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In this paper we study the trace mapping for differentials of (complex) analytic
algebras, which has already been used in [4] and {5]. We give new proofs of
essential results in the papers [17], [18], [19] and [20] by E. Platte, moreover
we generalize some of these results.

The base field is assumed to be the field C of complex numbers only for
clearness and simplicity. But it is important to notice that the characteristic of
the field is zero.

(1) Notations. By a complex analytic algebra A we understand a residue
algebra of a formal or convergent power series algebra C ({(X,, ..., X)) over
C. In the following A 1is additionally assumed to be reduced and pure
dimensional. @, = (€', d) denotes the complex of Kdihler or holomorphic
differentials, and M’, = Q(A)® ,&, = (M, d) denotes the complex of mero-
morphic differentials. €', is the exterior algebra of the universally finite
differential module D.(4) = Q% of A, M’, is the exterior algebra of the free
module Q (4)® ,Q4 = MY over the total quotient ring Q (4) of A. The rank of
Q%4, ie. the rank of M) is dim 4. See also [13] and [23].

The kernel of the canonical complex homomorphism ), — M, is the
torsion subcomplex t€2’, of Q,. We always identify ,: = @ ,/t&, with its image
in M, and hence as a subcomplex and a subalgebra of M.

(2) The trace mapping. Let A > B be a finite extension of reduced
pure-d-dimensional analytic C-algebras with a well defined rank r, i.e. Q(B) 1s
a free extension of Q(A) with rank r. Then My = Q (B)® 44, M, and the trace
mapping Sp: Q(B) — Q(A) induces an M ,-linear trace mapping Sp® M’
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from M}, to M, which we also denote by
Spi: My - M.

Obviously Sp4|M’, = rid,,. This trace mapping commutes with the exterior
derivatives d on M’, and Mj. For this it is sufficient to verify that the diagram

Q(B)> M;

Spl lSp

Q) M,
is commutative. This may be done explicitly for elements ye Q(B) by using
representations yx, = Y ,d,, X,, dx, = Y, w,, x, with a Q(4)-base x,, ..., x,

of Q (B) and coeflicients a,, € @ (4), ,, € M} (see also [5] and the more general
discussions in [7], § 4 and [15], § 4). In the convergent case one can use
alternatively a finite (ramified) covering Y — X of complex space germs which
represents the extension A — B. For a given weM{ one removes the
ramification points of the covering and the singular points of w, the problem is
then reduced to the trivial case of a holomorphic form and a finite unramified
covering.

We remark that for peZ the canonical diagram
Mj S, MP,
! !
Homy, (M5™%, M) —— Homg (M%7, M%)

is commutative, where the homomorphism of the bottom row is the com-
position of the trace mapping on M%§ and the restriction to M4 P,

As a first application of the existence of the trace mapping we prove the
following result which answers a question raised by G. Scheja and has been
proved for the first time by E. Platte.

(3) ProrosiTioN (Platte [18]). Let P:=C{{(X,,..., X,>)> and fem?
a function which defines an isolated singularity. Then the degree of f over
Q:=Coff6X,, ..., of/0X,)) equals the rank of P over Q and has hence the

maximal value.

Proof. Let 0; = d/0X, = (dX)* be the partial derivations and A4 the
normalization of the hypersurface algebra

QLN =QLf1=CC,f, ... 0. 1.
We have to show that P = A. From
w;:= Sph (X)) = dSpA(X) e Bl = QYH0L = M}
and the equality df = },;0,f dX ;e 2 < Q} we get with the trace mapping
rdf =Y (0,f)w,;€ @4 < Q},
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where r > 1 is the rank of P over A. Applying the linear forms ¢; we get
rajf= Z(aif)(ajwi)'

Since d, f, ..., 0,/ generate minimally the P-ideal } ; Pd,f the matrix (1/r)(d; w,)
concides modulo m, with the identity matrix. In particular (¢;w)) is invertible
and w,, ..., w, is a P-base of Q. Therefore P is an unramified finite extension
of A, and this means P = A.

We remark that in the proof of Proposition (3) besides the finiteness of
P over A we only used the facts that 4 is normal and contains the function
ftogether with its partial derivatives ¢, f, ..., d,fand that 9, f, ..., 0,f generate
minimally a P-ideal. The last condition means (by Zariski’s lemma, see [14]),
that there is no coordinate system X, ..., X, for P, such that fis independent
of one of the functions X,.

In the situation of Proposition (3) the rank of P over @, i.c. the degree of
fover Q is equal to the Milnor number u of the singularity P/Pf. The Jacobian
of the extension Q — P is the Hesse determinant Hesse (/) = Det (0”f/0X;0X ).
From a representation of/0X; =) a;; X, with a,;c P one gets

Hesse (f) = uDet (a;) mod (3f/8X,, ..., of/dX.),

cf. [24]. Furthermore we mention that the minimal equation of the function
fover CL0,f, ..., 0,f>) is also an equation of integral dependence of f over
the ideal ) ;(0,f) P generated by its partial derivatives, cf. [22].

(4) Regular and extendable differential forms. In general the trace Sp4:
My — M, doesn’t map G} = Qp/tQ; into &, = 2, /tQ’,. But the complexes of
regular resp. extendable differential forms which we shall define now are
invariant under the trace mapping. (Sp (2;) < @', holds in the special case, that
A — B is a finite free extension, cf. for example [7], § 4.)

Let A be pure-d-dimensional and reduced and

P—o A, P:=C{X,, ..., XD,

a noetherian normalization of A. Then we get a subcomplex 4’ = (4}, d} of
(M, d) by setting

A= {weM: Spi(w A @4 ) < Q4) = Hom, (4%, ),

ieZ. Obviously we have A4 = {we M';: w A Q4 ' < 4%} =~ Hom ,(Q% %, 4%).
The independence of A%, icZ, from the chosen normalization P — 4 is
a consequence of this independence for the case i = d, which is proved e.g. in
[12]. There is a canonical inclusion €, < 4°,. We call 4°, the complex of regular
differential forms of A. This complex can be constructed (with considerably
more effort) for arbitrary (not necessarily reduced) analytic algebras, see [8].
For normal A4 we have simply 47, = (<)** because in this case both complexes
are A-reflexive and coincide in codimension < 1.
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In the convergent case the complex [, of extendable differential forms may
be defined as (n, £%),. where n: X" = X is a desingularization of the complex
space germ X = (X, x) associated to A. I'%; 1s also the module of locally square
integrable meromorphic differential forms in degree p, pe Z (with the nor-
malization of 4 as I'9).

In the general case one has to replace X’ by a desingularization of Spec 4.
In the convergent case both definitions give the same complex. Obviously
I can be identified with a subcomplex of 47, and is even an algebra (whereas
in general A’ isn’t). Moreover I}, = I'};.,, where A’ is the normalization of A.
For details see [11]. cf. also [4].

(5) ProrosiTioN. Let A — B be a finite extension of pure-d-dimensional
analytic algebras with a well defined rank. Then Sph(dy) < 43, and
Sp2(I'y) = I'’y. So there is a canonical diagram

SPA

FA—’FB—')FA
| |

sp4
AB AA’

where the composition of the mappings in the Lop row is the multiplication with

r.=rank,B. If A is normal the inclusion G’y — Qp extends to an inclusion
AA —-> AB'

Proof. First we consider regular d-forms. By definition we have the

equalities 45 = CRdt, A ... Adtyand A% = Cfdt, A ... A di, with a system of
parameters f,, ..., {, in A and the Dedekind complementary modules C§ resp.
# associated to the finite extensions P:= C{{t,, ..., t;)> - B resp. P = A.

By the transitivity of the trace Cp is mapped by the trace into C7 and
hence A% into A%. For regular p-forms, pe Z, the assertion follows from the
commutative diagram

A3 > A
I H

Hom(2%™ 7.Sp5)

Hom, (24P, 42) —————— Hom ,(Q4° ", 4%) —» Hom ,(Q% 7, 4%),

which is obtained from the case p = d just proved. The inclusion 4’ — 4% is
obvious if A and B are both normal. But in general A3 < Ay, where B’ is the
normalization of B.

Now we consider extendable differential forms. For functions the assertion
is clear, because the trace of entire elements is again entire.

In the convergent case the homomorphism 4 — B is associated to a finite
covering Y — X of complex spaces. To prove that for any locally square
integrable differential form w on Y the trace form Sp (w) is again locally square
integrable on X it is sufficient to consider d-forms. But outside a suitable
exceptional set S < X (depending on w) the covering Y — X is an unramified
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covering Y' — X', X':= X —§, of complex manifolds such that w is holomorp-
hic on Y’ and square integrable. Then it is trivial that the form Sp (@) on X’ is
square integrable too. In the general case let X := Spec 4, Y:= Spec B and n:
X - X a desingularization. We consider the commutative diagram

(X X X Y)rcd - Y
l !

X = X,

An extendable differential form w on Y has an extendable and therefore regular
pull-back @ on (X x 4 Y),.4- Hence Sp (@) = n* Sp(w) is again regular on X and
therefore holomorphic on X.

(6) CorOLLARY. In the situation of Proposition (5) for peZ. the A-module
'Y is a direct summand of I'§, and the vector space H? (I',) is a direct summand of
HP(I'y). If A is normal A% is a direct A-summand of A§ and HP (") a direct
summand of HP (Ay).

Proof. The assertions follow from the fact that the composition of the
complex homomorphism I, — I'y and Sp: I'y = I'}; resp. (in the normal case)
the composition of A, —+ Ay and Sp: 4y - A, i1s the multiplication with
rank , B.

As a special case of Corollary (6) let A be normal and B smooth. Then
A5 = (Q5)** is a Macaulay module for every peZ because it is a direct

summand of 4§ = B?). Furthermore B* = Hom , (B, A) is isomorphic to B as
a reflexive B-module of rank 1. Therefore the direct A-summand

(25)* = (QR)*** of B+ ~ B is a Macaulay module too. As a consequence
one gets for example Ext,(Q4, A)=0 for all i=1,...,5—2, s:=co-
dim (sing A) (and especially the rigidity of 4 if s > 3), cf. [1], 16.E and [17].

(7) CoroLLARY. Let A — B be a nondegenerate extension of analytic

algebras (i.e. dim B = dim A+dim B/m B) with A normal and B reduced and
pure dimensional. If I'§ = A§ for some peZ then also I', = A%.

Proof. If the elements f,, ..., f,,€ B form a system of parameters in the fibre
B/m, B the algebra B is a finite extension of A" := A {{f,, ..., fo>. By (5) we
have I'f. = Sp&.(I'f) = Sph. (4§) = 4%.. Because of the formula

Mo = A5 Sy Sy DL A A AT

and the analogous one for I'f§, we get I'} = 45§.

We remark that the equality I'j = 4% always holds if p<
codim (sing B)—2, cf. [3].

(8) CoroLLARY. Let A — B be a nondegenerate extension of normal analytic
algebras with IT'y = AL. If AL(= (2Y)**) is free then A is smooth.

10 — Banach Center t. 26, ¢z, 2
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Proof. By (7) 'y = A} is free. The result now follows from the following
criterion for smoothness: If A is reduced and pure dimensional and if 'Y is free as
an A-module then A is smooth, cf. [10], [11].

Corollary (8) is a partial generalization of a result in [19], where Q} is
assumed to be reflexive.

(9) CoroLLARY. For a quasihomogeneous normal analytic algebra B the
canonical homomorphism

Qp/my Qp > Ap/my Ap

is injective.
Proof. Let f,, ..., f; be a homogeneous system of parameters in B and

A the algebra C{{{f,, ..., f;>> € B. By ¢ we denote the Euler derivations and
the corresponding linear forms on the modules of differentials too. The
diagram

Q- Qf - 4} L. 3¥ol1

5] 8] 12 3

A > B =B34
is commutative with &(Qf) =mgz. So J induces an isomorphism §:
Qi/my Q4 - my/mi. The B-linear form §: A3 — B isn’t surjective, otherwise

Spod = doSp and hence é: QA — A would be surjective too. Therefore
& induces a homomorphism &: A}/myz A} > m ,,/mz. The commutative diagram

gg/mBQg AB/mB

N

"'B/nlﬂ

gives now the assertion.

(10) CororrLary (Hochster [6]). Let B be a quasi-homogeneous normal
analytic algebra. If A} (= (25)*) is free then B is smooth.

Proof. By (9) the minimal number of generators of the B-module Qj is at
most the minimal number of generators of Aj. By assumption this is
d:=dim B. But Q} is a module of rank d, so it is free.

Corollary (9) answers a question raised by E. Platte in [20], Rem. 2.5.
A further proof of (10) is given in [16].

(11) Nonramification. Related to the considerations above is the question
whether for a finite extension A — B the property of being unramified can be
characterized with the help of regular or extendable differentials instead by
using Kihler differentials. More precisely: Let A — B be a finite extension of
normal analytic algebras. By a classical result (which we have used before)
the equality A =B holds if and only if the canonical homomorphism
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B® QL — Q} is surjective. {s it possible to replace (2}, Q1) by (4%, 4}) or
(I', I'y)? In general this seems to be a difficult problem. The surjectivity of
B®, 4% — 4} or B® ;' — I'} implies that the extension 4 — B is unrami-
fied in codimension 1, because the modules 4%, I'} and Q) resp. 44, I'; and
Q4 coincide for the nonsingular locus of A resp. B. Let us assume that 4% is
a free A-module. Then conversely the mapping B ® , 4% — 4j is surjective if
the extension A — B is unramified in codimension 1 because then the two
reflexive B-modules B® , 44 and Ap coincide in codimension 1. A positive
answer to our question would imply that A has no strict extensions
unramified in codimension 1 (if A} is free). So in the case dim 4 =2 the
algebra 4 would be pure and hence smooth using a result of Flenner [2].
This would solve the Zariski-Lipman problem in dimension 2.
Here we prove:

(12) Let A — B be a finite extension of normal analytic algebras. Then
we have:

(i) If B® 44— A} (resp. B® ,I'y = I'}) is surjective and if
Qp/mgQp— Ag/mydy  (resp. Qp/myQp — I'y/my )

is injective (which by (9) holds if B is quasihomogeneous) then A = B.
(i) If Bydi— Ay (resp. B [y — T'y) is surjective and if A is
quasihomogeneous then A = B.

Proof. We treat the case of regular differential forms. The proof for
extendable forms runs along the same lines. From the surjectivity of
B® A} — A} one deduces the surjectivity of A4/m AL — 43/myz4} and the
equality myAp = mg44. Because of Sp(mg) =m, the trace induces by
Theorem (5) a mapping di/mgdl— AY/m, 45 which is up to the factor
rank , B left inverse to the first one and therefore invertible.

To prove (i) we consider the commutative diagram

n, — AlY/m, A}
! l
my — my/mj = Qf/m,Q} - Aj/my A}
sp 15p
m » Ay/m A}

and get kernSpcmj. It follows my=m, +kernSp=m, B+mj and
my=m,B, ie. A=B.

The case (ii) can be reduced to the case (i): Without loss of generality
we may assume that 4 and B are complete. The Euler derivation & of
A can be extended to a derivation of B because the A-linear form A} - A4
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corresponding to & defines a B-linear form on Af=(B® , A)/t(B®  4L).
(The extendability of & follows already from the property that the extension
A — B is unramified in codimension 1.) The result (2.14) in [25] implies that
B is quasihomogeneous, and part (i) can be applied.
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