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This paper is a review of a work done in collaboration with C. Chen and G. Schmidt [1].
Strange attractors in two-dimensional mappings are revisited. It is demonstrated that as the
Jacobian tends to unity, strange attractors of periods 1, 2, 4... are extinguished one by one at
critical Jacobian values. The scenario is attributed to a scquence of hcteroclinic crises between
invariant manifolds of the period doubling set. Scaling properties of crises are accounted for by
renormalization theory. It is shown that there is a single relevant dissipative eigendirection of
the period doubling operator emanating from the Hamiltonian fixed point map, having the
eigenvalue 2.

Introduction

Since the discovery of universality in the period doubling scenario by
Feigenbaum [2], the period doubling route to chaos has been one of the
most studied nonlinear phenomena. Universality implies that scaling proper-
ties of the period doubling sequence are quantitatively the same for large
classes of systems. One important universality class is represented by one-
dimensional maps with a single quadratic maximum and negative Schwarz-
ian derivative (for a review see [3]). An example of such systems is the
quadratic map x,,, = 1 — Kx?, where K is sometimes called the nonlinearity
parameter. By our increasing the parameter K, an originally stable fixed
point becomes unstable and bifurcates into a stable period-2 cycle. Then this
cycle- destabilizes through bifurcation, and so on, the system undergoes an
infinite sequence of period doubling bifurcations. Beyond the limiting state
where a period-2® orbit is born, chaotic regions can be observed. These are
interrupted by periodic windows, i.e. regions where stable periodic orbits live.
The chaotic attractor consists, as a coarse grained feature, of 2" pieces, which
are visited by the iteration in a periodic manner [4]. While the nonlinearity
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64 A NEW SCENARIO IN DISSIPATIVE SYSTEMS

parameter is further increased, the atractor grows in size and its pieces merge
sequentially. The pieces of the period-2" attractor merge pairwise, resulting in
a 2"~ '-piece attractor. When this happens, the 2"-th image of the maximum
of the map falls onto the unstable period-2"~! orbit which was originally
born via period doubling bifurcation. (We mention that the existence of an
absolutely continuous invariant measure in such cases follows from a more
general theorem [3].) At the end of the inverse bifurcation sequence of
chaotic attractors, there is a one-piece attractor. It disintegrates at a critical
parameter value K, and the iteration is driven to another attractor, which is
at infinity in the case of the quadratic map. The bifurcation parameter values
scale in a universal way. No matter which is the particular form of the map
with a quadratic maximum and exhibiting the above scenario, if the bifurca-
tion 2"~ ! - 2" and the inverse bifurcation 2" —»2"! occurs at K, and K,,
respectively, then the bifurcation parameters obey (K,_; —K)/(K,—K,+1)
—o0r and (K,-;—K)/(K,—K,+,) 26r. Here 6p =4.669... is a universal
number. Both K, and K, accumulate at the same point, K, = K.
Besides one-dimensional maps, also a large family of area-contracting
two-dimensional maps exhibit the period doubling scenario [6]. The asymp-
totic scaling properties of such systems coincide with those of one-dimen-
sional maps. Some nonlinear dissipative differential equations as the R&ssler-
[7] and Lorenz-equations [8] also seem to belong to the same universality

class in particular parameter ranges. .
Hamiltonian flows with three phase space dimensions correspond to

area-preserving maps of the plane, that is, maps with Jacobian one (see [9]
for a review). Such maps, depending on the initial condition, exhibit periodic,
quasiperiodic, or chaotic orbits. A periodic orbit can be stable or unstable.
It often occurs that a .stable orbit becomes unstable due to change in
the nonlinearity parameter and also gives birth to a stable orbit
with twice the periodicity. In case of an infinite sequence of period doubling
bifurcations the limiting state exhibits chaotic behavior in the same neighbor-
hood of the plane, or, the iteration is driven away to infinity. The parameters
K, (1) where the period doubling bifurcations occur — the argument 1 refers
to the unit Jacobian of the map — accumulate at K (1). In case of analytic
maps, which we restrict our attention to, the convergence is geometric with
the universal rate 65 = 8.72... [10]-[15].

A major difference between the one-dimensional and the Hamiltonian
scenario is that the former exhibits an inverse bifurcation sequence in the
chaotic region, whereas the inverse sequence is absent in Hamiltonian
systems. We address the question, what is the fate of strange attractors in a
dissipative two-dimensional map as the Hamiltonian limit is approached. It
turns out that for a large family of maps the region in parameter space where
strange attractors live shrinks gradually to zero. Numerical results are
presented first, which then are explained by means of renormalization theory.
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Disappearance of strange attractors

For the sake of simplicity we first consider maps with constant Jacobian
determinant and shall return to the question of nonuniform Jacobians later
on. With the Jacobian becoming larger an increasing number of basins
coexists in different parts of the plane. We restrict, therefore, our attention to
the continuation of the basin of attraction of the originally stable fixed point,
the source of the bifurcation sequence we study.

Recent numerical investigation of the dissipative standard map by
Schmidt and Wang [16] showed that when the Jacobian determinant of the
map was increased, the inverse bifurcation sequence became less and less
complete. In other words, strange attractors with low periodicity could not
be observed any more for large Jacobians, while strange attractors with
higher periodicities were stilll present. The disappearance of the period-1
strange attractor has also been demonstrated by Tél [17] on the Lozi map
for large negative Jacobians. We studied numerically iterations of the type

x'=f(K, x)=Jy,
y'=x=f(K, x),

the Jacobian of which is J. We considered maps with f(K, x) = — Kx—(1
+K)x? and f(K, x) = Ksinx; the following description virtually fits both
cases. The only difference is that in the case of the sine map the iteration
does not go out to infinity, whereas it may in the quadratic mapping for K
large. The regions in the K-J plane where strange attractors born out of the
period doubling sequence can be found are shown in Fig. 1. The K axis is

(1)

K—K_|J)}

J 1

Fig. 1. Regions where strange attractors -of periods 1, 2, 4, ... were observed. Inset displays a
magnification of part of the diagram. For J > J, no period-2" chaos is present within the
original basin of attraction. The basin is destroyed beyond the K (J) curve
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66 A NEW SCENARIO IN DISSIPATIVE SYSTEMS

rescaled in the way that K (J) is a straight line, representing the accumula-
tion of the bifurcations. In the triangular shaped region labeled by p a
strange attractor of period p = 2" can be seen, as a gross feature. A finer
resolution would reveal the existence of stable orbits and periodic chaos of
periods larger than p, as e.g. period 3p, in small regions within the triangle.
Beyond the upper envelope, K. (J), of the triangles the attractor born out of
the period doubling set is destroyed; in the case of the quadratic map the
iteration is driven, in general, towards infinity. A triangle labeled by 2"
extends to the one-dimensional limit, J =0, the edge there forming the
interval (K,, K,_;) where the 2"-piece chaotic band lives (for n =0 the
interval is (Ko, K,(0)). The triangle, however, does not stretch to J = 1, but it
terminates at a J, < 1. In other words, J, is the highest possible Jacobian
‘where the period-2" strange attractor can exist. We find that the series of
J,—s increases monotonically with n and seems to converge towards J,, = 1.
Furthermore, the approximate relation (J,)2 = J,_, is found, thus the effec-
tive Jacobian J 4= (J,)°, p = 2" is virtually independent of n.

. o5
18 K.103) 275
K

Fig. 2. The projection of the attractor of the Hénon map to the x axis as a function of the
nonlinearity parameter (a) J = 0.3: there is one-piece chaotic attractor; (b) J = \/(E: no one-

piece chaos, instead, an escaping iteration can be seen at'Kc(./0.3); (c) J =./0.3: the lower
piece of (b) enlarged

We illustrate the disappearance of the period-1 strange attractor on the
example of the Hénon map (x'=1—Kx*—y,y =Jx). On Fig. 2a the
projection of the attractor to the x axis at J=0.3 is displayed. The
parameter K scans first through the region of bifurcations, then strange
attractors are explored. The period-1 chaotic attractor is also present. If the
parameter is increased beyond a critical value, K.(J), the attractor is
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destroyed and the iteration is driven away from the neighborhood. Figure 2b

shows the attractor for \[f and varying K. It is apparent that the chaotic
attractor is destroyed at Kc(\/j ) while still having two pieces, and the one-
piece attractor is absent. An enlargement and reflection of the lower piece of
the attractor resulted in Fig. 2c. Its similarity to Fig. 2a is manifest. At some
K values there are stepwise changes in the size of the chaotic attractor, which
are due to crises [18]. Also, lighter and darker spots can be distinguished

0,9
X
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K
Fig. 2b
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X
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within the attractor, indicating regions visited with lower and higher prob-
ability, respectively. All these features seem to appear repeatedly for J

and \/7

Scaling of crises

The sequential disappearance of strange attractors is a consequence of
heteroclinic crises as described in the followings. Beyond the line K, (J), the
period-2" orbit of the main period doubling sequence becomes unstable and
possesses a stable and unstable manifold. A manifold can intersect other
manifolds of opposite stability. Depending on whether the intersecting mani-
folds belong to the same or a different periodic orbit, the intersection is
called homoclinic or heteroclinic, respectively. Let us assume that the orbit of
period 2"~ ! is unstable. As shown by Holmes and Whitley [19], the unstable
manifold of period 2"~ ! always intersects the stable manifold of its daughter
orbit of period 2". If, however, the period-2" orbit becomes unstable, its
unstable manifold does not necessarily cross the stable manifold of period

J K=KoolJ)

0,
2—+1

L—=2

4L—8

24

-0,05

~ 4
-
o

Fig. 3



G. GYORGYI 69

2"=1 This kind of heteroclinic intersection develops if a line is crossed in the
parameter plane K-J, as displayed in Fig. 3. Beyond the curve h,_, ,, the
unstable manifold of period 2" intersects the stable one of period 2" !. On
the curve h,_, , heteroclinic tangency, i.e., crisis [18], can be observed, below
it the manifolds do not contact. At J =0 h,_, , starts at K,, where 2" bands
merge into 2"~ ! bands, and for J =1 it winds up in K, (1), where the
period-2" elliptic orbit bifurcates into the period-2"*! orbit. The curve h, q
marks the crisis between the unstable manifold of the fixed point which gave
birth to the period doubling sequence, and the stable manifold of another
unstable fixed point. (This stable manifold can be thought of as the boundary
of the basin of attraction for small J) A schematic representation of what
happens if h,_, , is crossed is given in Fig. 4.

Fig. 4. Simplified scheme of stable (S) and unstable (U) manifolds of periodic points belonging to

period-2""! and -2" unstable orbits. Below h,_, ,, the unstable manifold of period-2" does not

cross the stable one of period 2"~!, whereas beyond h,_,, the intersection takes place (see
dashed line)

Heteroclinic intersections strongly influence the dynamics. An unstable
manifold of a periodic orbit acts as attractor, and the iteration is driven
towards it along the stable directions. If, however, the unstable manifold
intersects a stable manifold of another unstable periodic orbit, the iteration
will be driven towards the unstable manifold of the latter. If there are
heteroclinic contacts the other way about, too, that is, the second unstable
manifold intersects the first stable one, then this provides a mechanism for
reinjection back to the first unstable manifold. Consider, for instance, a map
in the triangle between hy, and h; , with an edge on the J = 0 axis. Then
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the iteration can be driven from the period-2" unstable manifold to the
period-2"*! for any n, whereas reinjection is provided for every n but n = 0.
As a consequence, if the iteration starts near the unstable fixed point, it will
go towards the connected set of manifolds of the orbits with higher periodici-
ty. Among these periods the lowest is 2, thus the attractor will have a
periodicity 2 as a coarse grained feature. Along these lines it can be argued
for that the (right-hand side) triangle between h,_, , and h, ,., is the region
where the period-2" strange attractor exists. These regions are just the
triangles represented on Fig. 1, showing a self-similar structure. Self-similarity
carries over to all properties, as for instance to the appearance of stable
periodic orbits [1].

Table 1

Jacobians J, where the heteroclinic crisis lines h,_, ,

and h,,.,; cross each other, for the map (1) with

f(K, x) = Ksinx. The effective Jacobians (J,)?, p = 2"
are also listed

n In ) p=2"

1 0.6623 +0.0001 0.4386 + 0.0002
2 0.8137 +0.0002 0.4384 + 0.0008
3 0.90183 + 0.00002 0.4375 4+ 0.0002
4 0.94971 + 0.00002 0.4380+0.0003
5 0.97446 + 0.00001 0.4370 4+ 0.0006

The crisis lines h,,,; converge to the accumulation line of period
doubling K (J). At J =0 and J = 1 the convergence is geometrical with the
rate 6 and dy, respectively, and inbetween, for J fixed, we expect that the
asymptotic rate is . The scaling in J is governed by the square relation.
Table I contains some computed values of the J,—s, i.e. the leftmost tip of
the triangles between h,_,, and h,.,,, for the map (1) with f(K, x)
= Ksin x. The square relation, mentioned already in the previous section, is
apparent. As another example, denoting the intersection of h, ., and K . (J)
by J,.+1, we found again a square rule J,_; , = (J,n+1)%

Renormalization theory for weakly dissipative maps

Assuming that the approximate square relation between the Jacobians J,
becomes exact for large n, we are facing a geometrically converging series
with the rate (1—-J,-)/(1—J,) = 2. The corresponding points in the parame-
ter plane, the tips of the triangles of Fig. 1, converge to the accumulation



G. GYORGYI 71

point of the area-preserving period doubling sequence. This leads us to
applying renormalization theory for weakly dissipative maps. Several authors
studied approximate renormalization schemes for dissipative maps, motivated
by scaling within the period doubling regime [20]-[22]. Since we were not
able, however, to produce a convergence rate 2 using these schemes, we
_.proceeded as described below.

The period doubling operator # for area-preserving maps T'(x, y) is
defined as ‘#[T] = BoToToB™!, where B means an appropriate rescaling
of the coordinates. The fixed point equation #[T*] = T* determines T* and
the scaling matrix B = (39), if T* is required to exhibit certain symmetries
[12], [13], [15]. The factors « = —4.018... and 8 = 16.36... scale the x and
y axes, respectively. The eigenvalue problem of the linearized renormalization
operator near T* reads as

(2 R[T*+eU] =T*+ieU+0(D),

where 4 is the eigenvalue and U the corresponding eigenfunction. It can be
shown that there are two families of eigenvalues A =oa"B'"" and 4
=al"*B7", 5,t=0,1,2..., corresponding to infinitesimal, smooth, coordi-
nate changes [12]. If we consider maps connected by coordinate transform-
ations equivalent, we can disregard the above set of eigenvalues. In addition,
within the class of area preserving perturbations, there is a single eigenvalue
with a modulus larger than one, 1 =46, =8.72... [12], [15]. All other
eigendirections are stable, |4] < 1, thus a map close to T* is driven towards
the single unstable manifold upon repeated application of the renormaliz-
ation operator. As a consequence, the convergence rate for the bifurcation
parameter values is dy for a large class of maps.

In order to explain the convergence rate 2 of the Jacobians J, we allow
area-contracting perturbations of T*, too. Let us assume first that there is an
eigen-perturbation such that the map T*+¢U has a uniform Jacobian, 1 —gj.
Then composing the Jacobian determinant of both sides of Eq. (2), and
taking into account that a rescaling by B does not change the Jacobian, we
are led to 4 =2 [23]. Thus eigen-perturbations with a uniform Jacobian
must have the eigenvalue 2. This leaves the questions open, whether there are
such perturbations at all, and whether there are relevant, ie. |[A] > 1, eigen-
values corresponding to non-uniform Jacobians. We therefore solved (2) directly,
using the formula manipulation program REDUCE. First we obtained a
polynomial approximation of T* (x, y) by iterating and rescaling an area-
preserving map in its threshold state at K ,(1). Then a polynomial Ansatz for
the perturbation U (x, y) was taken with undetermined coefficients. Solving (2)
for these coefficients and for the eigenvalues, we recovered the six known |/
> 1 eigenvalues B, dy, B/a, a, B/a?, and 1 within 0.5%,. In addition, a non-
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degenerate A = 2.000 showed up. All other eigendirections proved to be
irrelevant, |4] < 1, including possibly those having non-uniform Jacobians.

As a consequence, apart from coordinate transformations, there are two
relevant eigendirections emanating out of T*, with eigenvalues é, and 2,
respectively. Hence, scaling of maps close to T* is determined by a universal
two-parameter family. Repeated application of the renormalization transform-
ation # on a map of this family leads the map away from T*, while its K
and J parameters are rescaled. In the linear region the envelope of a
renormalization trajectory can be written as

) K-K,(1)=A1-Jy,

where y = log dy/log 2 = 3.12. This can easily be seen by noting that Eq. (3)
is invariant under simultaneous rescaling of K—K (1) and 1—J by é4 and
2, respectively. A curve like (3) appears also in the parameter diagram (Fig. 1)
as the envelope of the critical line K, (J).

We expect that the universal two-parameter family can be extended
from near T* to J = 0, supported also by recent results of Quispel [24]. This
family exhibits the sequential disappearance of strange attractors at universal
Jacobians Ji. For members of this family are transformed into each other
by the period doubling operator, the relation (J%? = J“_, holds exactly.
Furthermore, if a map is driven close to the universal two-parameter family
in functional space, which happens if the renormalization operator is applied,
its critcal Jacobians must approach the universal values. In other words, we
expect that asymptotically the critical Jacobians are universal numbers for
maps exhibiting the scenario, and so is the effective critical Jacobian
Jr = (), p=2" too. The universal value of the effective Jacobian can be
read off from Table I, J%; = J§ =~ 0.437.

Whereas the above results predict universality only as an asymptotic
property, the quadratic and sine maps produced critical Jacobians J, close to
the universal values even for low n. The typical effective Jacobian obtained
by directly interating the map and searching for the disappearance of the 2"-
piece strange attactor was J,; = 0.45. Note that J,; > J,;, the latter measured
at the intersection of the curves of heteroclinic crisis, as shown in Table I.
We attribute the discrepancy to long transients. Indeed, even after the
attractor has been destroyed, a long time may elapse before the iteration
actually escapes. Finally we mention that the sequential extinction of strange
attractors has been observed in two examples of nonlinear differential
equations, too, yielding an effective critical Jacobian 2 045 again [25].

This work was partially supported by U. S. Department of Energy
Contract # DE-ACO02-84ER13146. The author acknowledges the help of
C. Chen who computed the data in Table 1.
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