (3.9), (3.12), (3.15), we determine

[= =

[ @, (t, ¥, a0[], u[£]) dt< vftoy @ (ta)) <

ty

< f w,(t, V,a*[t], ur[t])dt, s =1,2,...,k.
ty

And (3.7) follows from this fact. m
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§ 4. Controlled systems with a neutral part

We consider a set qf equations of perturbed motion

dz

(4.1) =

= f(t, z)+g(t, x)u, woekR"
where f: I xR"—>R"; g(¢, ) is an » X m-matrix, % is an m-dimensional
vector of control.

The zero-solution of the uncontrolled system

dzx
(4.2) — =ft )

is uniformly practically stable, which is ensured by the existence of a po-
sitive definite locally large function v(t, r) whose derivative is, in virtue
of system (4.2),

%‘t'; +VorSf(t, 7) = w(t, 2) <0, @ eB)NE()

and

supv(t,, z) < info(ty, ¥), & eSA)\S,(t), 3> 1.
zedS, 2608

We determine the functional of quality in the form of
T
43) W = [ {eft, 2(t))+w*Bu}dt+y@[T]), 0<T< +oo,
0

where a non-negative function @ must be determined, »*Bu is a given
positive definite quadratic form with the symmetric matrix (B* = B),
and y(z[T']) is a continuous funection.

The problem of analysis is the following. There is given a convex-
compact bounded set U. It is necessary to define a sub-domain Uc U
or vector u°(t,x) € U such that

(1) the unperturbed motion of system (4.1) will be practically stable;

(2) the functional (4.3) will take the minimal value on the solutions of
system (4.1) with the left end fixed in the domain S,(¢,).

We shall base the solution of the problem on the consideration of
the function o(tf, ) given by the equation

k
(4.4) v(t, @) = Za,v,(t, z), a, = const> 0,

gm]

where v,(t, z) are the components of Lyapunov’s vector-function. By
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means of N. N. Kragsovski’s method [6] we compose an expression

do
di
=w(t,z)+w(t, s)+u*Bu.

Blv;t,s,u] = + w(t, ) + u*Bu

We define the vector u® € U from the condition of the minimum of the
function B:

Blo;t,z,u] =0 at u =1u°

and

0
Eu—B[v;t,:v,u]=0 at u = ul

And we obtain the equation

g*(t, x)V o(t, ) +2Bu’® = 0,
from which we have
(4.5) uo(t, ) = —3B lg*(t, 2)V,0(t, 2).

If we substitute expression (4.5) (instead of u(t, #)) into the equation
of perturbed motion (4.1), then we shall obtain the system

. d$ —
(1.6) — = F(, @),

where
F(t,z) =f(t, z)—3g(t, ) B~ g*(t, )V, 0(t, 2).

Practical stability analysis of a system of type (4.6) is made on the
basis of the Lyapunov’s function method or the method of comparison.

Now we pass to problem (2), namely the problem of minimization of
the functional (4.3). With this aim in view we notice that [19]

(4.7) V,0*g(t, 2)u +u*Bu = —2u" Bu®+ u*Bu
= (% — u®)*B(u — u®) — u®* Bu®.
We obtain
w(t,z)+ow(,z)—u*Bu® =0

by substituting the value (4.5) into the cxpression of the function B,
taking into account (4.7); hence .

w(t,r) = —w(t, z)+ u**Bu
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and the criterion of quality takes the form
T
(4.8) W = [ [=w(t, @) -+u%Bu®+u*Bu]di+y (s [T]).
[

THEOREM 4.1. Suppose that \

(1) there extsts a positive definile loocally large Lyapunov’s funclion
v(t, z);

(2) 8o(t) € 8(})&08,N38 = O holds for all t e [t,, x);

(3) there exists a definite differentiable and non-decreasing funciton
7(t) and

(a) —31 +Vor F(t, z) < ﬂ for zeS8H)\S8,(t), tel;
ot dt

(b) 7o) < vﬁf,‘; (to)}

() n(t) < ofp(t)  for all 1>t

d
(4) minB[v;t, 2, 4] = (——2) + w(t, ) +u**Bu® =0,
ueU dt (4.6)

Then the m‘zpeﬂurbed motion of system (4.1) 8 practically stable for the
controlling effects (4.5) and on irajectories x°[t] the functional

T
W = f [—w(t, z) + u* Bu® -} u*Buldt +y (z[T])
0

takes the mintmal value, where T i3 an arbitrarily large finite number.

Proof. Having fulfilled conditions (1)—{3), we obtain practically stable
unperturbed motion. Let us prove the optimality. We define from con-
dition (4)

T
(4.9) v{to, % (%)) = y(@[T])+ [ [w(t, ©[t]) +u**Bu]dt,
0

where
y(@[T]) =o(T, =(T)).
Suppose that there exists another optimal control u! (¢, ), solving the
problem of optimal stabilization. We have from condition (4)

dv

—) +w(t,z)+u*Bul > 0.
ai (4.6)
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Hence
T
o(to 2(t0)) < 7 (@ [T]) + [ [w(t, 2*[¢] + wi*Butlds.

Now, by repeating the argument of the proof of Theorem 3.1 it is not
difficult to verify the second assertion of Theorem 4.1.

§ 5. Controlled systems with integrable approximation

We mean here the following sets of equations of perturbed motion:

do
(5.1) v = f(t, x) +g(t, z)u+ uR(t, z),
where the sense of f, g, » is the same as in § 4, u > 0 is a2 small pa.ra.meter,
R(t, x) is a vector-function of a known structure.
By preserving the assumption of §4 we obtain

dz

(5.2) at

= F (1, 2)+uR(t, o)

instead of system (4.6).
Theorem 4.1 extends to system (5.1) under the assumption that system
(4.6) is integrable, i.e., the solution z = Z(t, {,, #,) of the Cauchy problem

dx

(5.3) -

= F(t,z), @(tyty, ) =,

is known.
We define the function w(t,z, 4) by the formula

w(t, 2z, u) = —w(t, ) +u"*Bu®—uV v*R(t, 2).

Thus, the structure of the quality criterion is the following:

e
W = f {—w(t, 2) — uV v*R(t, 2} +u**Bu’+u*Bu}dt, 0<i*< oo.
[}

Let Z(t,1,, ©,) be the integral curves of the Cauchy problem (5.3)
for the values (?,,x,) €I x8,(tg) (or I x8(i)). We denote ¢(t,x)
= V_v*R({, ) and consider the mean

to+T

1 _
(5.4) Vollo @0) = lim — plt, Z(t, o, ,))dt.
0
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We detine the distance from a point £ € R® to. a set M < R® by the
formula

oz, M) = inf[|lz — |, 7, € M].

Let V*(2) be a non-negative scalar definite function, continuous
in the domain §(¢) for all ¢ > ¢,. The number of points z € §(t) for which
V*(z) = 0 is denoted by E(V* = 0).

DEFINITION 5.1. wo(lo, @,) < 0 48 definite in the set E(V* = 0) if for
the given 8,(t), and 8(t), 8,(t) = 8(1)Vt eI, we can define r(S,, 8) and
3 = 8(8,, 8) such that p,(ty, 7,) < —dforz, € 8(1)\8,(t), o (2o, E(V* = 0))
< r for all ¢, € [0, + o0).

THEOREM B.1. Let the following conditions be fulfilled:

(1) for system (5.3) there exists a positive defintte locally large function
v(t, ®) which has am infinitely small high limit, and the fumction V°(z)
such that

% +V, 0*F(t,z) < V(x) <0 in the domain S(1);

o
(2) min B[9;t, z,u] = ¥ +ow(t, 2, u) +u**Bu® = 0;
ueU

(3) there exist ¢ntegrable fumctions K(1), F(t) and N (t), constanis
ko, fo and n,, and also a mondecreasing fumction x(y),lim yx(y) = 0 such
that 0

éq

IR, )| < E(t), [ E(1)at<kolta—1t);
h
lp(t, 2")—o(t, a)| < 1l — 2" I) F(1);
Ly
[ Fat<fit—t)
71

in the domain S(t) on any finite interval [t,,t,];

(4) the inequality
{2

pit, ) SN(M), [N <n(ta—1)
G

holds for ¢ € S(HNE(V* = 0) and t € [t,, );
(B) there extsts a mean (5.4) uniform with respect to (t,, ;) € I X 8(1,);
(6) in the set E(V* = 0) there t8 definite v,(l,, T,) < 0.

Then for the given domains 8,(t) and S(t) we can define puy(8S) > 0 such
that
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(a) the unperturbed motion of system (5.3)4s practically stable for 0 << u
< Hoj
(b) on the trajectories of system (b.1) the fumctional
‘.

W = [ {—w(t, o[t]) — uV,o*R(t, #) + u** Bu®+ u* Bu} dt
0

takes the minimal value, where 1* t8 an arbitrarily large finite number.

Proof. Conditions (1), (3)—(6) ensure the practical u-stability of unper-
turbed motion of system (56.2). Condition (2) ensures the minimum of
the functional W; this fact can be verified in the same way as in the
proof of Theorem 3.1.
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