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Let (2, #") be a measurable space and (Py)s.¢ a family of unknown prob-
abilities. Let X,: 2 — R be a sequence of random variables such that, for
every 0e®, ((X,), Ps) is a homogeneous Markov chain. Let Fj
= Ppo(X,,..., X,)”! and let Qy(x, dy) be the transition probability of the
chain il Py is the true probability. Also, let 11, be the starting probability of
the chain; II, = Pyo(X ).

The intuitive signification is that we have a process X, which should be
Markovian by virtue of a previous model; the problem is to select the true
transition kernel Qq(x, dy) from a family (Qg(z, -))y Which is available to us
from the theoretical model of the phenomenon and which is supposed to be
large enough to contain the true one. It is not our ambition to test etther f
the phenomenon is Markovian or if the stock of available kernels is large
enough.

We shall also suppose that there exists a measure A on (R, #g) which
dominates all the Q,(x, -) and I1,. Namely

Qo(x, dy) = fo(x, Y)ildy),  Ha(dy) = ge(y)dy.

Then it is clear that

ng/d’ln(xla"'yxn) = Qﬂ(xl)fﬂ(xl’ x2) "'ﬁi(xn—la xn) = Ln(xh cevs Xp, 0) (1)

If (X,), is a homogeneous random walk for every probability P, (iec., X,
is a sum of iid. random variables or, in other words, a homogeneous
Markov chain with independent increments) then f,(x, y) is of the form fy(y
—x) and (1) becomes

Ln(xla X2yeeoy Xy, 0) = QO(xl)fB(xl 'xZ) "‘fﬁ(xn—xn—l)' (2)
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We shall construct the usual SPRT for testing the hypothesis H,: 6
=0, against H,: 8 = 9 Set

Ln(Xls"" Xn; 91)) Qg (X " jﬂ (Xn Xl+l)
Z,:=1 In —-L— In=1 3
n(Ln(Xls'--an;GO) Qﬂo(x ) Z .fﬂo Xn X|+1) ( )

Let b < 0 < a. The test will be constructed in the usual manner, and it
will be denoted by T(b, a):

— if b < Z, < a, continue sampling;

— if Z, < b, stop and accept H, (reject H,);

—if Z, > a, stop and accept H, (reject H,).

,  Denote

t(b, a):=1:=inf {k|Z,¢(b, a)}.

If Po(z < a0) =1 for every 0@, we say that the test is closed.

Concerning the initial distributions [T, the statisticians agree:with the
following two alternatives:

— either suppose that the starting point of the chain is known; then the
first term from (3) becomes equal to 0;

— or construct a different test for every starting point X, (w), substract-
ing the first term from the barriers b, a.

In order to avoid more difficulties, we shall suppose that the starting
point is known. In fact, the practician is interested in finding the transition
kernel of the Markov chain more than in the starting probabilities. It seems
to us that the second problem is not a consistent one unless we suppose that
the chain is stationary; if we do that, the problem of the initial distribution
becomes an analytical one (rather than a statistical one) because the station-
ary distribution, when existing, is given by the transition kernel.

In order to have no more trouble, we have to make another hypothesis:
that the support of the functions y — fy(x, y) does not depend on 6. It is only
a technical supposition made in order not to deal with R-valued
processes. But it seems natural that i L,(X,,...,X,;6,)=0 and
L, (X,,...,X,; 00 # 0 one should reject H,; and if L, (X,,...,X,;0,)#0
but L,(X,,..., X,; 0s) = 0, Hy should be rejected; and if both quantities are
equal to zero, one should reject both H, and H, and perhaps search for
another model.

The problems we shall deal with are:

1) Find sufficient conditions to ensure the closure of the test.

2) Find sufficient conditions under which one can compute — at least
approximately — the OC-function:

X.

OC(9) = Z o(Z;eb,a) for i=1,...,n—1 but Z, <h).
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3) Find sufficient conditions under which one can compute (approxi-
mately) the ASN-function:

ASN(0) = Eg(t) = ), nPy(t = n).
n=1

Remark that if the test is closed we have OC(f,) = 1 — OC(f,), because
OC(#) means the probability of accepting H,, if the true parameter is 6. If 8,
and 6, both fail to be true but OC(f) is small for 8 # 0, the test can still be
applied as a rejection tool.

In general, the class of the Markov chains for which the test T(b, a) is
closed for every b < a is rather small. Here is a counter-example which
points out that even in good cases the test may fail to be closed:

Let X, be a random walk with an absorbing barrier in O; that is, X,: Q
—-{0,1,2,...) and P(X,.,=i+l|X,=0)=8, PX,,,=i-1X,=1)
=1-60ifi#0, but P(X,,, =0X,=0) =1 for every 8¢(0, 1). Here the set
of parameters 1s @ = (0, 1). Let 8, < 0, and construct T(b, a) for testing H,
against H,. Then

Lov (Xyseooy Xoe 0) = 0°(1=0)" = g7 (1 —0)" ™

where d,=card{i<n+1|X;,,—X; =1}, a,=card{i <n+1/X;, =0} and
s, =card {i < n+1]X;,, = X;—1}; of course d,+a,+s, =n.
Thcrefore

0, 1—0, 0, (1—0,) 1-8,
- oo n—d,—a)log - =d | o) __ .

Set t(w):=inf{nX,(w) =0}. Then it is known that 0 <3 = E4(1) < o;
hence Py(t < o0) = 1.'But g, =(r+1—1), 1mplies that n—ag, =1—1 if n+1
27and =nif n<rt;then n>1=d,=d,. If n—>oc it follows that

1 (1—0,) -0,
(dl 60(1—9)( l)log 9) P-as.,

and this implies that, for some b < a, Py(Z,€(b, a) for every n) > 0.
The following proposition is a partial answer to the first question:

ProposiTioN 1. Each of the following two assumptions implies the
closure of the test T(b, a) for every b <0 < a:

L ((X,). Ps) is a homogeneous random walk for every 6.

II. The family (P), is an exponential family in the following sense

(see [3]):
L(X,,..., X,; 8) = C,(0)-exp(D,(0) Kn(Xy,..., X,))
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with C,(0) >0, D,(0) > 0 strictly monotonous and
as-limK,(X,,..., X,) =g(6) (mod Pgy)
lim (b~ log (C,(81)/Ca(B0))(Dn(81) — Dy (80) = c(6)
= lim (a—log(C,(8,)/C (6,)))/(D.(0,)— D,(00)) (mod Pg)  for every 8
and Pg(y(0) # c(0)) = 1.
Proof. I. Il X, i1s a random walk, f(x, y) =f(y—x) and
n—1 fﬂ(Xi+l+X|')_n-_l

Z,= log— = z;.
l'=Zl ./BO(XH-I—'Xi) igl
Then z; are i.id. random variables because X;,;— X, are ii.d.; this means
that Z, is a random walk itself. But for a random walk the following facts
are well known (see for instance [2]):
— If Eg(z;) >0 then limZ, = oo (mod P,).

— Il Eg(zy) <0 then hmZ, = — o0 (mod Pg).

If E¢(z;)=0 but Z; is not identically (mod Py) equal to 0O, then

liminfZ,= —o and limsupZ, = v (mod P,). In all these three cases
Py(Z,€(b, @) for every n) = 0, ic, the test is closed.
If Z, =0, then

Jo, (X2~ Xy) =fao(X2_X1) (mod Py).

This equality further implies that { Jo, # fgo} < (suppfy), which is absurd
because we supposed that all the functions f; have the same support and of
course that 0, # 0, =f, # fo,.

1L

Cn(el)

Py(b<Z,<a)= P,,(b < logE @ )+K,,(D,,(01)—D,,(00)) < a)

b— log (Cu (01 /Cn (60)) a— lOg (Cn(ol)/cn (00)))
= K ,
P( D,0)-D,0) " D,0,)-D,0)

and the last expression tends to O due to our assumptions. "

Remark. The second condition is a highly restrictive one. In fact, the
only examples we know to fulfil it are some random walks. For instance, if
X, @ —Z is a random walk with '

Po(X,;=X,+1)=0 and Py(X,., =X,—1)=1-86,
then
L(X,,...,X,;0)=6"(1—8)"""
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where d, =card {i < n+1|X;,; = X;+1} and Assumptions II are fulfilled
because

L(X,,..., X,; 0) = (1—0)y *exp(d,log(6/(1 —0))).
The choice may be D,(0) = nlog(0/(1—0)), K, =du/n, C,(0) =(1—-6)""". In

this case K, — 0 (mod Py) due to the strong law of large numbers and

. b—1log(C,(8,)/C,(8y)
Poras. him =, 6.)— D, (0o)

. a—1og(C,(0,)/C,(60)) 186 /. 0;(1=60)
= Pg-as. lim =lo lo :
T D,(0,)—D,(6,) #5520y 5
We ignore the question whether there exist also other examples of
exponential families if X, are not necessarily 1.1.d. or random walks.

Usually, when constructing a SPRT, one starts with two risks «, f, and
sets a = log((1—pB)/a) and b = log(B/(1 —a)). After executing the SPRT the
two risks becomes a’ and f#’. One knows that o'+ ' < a + § provided that the
test is closed.

The answer to the second question will be a rather partial one. Wald
gave some approximative formulas to compute OC and ASN provided X,
are iid. random variables. They are not at all easy to compute, Wald’s
approximations are rather difficult to check and, finally, the precision of his
formulas is, from a pragmatical point of view, uncomputable. Ghosh con-
jectured an analogous formula for the general case ([3], p. 132). In the
absence of any proof of his conjecture and for pragmatical reasons, the
present authors have decided to try a completely different approach.

From now on we shall suppose that the process Z, is a Markov chain
itself. It is not clear at all what assumptions to make about the densities
Jo(x, y) to ensure that property, but at least it is clear that if (X,), is a
random walk this is indeed the case.

Suppose that

Po(Z,.,€dylZ, = x) = Qy(x, dy) = g¢(x, y)dy

and that the density g4(x, ¥) is continuous in x for every fixed y.

Let b <0 <a and t(w) = inf {mZ,,(w)¢(b, a}}. Add that Z, =0. The
idea is to discretize the state space of the chain Z, and to approximate it (in
the sense of weak convergence) by some discrete chains (Z,,(n)),, to compute
the OC and ASN functions (OC,, ASN,) for the discrete state Markov chains
and to give some conditions in which they converge to the OC and ASN
functions of the chain.

We shall fix once for ever a parameter 6§ which will be omitted in
notations. For instance, Q(x, dy) means Q,(x, dy).
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Let L:=a—b and let n be a fixed positive integer. Divide the set of real
. ‘ i1 :

numbers in the intervals A ;= (a+l——L, a+iL:,, ieZ. Denote by & the
n n

point a+— L. We shall construct a sequence of transition probabilities by the
n

relations
Qn(x’ '):= Z Q(x’ A:')gél,,() (4)

where ¢, means the point probability measure concentrated on o. The
intuitive signification of these new kernels should be obvious; namely, the
Markov chains (Z,(n)), given by the kernels Q,(x, -) have the sets (£]); as
state spaces and the transition matrices

P(Zj4 () = ENZ;(n) = E1) = Qu (&N, A7)

These Markov chains are approximations of the chain (Z,), in the following
sense:

ProroSITION 2. Ql(x, ) =Q’(x, -) as n tends to infinity for every xeR.

3 k2l

Here “=" means weak convergence and Q'(x, Ay,...,Aj) means the

product of Q by itself j times, that is,
Q(x, A= [...f Li(xy,...,x) Q(x, dx) Q(xy, dx3)...Q(x;_y, dx;). (5)
Proof. If f: R >R is a bounded continuous function, we shall write
Q(x, fyi=J...ff %y, x)Qx, dxy)...Q(x;-y, dx;). (6)
First, let j be equal to 1. Remark that in this case
Qu(x, 1) =[S () Qulx, dy) = Z‘_:f(f.")Q(x, 47) = Q(x, 1),

where f, =) (&)1, But if f is bounded and continuous, lim f, = f and
Lebesgue’s {iominated convergence theorem implies that
imQ,(x,f) =Q(x,f) forevery x, 1ie,  Qu(x,)=Q(x,").
For an arbitrary j, it is enough to check that
lim Q7 (x, ) = Q/(x, f)

for uniformly continuous and bounded functions f: R/ — R (see [1]).
We have

Q/(x, f) = j..._[f(xl,...,xj)q(x, X1)seeor q(Xj-y, X)dxy ... dX;
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and

Q3 (x, f) = Z Z_f(rf,l,-,é?j)Q(x,A?l)Q(iFl, i) Q& A7)

=ZZ ,[ ] (& &) (e, x) (&, %5)...q (&, x))dx; .. dx
i i; 4. Al.j

Therefore
Q4 (x, )—Q(x, /)
<Z Z _[ _[ |f (g X0 q (x5 Xxy0),0 0y q(x5- 1, X)) —

—f(f.la é")Q(x xl)q( i1? ) 9‘1(¢J 1° j)ldxl'-'dx
<f..._[|f(x1,...,xj)llg(x1,..., X)—@p(Xy, ..y X dxy .. dx;+
+Hi NGy X)) —faegs ooy XN @a Xy X dxy L dx = TH]T

where

(xl""axj) = (x xl)q(xb x2)9~"’q(xl—l’ xj)s

Qn(xls- k] J)_Z ZQ(x xl)q(éll’ )

ij

q(f,j ¥ xj)IA;:l(xl)...IA:_.j(xj)
Remark that g, is indeed a probability density because

§---Jendx, ...dx —Z 2 Q0 A7) QU A7) QU A7) =1

J'
and

S 3) = o KA - E) Ly (1) L (3).
il lJ 1 IJ‘

Moreover, f, —f as n tends to infinity, uniformly because f was supposed to
be uniformly continuous. Hence II < {|f—f,|| =0 as n tends to infinity (|||
means the uniform norm).

As regards the first term, remark that limg, = ¢ because xg(x, *) is
continuous, and "
I<|IAIf...Floe—ondx;...dx
But
[--f(e—endx,...dx

=(...[(e—en, dx,...dx;—(...[(e—0@4)_dxj...dx; =0
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implies that
[-..fle—oldxy...dx; =2f...[(e—@n)+ dx;...dx; =0

due to Lebesgue’s dominated convergence theorem as n — oo.
The proof is finished. m

Remark. Qj(x, ) is the distribution of the selection (Z,(n),..., Z;(n))
and Q’(x, -) is one of the (Z,,...,Z;)’s provided that Z, = Zo(n) = x. Then
Proposition 2 implies that, for every positive integer j and b < g,

lim P(Z;(n)e(b, a) for every i <j) = P(Z;e(b, a) for every i < j).

Let
1,() = inf {}Z;(n) (@) ¢(b, a)},  t(w) =inf{j|Z;(w)¢(b, a)}.
Also, let
OC,:=P(Z, (m < b) and OC:= P(Z,<b).
ProrosiTioNn 3. If P(t, < o0) = P(t < o0) =1, then

limOC, = OC.

Proof. Let
p;(n) = P(Z;(n)e(b, a) for i <j but Z;(n

< b),
g;j{(n) = P(Z;(n)e(b, a) for i <j but Z;(n) >

)
) = a),

and
pj=P(Z;e(b,a) for i <j, Z;<b), q; = P(Z;e(b, a) for i <j, Z; > a).
Then p;(n) — p;, q;(n) = q; and the conditions of finiteness imposed on t, and

7 imply that

X ao

Z (pj(n)+qj(n)) = Z (p,--f—q,-) = 1.

ji=1 J

Therefore
Y (pj—pi(Ml+lg;—q;(m)) =2 ((p;—pj(m)+ +(a,—q;(n)+
j=1 j=1

and the last term converges to zero by dominated convergence.

The remark that OC, = ) p;(n) and OC = ) p; ends the proof. =
j=1 i=1
Remark. 1f Z;is a random walk, then Z;(n) are random walks too and
the conditions from the above proposition are satisfied.
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Let us now.study the ASN function:
ASN=E@)= ) jP(x =j).
j=1

But (r=j)=(Z;e(b,a) for i<j but Z;¢(b,a). I we set a;:
= P(Z;e(b, a) for i <j) and a, = 1, then P(r =j) =a;., —a,; hence

ASN= Z j(aj_l—aj) = 1+a1+a2+ e
i=1

J

Let
a;(x):= Q(X, (b, a)), ceey Gy (x) = I I(b.a)(y)aj(y)Q(x’ dy)
and
ASN(x): = i a;(x).
j=0

Of course that ASN becomes now ASN(0). Remark that

aj+ (x) < ”aj” a, (x)

(Il -I! means again the uniform norm)
aj+2(x) = f dj+1(») Q(x, dy) = j f a(z)Q(y, dz) @ (x, dy) < |lajl|||all
(b.a) (b,a) (b,a)

and, in general,
||t + mll < llajll |l @l - (7)

Moreover, a;(x) is a decreasing sequence and 0 < a,(x) < 1.

Lemma. 1° If there exists a j such that |jaj|| <1, then ASN(x) < oo for
every x and

ASN(x) < (14a; (x)+ ... + ;)1 —llaj. (8)
2 If sup@Q(x, (b, a)) < 1, then ASN(x) < co.

Proof. Let j be an integer number such that [|a;}} < 1. Then inequalities
(7) become

Najm+ill < Najll™ llaill
and everything becomes obvious. -

ProrosiTioN 4. 1° Let (Z;); be a random walk such that P(Z;,,—
—Z) '=F, F#g,. Let Q(x,A)=F(A—x) be the kernel of Z. Then
ASN(x) < oc for every x.
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2 Let ASN,:=E(z,). Suppose also that F =g-A where A is the

Lebesque measure on the real line and ¢ is a continuous probability density.
Then ASN, — ASN as n — oo.

Proof. 1° In this case Q(x,f)=[f(x+y)dF(y) and a,(x)
= F((b—x, a—x)),

a;(x) = P(Z;e(b—x, a—x) for i <)
= [ Qlx,dx)) | Q(x,dxy)... | Q(x;_y, dx)

(b,a) (b,a) (b.a)

At the same time a,(x) = P(x+Z, €(b, a)) and

Ay (x) = j I o (x+y) aj(x+y) dF (). )
As we have mentioned before, one knows that
liminfZ; = — o0 or limsupZ; = + 0 as.. (10)
Find: =

This means that a;(x) tends to zero for every x as r tends to infinity.
According to the previous lemma, the only thing one must check is that
there exists a j such that |jaj| < 1.

Suppose ad absurdum that ||laj| = 1 for every integer j. Then for every
integer j and, for every 4 > 0 except an arbitrarily small one there exists a

real number x;, such that a;(x;,;) > 1—4. In particular, for every n there
exists an x, such that

P(Z;e(b~x,, a—x,) for j<n)>1-1/2"

Let A,:= {xla,(x) > 1—1/2"}; of course 4,|@. One must study two cases:

a) 'I'he support of F is unbounded. Then ||a,|| < 1. Indeed, if ||a,|| = 1,
there exists a sequence x, such that a,(x,)>1—-1/2". But y>a—
—b=a, (x,+y) < 1/2"; hence it turns out that the set {x,n > ny} is bounded
for some n, and the Borel-Cantelli lemma says that F (lim inf(b—x,, a—x,))
= 1, which contradicts the unboundedness of the support of F. Now the 1° is
a simple consequence of the previous lemma 2°.

b) The support of F is compact. Then A, < A; < supp(a,), which is
also compact, hence {x,n > 1} is bounded and we can pick up a convergent
subsequence (x, )J which converges to some x. For every fixed j and arbitrary
m we have

(Z €b—xp
P(Z,eb—x

a=x,, ) for i <))
=1-1/20*m

a—x,.j+m),i$j+m)=a "J'+m)/

Ai+m’ "'j+n|(a
An easy application of the Borel-Cantelli lemma gives (for m tending to

infinity):
P(a;|Z,,‘_ e(b—x

e @— Xy ), i <j for m>=some my(w)) =1,
_:,+n| j+m
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which further implies that
P(Z,,..e[b—x’, a—x'"] for every i<j)=1 for every j,

and this equality 1s impossible because 1t contradicts (10). We must admit
that there exists a j such that |laj| < 1.

2 If F =g-4and g is a continuous density, then Q(x, dy) = o(y—x)dy
and x—g{y—x) is continuous; morecover, Q,(x, A} = F,(4—x) with F,
=) F(A,f')a:? and

aln(x) = j Qn(xa dy)

(b,a)

= Fn((b_xs a_x))s"',aj+1,n(x) = j aj.n(y)Qn(xs d}’)

(b.a)

We see that lima; ,(x) = a;(x) for every positive integer j according to

n

Proposition 2. We claim now that the convergence is uniform in x for every
j. Indeed, if j =1,

lay —ay Jll = sup|F = F,|((b—x, a—x)) < 2sup F (4])

and the last quantity converges to (0 because F is absolutely continuous with
respect to the Lebesgue measure A. For an arbitrary j observe that

||aj+ 1 3+ l,n“ = ] j a; dF*Ex_ j djn an*Ex]
(b,a) (b,a)
< j la;—a; | dF*e, + j a; . d|Fxe, — F %,
(b,a) (b,a)

< ”aj—aj.n” +lla; —ayll.
The last inequality shows, by recurrence, that limjla;,; —a;4, .l =0 pro-
n
vided that lim|la;—a;l| = 0.
n

Let ¢ > 0 be arbitrarily small and j such that |laj]| <e.
Also, let ny be large enough to ensure that n = ny =||g; |l <e. Then

|ASN(x) = ASN, (x)] < } a;(x)=a;a(x)|+ } |a:(x)—a;,(x)
0

Jjt+1

™=

< 2 la; (x)— a;,, (x)} + (2e/(1 —s))iio (a;(x)+a; ,(x)).
Therefore
lim suplASN(x) ~ ASN, (3] < 12_8 . s:io (8 () +a; (%)) < E'_Zli_ssﬂx_)
and we are done because ¢ is arbitrary. .

28 — Banach Center t. 16
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It turns out that we can approximate ASN by ASN, and OC by OC, if
the assumptions from the above proposition are fulfilled. The precision of the
approximation procedure must be studied according to every particular case.

Now if Z,=0, Z,,...,Z, is a Markov chain, b <0 <a and 1(w)
= inf{j|Z;¢(b, a)} we can construct the process

X;(w) if i<1t(w),
Yw=<b if i>z1(w) and Z,,,(w) <D,
a if i21t(w) and Z,,,(w) > a.
ProrosiTioN 5. (Y)); is a Markov chain and b, a are absorbing states.

Proof. The proof relies on the following lemma. n

LeEmMMa. Let (X,), be a Markor chain, X,. Q > E, and (E, #) an
arbitrary measurable space. Let Ae #, 5¢ E and t(w):=inf (n|X,eA]. Then
the process Y, = X, 1,.,+6 1,5, is a Markov chain having (E\A)Lé as a
state space.

Proof of the lemma. Observe that {1t >n! =(X,¢4,,...,X,¢4,)
= (Y, # &) belongs both to the o-algebra generated by X,,..., X, and to the
one generated by Y,. On the other hand, if X, Y. Q —(E, #) are two
arbitrary random variables and A (X =7Y), Aca(X)na(Y), it is easy to
prove that for every integrable random variable f: Q@ - R we have the
equality

E(fIX)1,=E(fIY)1,. (11)

Let B be a measurable set from E U4, Then two cases are possible:
either Be# and 6¢B, or B=B" ud, B c.#% and d¢B'. Therefore it is
sufficient to compute P(Y,,,€B|Y;,...,Y,) in the first case and P(Y,.,
=4d|Y,,..., Y,) in the second. If §¢ B, we have:

P(Yor1€BlYy,...., ) =P(Y,. 1 €B, Y, #0|Y,,.... 1)
=P(Y,r1€BIYy, ... V) Iy 28 = P(X,1 1 €B|Y\, ..., V) Ly 24
= P(Xn+1EBIXLs---an)I(Y,,;ta) = Q(X,, B) I(Y,,H)-
In the last but one equality we used (11) with A = (¥, #6) =(1 > n),
(Xi,..0, Xp) =X, Yi=(Y,,...,7): Q-FE" Of course A (X, = Y,,..., X,
=Y.

Moreover
P(Y,,, =90lY,.... 1)

=P(Yye, =06, Y,=0|Y,....Y)+P(Y,.1 =96, Y, #5Y,...1).
But
P(Yoiy =0, Y, #9Y,,....Y)) = P(Xpr €d(Yy,..., V) Iy 24
=P(X, €4|Xy,..., X)) I(Y,,aea) = Q(X,, 4) I(Y,,#J) =Q(Y,, 9) I(Y,,;eay
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and
P(Yn+1 = 5' Yl"' .y }[n) I(Y"=6l == I(Y"=(’)'
In short
Q(Y,, B) I(Yn*'” if deB,
Q(YIH B’UA) I(Y"$6)+I(Y"=l§) if B == B’U5,
that is, Y, 1s a Markov chain. Its kernel is

Q(y, B 1,.(y if 6¢B,
Q(y,B’uA)IAc(y)+1(,,,(y) if B=BuUj.

To come back to our case, the kernel of Y is

F(x5 y)=:P(Yn+l gyIYnzx)

P(Y,,,eB|Y,,.... Y) ={

I[b.w)(y) lf X = b,
= F(x: ,V) I[D.a)(y)+1[a,co)(y) lf b <x<a,
Iia. ) () if x=a
where F(xa ,V) = Q(xs (— oo, }’])
The proof ts finished. .

As a result of the discretization made in Proposition 2 we have obtained
in fact a sequence of Markov chains Z(n) having the set E, =:(&]); as state
spaces. Being discrete, their kernels are the matrices g;;(n) = Q (&7, 47). After
applying the transformations pointed out before Proposition 5, we obtain a
sequence of Markov chains with two absorbing states b and a and n—1
transient states ¢§,...,&5_y; b=, a=¢,. Let P, be their transition ma-
trices, P, =(p;;(n)); ;<n their expression being:

[ &; if i=0o0ri=n,

q;;(n) il i,j<n—-1,i,j>=1,
pij(n) =5 Z gi;(n) if j=0,1<i<n-1,

i<o0

2 4i(m if j=n1<i<n-1.

LiZn

The matrix P, max be partitioned as follows:

& 1 S a1 n
g1 0 0.... 0 0
£ P1oln) pia(m  pra(m) ... .. Pia-1(n) | P1,a(n)
& Paol(n) p2a(n)  pya(n) .. ... Pan-1(n) | P2.a(n)
P : T, = (Qij(n))i,jzl :
‘f:—l Pn- l,O(n) Pn- 1,1 (n) """ Pn- 1,n— 1(") Pn- l.u(n)

g 0 o ... 0 1
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The functions OC, may be interpreted as the probabilities that the chain
is absorbed by the state b, and ASN, as the expected time up to the
absorption. Their expressions are known from the theory of finite Markov
chains. Namely, since we supposed that Y,;(n) =0 for every n, we have

P(Y,(n)=¢&N=0Q(0, 47 for i=1,...,n—1,
P(Y,(n) = b) = Q(0, (— 0, b)),
P(Y,(n) = a) = Q(0, [a, 0)).
Collect the first n—1 probabilities in a row vector [1,,. Also let V, be the
column vector ¥,(i) = p;,o(n), i =1,...,n—1, let I, be the n—1 dimensional

unity matrix and let S, be an (n—1)-dimensional column vector filled with
I’s. Then.

ProrosiTiON 6.
Ocnznn(ln—n)_le ASNvlznn(In—']:l)_lSn'

The proof is given for instance in [4]. Moreover, the moments of 7, are
computable by a recurrence formula ([4]) and, at least in the case of a
random walk with good density of transition, they converge to the moments
of 7.
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