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REMARK ON SPLINE UNCONDITIONAL BASES IN H'(D)
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In his work [3] Z. Ciesielski has constructed spline unconditional bases in
the classical Hardy space H'(D) of analytic functions on the unit disc in the
complex plane. He used systems of knots on R introduced by J. O.
Stromberg [5]. Unfortunately, these systems lead to unconditional bases in
H' (D) regarded as a real linear space. To construct bases in H' (D) over C,
we have to use other systems. The following systems of knots on R are
suitable for this purpose:

1. n(j) = (1, i€Z), jeZ, with 1} =i/,
2. w(j, k) =R ieZ), jeZ, j~0, k=1,....,2—1, with

(n for i =n(2+k),
n+p/2+? for i=n+k)+p, peZ,1<p <2k/2],
n+(p-="k/2W/2  for i=n(+k)+p,

tge = :
‘ 2Mk/21< p <2 +Tk/21—Lk/2.,
n+(p+2'—ky2’*! for i =n(2+k)+p,
L 2f+rk/2_|—Lk/2_l<p <V +k,
where

[x1=min'neZ: n2x!, Lxl=maxneZ: n<x!;

3. n(j, k. )=tV ieZ), jeZ, j>0, k=0,...,2=-2, |eZ, with

9D for i < I(2+k),

G _
and
(kD) tkrD for iS22 +k+1),
e =3t <1 I>0.
L for i > 1(2+k+1),

[427]
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and for j <O
n(j,0,1) =P, iez), lez,

with

(.0 _

%i/Zf“ for i < 2I,
(2i=1)y2 for i > 2l
Now, by the same method as in [3] we can construct unconditional

bases in H! (D) over C, using the spline functions of order r > 1. We give a

sketch of the construction.
Let n be one of the partitions 1 —3, let ,, | €Z, be the knots of = and let

ri(8) =, —t) [ty -5 s E—5)7 1]

be the corresponding B-spline of order r. We begin our construction with the
following subspaces of L?(R):

(N7, leZ).

It is clear that the codimension of Sy, , in Sy, ,+1, is one. Thus, there is
Sy €Snjna+1) unique up to sign which is orthogonal to Sriip With

”f(_(i’,';c,l)”LZ(R) = ]'

rr2.__
S,L:= span, ;

We choose the sign so that
Sgn Sk (94) = 1,

where sU%? is the knot belonging to n(j, k, [+ 1) but not to =n(j, k, 1). It
follows from the definition and the inclusions

S;r(j) < S:’:(j.k) < S:t(j,k,l) = S:z(j,k,l+ 1y & S;r(j,k+ 1) & S::(j+ 1)
that the system
(fSknsJ, 1€Z, k=0, ..., max(0, 2/ —1))
is orthonormal in L?(R).

Along with the orthonormal system (f{},) we are interested in the
family of biorthogonal systems

(S fGiy™, 0<m<r,meZ,

which appears in a natural way in the course of construction of spline bases
in the Hardy spaces. The function f{i"), for |m| <r, is defined as follows: °

D™ for m>0 .
(rm — u.k.b ' jleZ, k=0,..., max(0, 21 —1),
Jai {H"" 0, form<0, 7 > +» MAX( )

where D is the differentiation operator and (Hf)(s) = j':° f(t)dt.



ON SPLINE UNCONDITIONAL BASES IN H'(D) 429

The following proposition summarizes the properties of the functions
£ important for further constructions. They can be proved in a similar
way to the properties of the function f{;; in [3].

ProrosiTION 1. There are constants C = C(r), g = q(r), 0 < q < 1, such
that for |m| <r we have

— (J.k, 1 ;
,f(yi‘m’)) (t)l < CN1/2+qu|t sU )|’ N = 2J’ teR.

Moreover,
D 5 B =
Uk JG ke VL 2Ry = Ok, k1) -

In what follows we identify the one-dimensional torus with the interval
= (—1/2, 1/2). For given integers m and r such that —r <m <r we deﬁne
the periodic spline in the usual way:

femo =Y fom@—-n  for j=0,k=0,..., max(0, 2 —1).

neZ
The following proposition is a consequence of Proposition 1 (cf. [3]).

ProPosITION 2. There are constants C = C(r), g =q(r), 0 <q <1 such

t har
Nd .k,
Iﬁ‘(’rkml) (t), < CN1/2+m q (1,5 ))

for ieR, N =2/, Here dr is the distance on the torus T.

It is a consequence of Proposition 2 that the functions f im are well
defined. Moreover, by the definition of f{;"),

f(r "3 (t—n) = (rk"?+ n(), neZ,
which implies
fom© = famen @, n,leZ.

Thus among the functions f(‘,’,"",’,, for fixed j > 0, there are only 2/ different
ones, and we label them as follows

f(r,nl) =1,
em) = flem o for n=24+k,j>0,k=0,...,2—1.
It follows from the definition and Proposition 1 that the systems
FAS A R
are biorthogonal in L2(T).

TueoREM 1. For |m| <r, r > 1 the system (f"™)%2, is an unconditional
basis in L*(T).
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To prove this theorem we have to investigate the orthogonal projections
onto finite-dimensional subspaces spanned by (f~™). All we need is done for
other systems of knots by Z. Ciesielski in the second and third parts of [3]
but his proofs, with obvious modifications, work in our case too.

Let us introduce the following operator acting on functions on T:

1/2 12 12

(H)(t)= | f&)ds— | | f(s)dsdu.

-1/2 u

We deline the system of functions

4o = {(f..‘” O+ O)LD+F2I ;;(,, for n=0,1,

"SR O+ OV TR I, for n=2,3, .,

where f(r) = f(-1),

(r,m __
n =

{D"’g‘,," for 0O<m~<r,
H "g" for —r - m<0

for n >0, and
g™ =1 for each m.

ProrosiTION 3. (a) The system (g'7)% ¢ is an orthonormal system of even
functions and it is complete in the subspace L (T) of even functions in L*(T).

(b) If m is even then (g™, g\ =™, is a complete biorthogonal system
in L2 (7).

If m is odd then ("™, g ~™)2 | is a complete biorthogonal system in the
subspace L2 (T) of odd functions in L*(T).

Proof. Let S, =span(f",i<2n—1) for n=1,2,... Let S; be the
subspace of even functions in §,,. Since the system of knots corresponding to
S, is symmetric with respect to the origin, S, is the image of S, under the
orthogonal projection onto L2 (7). It is clear that £ is not odd for n even,
therefore g # 0 for each n. Moreover, ¢ €S, but g ¢S,"_,. The codimen-

sion of S, in S; is one and L2 (T)={J,S; . Thus

L% (T)=span, . (g, n=0,1,2,..).

The orthogonality of the functions (g) is a consequence of the construction
of ¢4, £, fY4y, and particularly of the fact that

' Gkt () f§he iy (=) dt =0 for (j, k) # (j, k'), k, k' even.

Part (b) follows easily from part (a).

THEOREM 2. If m, |m| < r, is even then the system (g™~ is an uncondi-
tional basis in L2 (T).
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If m, |m| < r, is odd then the system (g""™)% , is an unconditional basis in
L2 (T).

For the proof we need the following well-known fact (cf. [4], Th. 16.1,
Ch. 1ID).

LemMA. Let X be a Banach space and (x,, f,)s=1 an X-complete biortho-
gonal system. Then (x,).>, is an unconditional basis in X iff the series

2 LS (x)
n=1

converge for each xe X and f € X*.

Proof of Theorem 2. The proof is quite easy. Let us assume that m > 0
is even and Ict x(r), y(r)eL? (T). We have

>, g™ g™, < Y Hx, ca HPFN Y, ca D)
n=0 n=0
+ Y 10, e H™ Ny, € D™ 7))
n=0
+ 2 1o e H" N, ¢ D)
n=0

+ X M, e H Ny, ¢a D™
n=0

where
e = 0 +FON -

One can easily verify that

rm _ D™ fin for m> 0,
" T\ HT™P for m<0

and

(HN)@W = —(HNO,  (c, HNpoqy = =, H) 27y, [ EL(T).
Now, after simple computations, it follows from Theorem 1 that each sum
above is finite. Thus by the lemma (¢!"™)~, is an unconditional basis in
L2 (T).

Using the technique developed in [2] we can prove the following

(rem).

standard estimates for ¢,
lgg™ (1)) < Cnt/2tm g
g™ (1) — g&rm ()] < C¥2*mdp (e, 5) g™,

fgw-™ "

”LZ(T) =
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where C=C(r), g=q(r), 0 <qg<1,t,seT, s=(2k—1)/2'*! for n= 2 +k,
j=0,1,..., k=1,...,2, and 0(t,,..., t;; s) = min(d;(t;; 5), dr(—1;; s):
1<I<i)

Now we are ready to consider the Hardy spaces. Let § denote the
trigonometric conjugate of g. We define H'(T) in the following way:

H'(T) = |geL'(T): §eL'(T)},

with the norm

”g”Hl(T) = ||g||Ll(T)+IIJIILl(T)'
LEMMA. If r =2 2 and |m| < r—2 then there is C = C(r) such that

-1/2
1G5l g1, < Cn™ Y2,

This lemma was proved for spline orthonormal systems in [1] (see also
[6]). In the nonorthogonal case it can be proved with minor modifications
only, therefore we omit the proof.

THEOREM 3. Let r =2 2 and |m| < r—2. Then:

(@) For m even the system (g'"™)~, is an unconditional basis in the
subspace H' (T) of even functions in H'(T). For m odd the system (g""™)% , is
an unconditional basis in the subspace H' (T) of odd functions in H‘(T)

(b) The system {1} U {g"™} 2, U {Gr™} =, is an unconditional basis in
HY(T).

(c) The system {1} U {GV"™ (ge")} 2, is an unconditional basis in H' (D).
Here G™(gé') = g™ +ig"™ (oe") where g™ and §©™ are extended to D
via the Poisson formula.

We sketch the proof only. Since both H% (T) and H! (T) are isomorphic
to H'(I), the atomic H' space over I = <0, 1) (see e.g. [1]), we can consider
both cases together. Thus to prove (a) it is sufficient to prove that the system
W™ (1) = g™ (t/2), tel, n=0,1, ... for meven and n=1, 2, ... for m odd,
is an unconditional basis in H!(I). Analogously to P. Wojtaszczyk]([6]) we
can prove that if f =) ,a,h{"™ then

1flsmo ~ sup(n ¥ FPmlaf?)"”,

n (hetm
where (n) denotes the dyadic interval corresponding to the function AY™.
This proves (a). Part (b) follows from the fact that the trigonometric
conjugation operator is an isomorphism of H'!(T) (mod constants), and ~
maps even functions to odd ones and vice versa. Part (c) is obvious.
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