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1. Introduction

The aim of this paper is the construction of the approximation of gen-
eralized functions, which will be useful in studying the approximate sol-
utions of differential equations permitting only generalized solutions.

Let us start from the definition of the approximation.

Let U be a linear topological space with the topology generated by
the family of seminorms {||:|l;}seq (4 may consist of one element a, then
[I-ll; is & norm), let H be g metric space of parameters with an accumula-
tion point denoted by 0, and let H = H\{0}. Together with the space
(T, {l" la}eeq) let us also consider a space (V, {|'||¥},c5) Wwhere

(11) UcV,AcB VYFeUVacd |Fl,=|FI,
and a family {(V, {1} s}aes) hem Where |-l , are seminorms with the
properties

(1.2) VaeBYFeV VheH |FI],<IFI,
YeeBVYFeV lim |P)], = |FI.

h~0

As an example, let us consider ¥V = Wj(0,1) — the space of abso-
lutely continuous functions on the interval [0, 1] with the norm

|7 = [1F(X)dX + [ |F"(X)|dX,

and U = ﬁ’i (0,1) — the subspace of V consisting of all functions vanish-
ing at the endpoints, with the norm ||F|| = |F||’. Further, let us define

[737]
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for each ke (0,1/2) a seminorm

1-& 1—-n
IEIY = [ [F(X)dX+ f ' (X)|dX;
h

these seminorms satisfy condition (1.2).
The following definition is a generalization of that given by Aubin
([1], Introduction).

(2) DrrrniTION. The appromimation of U is a family of triples
{(2yy 184, PRy)}hem, Where
1) for each h e H u, is a linear topological space with the family
of seminorms {{|lly,c}eeq, s
2) rs,: U—w, (restriction) is a linear operator and

3K >0 VheHVaed dc(a,h)e0, VFe U |3, Flycian < KIF|,,
3) PR,: w,—V (prolongation) is a linear operator and
H.K >0 Vh (5 .H VC 5 07) aa:(@, h) ] B th e ’Mh [PRhfhnh Ja{eh) = K“fh”h.c)

VYaecd VFeU lim|[F—PR,rs,F|], = 0.

h—0

If U = V then the approximation is called internal, in the opposite
cage it is called external. Further, an internal approximation is called
reflexive iff

4) VheH Vf,euw, 18,PR,f) =715

The present paper, which is a continuation of [2], is devoted to
the construction of the approximation of the spaces W5 (B) and W 7 (B)
where B « R™. The definition of these spaces and of some operators acting
in them are given in Section 2.

The approximation is based on the so-called double partition of
unity which is constructed on the mesh introduced on R™. The mesh
and the spaces of mesh functions are defined in Section 3.

The definition of the double partition of unity is introduced in Sec-
tion 4 (Definition (18)). Theorem (23) gives examples of internal, external
and reflexive approximations of I,{B) when ¢ is finite. Theorem (24)
allows us to build an approximation of L (B)"° The estimations of the
convergence of the approximation are given.

Section 5 is devoted to constructing an approximation of other
gpaces of functions. The operators are defined which allow us to obtain
a double partition of unity of higher as well as lower regularity. With
the aid of these operators the external and internal approximations of
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W2(B) (g finite in Theorem (36), ¢ infinite in Corollary (38.1)), W *(B)
(Theorem (37) and Corollary (38.2)), W2(B)® and W ?(B)™ (Corollary
(38.3)) are constructed. A reflexive approximation is built in Corollary

(39.4).
2. Definitions and notation

In our considerations U will be a space of functions or distributions
defined on a subset of the m-dimensional real space R™. The following
notation will be used.

(3.1) If o is a logical sentence then

{1 if o is true,

o =
(©) 0 if o is false;

I — the set of integers, m = {i eI: 1 <7< m};
if X, ¥ e R™ then

X<Y«Viem X,;£7%,
X<Y e X<IANX %Y, Xo¥Y=(X,Yy...,X,Y,),

m
X] =D 1Kl

te=l

it X, YeR™ Vi X,> 0, then

m
x¥ =[] xF
i=1
if A, B<= R™, then
A+B={XeR" X =Y+Z, Ye A, ZeB},
—A ={XeR": —Xecd}, A—-B=A+4(—B).

Let us now consider a set X < m such that the number of its elements,
neX, equals k. Let \K = m\K. We will use the following notation.
(3.2) If X e R™ and the elements of K are arranged in the increasing

order i; < iy <...< iy, then Xg = (X;,..., Xy);

it X eR® ¥ ecR™" then Z = X @Y is the vector from R™ with
the coordinates Z; = X, 6(j eK)+¥; 4,0(J ¢ K), a;=ne{iekK:
i < j}

if X e R*, then Xz = X®x0;

if A< R¥, Bc R then A®xB = {XPzY: X c 4, Y e B};

if A< R™ XeR"™% then the X-section of A with respect to
Kth variables is the set SCEA = {Y e R*: Y@ X e 4}.
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Further,.
(3.3) let e =(1,1,...,1) e R™, hence following (3.2},
ex ={8(1 e K), 8(2 e K),..., 8(m e K));
let for iem
€y = e{’i}' and IR = {jel™: j gz =0}.
Let us also introduce the lower and upper bounds of a subset of R™,

(3.4) If B< R™ iz a bounded non-empty set, then
UB(4) = Y ¢ -sup {X;: Xed}, LB(A)= ) ¢ inf{X;: Xed).

fem iem
Consider now the Lebesgue measure x on R™ and define the relations
in the set of all measurable subsets of RB™:

AfB@y(A\B):O, .ATB#A%BAB%A.

Introduce the following equivalence relation in the space MS(A) of all
measurable real-valued functions on 4:

F r;G#{XeA: F(X) #G(X)}= a,
and denote by M(4) the space MS(4)/N,(4), where N,(4)=|F
eMS(4): {Xed: F(X) =0} = 0}. An clement & of M(A), that i,
the class of equivalent functlons I, e MS(A), is, however, identified with
any of the functions ¥, and therefore a relation written for G = {F,}
€ M(A) is understood as follows:

o(@) < Jx o(F,).

For example, we will write I’ > 0 if and only if there exists G € MS(A4)
such that @ TF and at each point X e 4, G(X)>=0

From now on we assume that A is a regular subset of R™, that is,
A # 0 and int.4 = clA.
"

(4.1) By L, (4) where 1< g< oo We denote the space conmstmg of all
functions F from M (4) such that
(f|1* x)pax)" if g¢< oo,
1, = \
esssup{|F(X)|: Xed} if ¢g= o
is finite; ||*|l; is ‘the norm in L,(4).
The definitions of a projection of a measurable set A =« R™ onto the
X\ xz-hyperplane where X < m,
(4.2) PIgd = {¥ e R"™E; 80&4 # ﬂ} (¢g. is the nel-dimen-

sional measure),
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and of the function with reduected number of variables,
(4.3) if F: A>Rthen RVEF(X) = F(XPx Y)for X € SCZ4, Y e PI.A4,

allow us to define the set of the functions which are integrable with respect
to the K th variables. /

(4.4) If 1<g< o0, K =, then L,(4; K) i3 the set of all functions
F e M(4) such that for almost every ¥ e PT A the function RVZF
belongs to L, (SCEA).

(4.5) If 1<qe << o0, 1 < qi € o0, K = T, then the space Ly, . x)(4) is
the subset of L, (4; K) consisting of all functions ¥ such that
the function @ defined by G(¥) = IRV F|,; belongs to Ly, (PJg4);
the norm is given by

1 ge,1,2) = 1@ lga

(g, ¢ are called the external and internal index of the norm, respect-
ively, and (qw, g3, I() is called findte if qv < oo and ¢i < oo),

Further, we introduce operators of restricting and exbending the
domain of definition of measurable functions.

(5.1) If A = B then EXyz: M(4)>M(B) and RD,: M(B)>M(A) are
defined by the formulas

F(X) if Xed,

(BXp ) (X) = {0 if XeB\A,

(RD,F)(X)=F(X) it X e 4.

If B = R™, we shall write' EX,, insgtead of EXym.
Now, let us define the following scalar produets. -
(5.2) Let A4, Bc R™, (¢ = AUB, Fe M(A), @e M(B), K cm.
If H = BEX,FBX,G e L (C) then (F, @) = [ H(X)dX,
C
if # = EX,F -BX6 e L,(0; K) then (F,G>(¥) = [ RVEH(X)dX
for almost every Y e PJC. SCEC

If I'e M(4), we can define its derivatives.

(6.1} A function G € M (4) is called the k-ih derivative of F (k e I™, k== 0),
iff for every U e (F(cld) (that is, the space of infinitely many
times differentiable functions with compact support contained in
‘clA) the following equality holds

(G, UY = (F, D™ 1),
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g
X4 ,,, 0Xknm’

write @ = D*F. If K < 3, the derivative DXF will also be denoted
by DgF.

Note that if F e M(4) has the kth derivative DFF, its extension
EX,F belonging to M(B) need not possess any derivative; an example
is the function F(X) =1 for X e 4 if A = B.

b
Before introducing the spaces of differentiable functions let us make
the following definition.

where DU = D* = (—1)*D* In this case we

(6.2) The class SL™ is the class of star-like sets of nonnegative vectors,
that is, the set of all non-empty subsets p of I™ satisfying
if k ep then k= 0,
if kep, lel™ 0LI<k, then L ep;
the class SLE (where K < m) consists of all subsets of IZ belonging
to SL™.

An example of an element of the class SLE in the case m =3,
K ={1,2),isthesetp = {kel® k = 0a|kl <1} = {(0,0,0), (0,1,0),
(1,0, 0)}. Further, let us introduce the following notation.

(6.3) If peSL™, 1eI™ 120, then p@Pl is the minimal set in SL™ con-
taining p-+{I}; if tep then pOl = (p—{I})n{kcI™: k> 0}; the
set {0}®! = {k: 0 < k <1} will be denoted by I"’; if I € R then the
set {k: k> 0A |k| <1} will be often denoted by I; if p € SL'z then
Px = {ig: 1 € p}; the upper boundary of p is defined as follows:
pt ={kep: VI if I >k then I ¢ p}.

(64) If A< R™ pelL™ 1<g< oo, then the space Wi(A) is defined
a8 the subspace of I (A4) consisting of all functions F such that
DFF e L,(4) for every k ep; the norm is given by

(3 1o g™ if  g< oo,
”F”p,q = kep
max {|D*F|,: kep} i ¢ = oo;

it Kcm, pelly, 1< @< oo, 1<qi< oo, then Wi, ;n(4) is
the set {F: Viep D'F e Ly, k) (A)} normed by

| ||RV§F||§,}lqidY)1/qz it gz < oo,
Jgd

essSup {|IRVg Pl g ¥ €PIgd} if gz = oo;
We(4) (Wigex)(4)) is the subspace of W2(A) (Whyux(4d)

respectively) consisting of all functions F such that for every & e p,
D*(EX,,F) = EX,, (D*F).

”F”PI(‘FEIQLK) =
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If A is unbounded, the following space with the local topology will
be considered.

(6.8) W2(A)"*® — the space of all functions F ¢ M (4) such that for every
bounded regular set B« A RD,¥F ¢ W2(B), with the topology
given by the family of seminorms

IFIS2 = IRDEl, g
Wo(AY® will be denoted by I (4.
Let us also introduce the index ¢' conjugate to ¢ by the formula

(6.6) 1/g+1/¢’ =1 if 1< q< oo,
¢ = (g0, g8y B), 1jgo+1jge’ =1, 1/gi+1/gi" =1, if
q = (gw, i, K).
The space W7(A) may be considered as a subspace of the Cartesian

product (L,(4)|*°? consisting of all vectors G, = (Gy)y, such that
@, = D*@, (cf. [3], Ch. I, § 12). Therefore any linear continnous mapping
U from Wg (A) into R can be prolongated onto the whole space (L (A)e?
according to the Hahn—Banach theorem, and hence, if 1 < g< oo or
q = (qw, ¢i, K) where 1 < qx < 00, 1 < ¢i < oo, then there exist functions
U,eL,(A4) (k e p) such that

(B, Uy = Y (D'F, Uy

ken
(<F, U> is the value of U for the function ¥ e W{; (4), and on the right-
hand side of the equation we have the scalar product of D*F and U, —
but it may also be considered as the value of the functional U, for the
function D*F). Therefore we obtain by applying Hélder’s inequality

(7.1) IKF, U] < 1Bl o X 10.8)" if 1<g< oo,
kep

E, Oy < Bl [ [ S RVEOIETT 7]

PIgd kep

if q =(er Q’i, K)'

On the other hand, every vector U, e (L, (4))"°? may be considered
as a linear functional on (L,(4))™7.

Let us thus consider the space (L,(4)"*? (1<g< o or ¢ = (¢v,
gi, K)) and define in it the following equivalence relation

Y,) VP e Wa(d) Y (D, U = 3 (D'F, T,

kep kep

Detinition (7.2) will be used for defining distributions on A4.

(7.2) BQZ(T,

p!
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(7.3) The equivalence classes in, (L (4))**? with respect to the relation
EQ? will be called distributions of or der (p,q) on A; it U is the

equivalence class of EQZ gencrated by U (we will write U = BCE ( Up))
then we define

(B, Uy = D (D'F, Up>.

kep

(7.4) The set of distributions of order (p, ¢) on A is a linear space. Intro-
dueing the norm by the formula

1Tl _p,q = sUp {KF, Up: F e Wg(d), |Fll,y =1}
we obtain the space W 7(4).

Let us also consider the following equivalence relation in
(LG(A)loc)nep:

—

(7.5) EQ&"I“(UP,'fp) < for each bounded regular B « A and for every
FeWs(B), 3 PP, Ty = 3 (D*F, Ty,

kep kep
It can easily be shown that

- - —
EQP'®(U,, Y,) < for cach bounded regular B < A EQJ(RDyU
-

RD,Y,) (if § is an operator on Ly(4), U,e{L,(4)®, then
SUp = (SUk)kep)'
Therefore we introduce the following definitions.

(7.6) The equivalence classes in (L,(4)°°|**? with respect to the relation
TQP™ are called the local distributions of order (p,q) on A. If

U= EC;’J“(?TP) is a local distribution on A and B < 4, then we
define RD5z U = ECP'°°(RDy U,).

(7.7) The space W ?(A)™ is the space of local distributions of order
(», q) with the topology inducted by the seminorms

”U”(-'-Bgz,q = ”RDB U”—p,q’

where B runs over the set of all bounded regular subsets of A.
A
Let us also define the support of functions and distributions.

(8.1) The support of the function F e L, (4) iy contained in the set
B <A (SUPP(F) c B) iff {XeA F(X) # 0} < B; if F is a dis-
tribution from W,?(4) then SUPP (F) < B iff for every @ € W" (4)
such that RDBG =0 we have (G, F) =0,
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Now we define some operators on the spaces W3(A4) and W 2(4).
Firgt, let us extend the definition of the derivative onto the space of
distributions. We prove the following lemma.

(9.1) LEvna. If F e WE(A), G e WO(4), kep, then
(F,D*@> = (D*F, &).

Proof. Let ¢ > 1. In this case there exists a sequence {G,}in; = C5’(4)
such that ||G—@&, |, —0 as n—>oco. Definition (6.1) yields for every =
(F, D*6,> = (<D™F,@,>. Since |(F, DG,>— (F, D'@)| < 11l - | D%, —
_DkG”q’ g "F”p,q "Gﬂ._G"p,q’ and Simila‘l‘ly I(—D*kF) Gn) _<D*k'F’ G>I
< Pl g |6, — Gl -y We obtain (F, DGy = (D™F, @.

Let now ¢ = 1 and let for every natural =

={Xed: | X|=zn}, O,={Xed\B,: Ikeyp |[DF(X)| =n},

| 4, = A\(Bnu c,).
Since RD,\ 5, & € L;(ANB,) for cach r < oo, we can choose a function
G, € 0°(ANB,) such that for fixed r |G —G, |5 5 < ¢,, where ¢, is an
arbitrary positive number, and moreover, &, can be prolongated onto

A in such a way that @, 52, < €@y, C is a constant independent.
of n. Hence we have the estimation

I(F, D*@,» —<F, D'
< IPI#n\D* G, — DGt + P |PeCn) | DG, — DG T,

But [|F|n < o' (Fll, DG, —DG| < g, ||F|PnVCn) < )50
as n—oo0, |D*G, —DF@(BnVC) < (C+1)|I@|,... Taking e, such that P
—0 ag n—>o0, we obtain |(F, D*G,) — (F, D*@G)|—0 as n—>co. In the similar
way we prove that |(D*F, G,> — (D**F, @>|—0 as n— oo, hence (D"™*F, G
= (F, D"@) if 1 < ¢ < oo. The proof in the case ¢ = (¢x, ¢i, K) is based
on the Fubini theorem. m

Therefore we define the derivative of the distribution as follows.

(9.2) DEFINITION. If U e W;¥(4) then DU e Wy @) (4) is the dis-
tribution satisfying

(F, DUy = (D*F, Uy VF e Wie*(4);

it UeW;P(A) then D*Ue W, (®k)(4)1° j5 the local distribution
satisfying

(P, DU = (D*F,U» VFe W{;ﬁ””‘(B),

where B <« A is a bounded regular set.
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Hence if U = EC?(T,) or U = ECP*°(T,) then
(B, DUy =(—1)M(D'F, Ty = (—1)M Y (D*'F, U},

lep
thus D*T = Ecge"(}p@,‘) or D*U = EGQP@"'“’“(YM,‘), respectively, where
Y, = 8(1 > k) —l)lkl U

The extension and restriction operators EXgz: W, ?(A)->W_?(B),
RD,: W;?(B)~>W;?(4), where A c B, are defined as follows.

aq
(9.3) If U = BC?(T,) e W;?(4) then EXp U = ECI(EX,U,),
it U =EC(T,)eW;?(B) then RD,U = EC?(RD, U,).

The next operator considered here is the translation operator. If
X, Y eR™ A c R™, then we define TS*X = X+4-¥, TS¥4A = {X e R™:
X =T8¥Z, Z ¢ A}. The translation operator TSY: M(A)>M(TS"YA) is
given by the formula

(9.4) (TSYF)(X) = F(TR¥X) VX TS T4,

U= EC;"I“(I-}},) is a (local) distribution of order (p, q) on 4, we define
the (local) distribution TSYU on TS~Y4 by the formula

—_—

(9.6) TSTU = ECP™(TS¥T,).

It is easy to show that

(9.6) (TSTF, Uy =(F,TS¥YU) if FeW(A), UeW7(TS Y4)

The next operators defined here are integration operators. Let us
first define auxiliary functions

(9.7) constant fumction FC(X) =1 VX € R™;
step funotions

FSz x(Z) = 6(Zx < X), F8E x(Z) = 6(Zg > X) for K < M,
X ER’JBK, Z e R™;

FS¢¥ = FSz,y —FSz x = FS{ x —F8E y for K c m,
X, YeR™E X7,

Operators INg, INg: L,(R™; E)->M({R™) are given by the formulas
(9.8) (INg U)(X) =<U,FSg xz )& (X\x)

(INZ U)(X) = (U, FS{ x Ox(X\ &) for almost every X e R™

It can easily be shown that

(9.9) if U,FelL,(R";K) then (INgU, Fog = (U, INLF).
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The relation between the derivative and the operator IN is described
by the following lemma.

(9.10) LemMA. If FeL,(R™ then DgINgF = DxINgF =TF, if,
moreover, F e WX (R™), then INgDgF = INLDLF = F.

Proof. Take an arbitrary UeCP(R™). Since INxDxU = U, by
applying Fubini’s theorem and formula (9.9) we obtain

&, U) = <<F: Ubk, FO>‘ = <<F; IN*KD;E Uxs F0>
= ((INgF, Dx Udg, FC) = (INgF, Dx U
{the external integration is carried out over the (m —neK)-dimensional
apace), and hence, by definition (6.1), DgINgF = F.
Now, let @ =« R™ be a bounded regular set and let U e L, (@). Then

INg(EX,, U) e L(R™) and by using (9.9) and Fubini’s theorem we
obtain

(D% F, INyEX, U) = ANy DL F, EX, 0,
the applying of Lemma (9.1) and of the first part of our lemma yields
(D F, IN;EX, U) = (F, DgINgEX, U) = (F,EX,, U).

Since Q and U are arbitrary, INy Dy F =~ F. The proof of the remaining
equalities 13 similar. =
The following equalities can easily be obtained from the definitions.
{9.11) TS¥(IN. U) = INg(TSTU), TSY(IN% U) = IN(TS¥U),
it UeL,(R™; K).

At last, we introduce the modulus of continuity of functions and
distributions. Let us first define an operator of finite difference

DF%L: Wi4)-»W,( () TS"24),
ok

where r denotes p or —p, kel™ k>0, and Z € R™, by the recurrent
formula

(10.1) DFL U = U;

it UeWi(A), i e, then DFFU = T8 U —T;
it UeW:(d), kel™ k=1+¢, 1 >0, then

DFEU = DF(DF} U).
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The k-th axial modulus of continuity is defined as follows.

(10.2) MC, (U; C, k) = sup{|[DF; Ul,q: 0<Z < C}
for UeWi(4), kelI™ k>0, CeR™ C>0
MGQ(U; ¢, k) = fMCM( U;0,k);

T

the global modulus of first order is defined by
(10.3) MC, (U; C) =sup{ITS? U ~Ull,,;: —C<Z< 0} for Ue Wi(4),
CeR" 0=0.
As can easily be checked,
(10.4) MC, (U; C) < D MC,,(T; C, 7).
iEm
It can be proved that if U e Wi(A) with g finite then
(10.5) lim MC, ,(U; C, k) = 0 for every k> 0.

C—0
Moreover, the following lemma is true.

(10.6) Loania. If U € W2(4), p e SL™, k € p, then [DFE U|, < [C¥- |D*T],
for every C e R™, hence MC,(U; C, k) < OF|D*U|, for €= 0.

Proof. The proof will be carried out by induction with respect to .
Let first & = ¢; € p.

Let us take an arbitrary bounded regular set B = A and define
U =RD;U. Then U e W?(B), what follows from Holder’s inequality.
According to lemma (9.10), at almost every X e B and for Z> 0

DF,U(X) = IN,DFS D,V (X) = ¢T8" DU — DU, FSix)> (X )
= (DU, TS By, ~FSip i X,) = DU, BSFAHEY (X ),

what follows from formﬁla, (9.6) and definition (9.7). Thus, at almost
each X e 4 '

DF; U(X) = (D,U, PFeXe+Ziy,(X ),

since B has been taken arbitrarily. Ience for 1 € ¢ < oo

IDF U|g = .” fDiU(Y@iX\i)a(X¢< yg_xl.—l—Z‘-)dY’qu
Em i

< [{f D.U(¥,X)1"8(X, < ¥ < X,+2,)a¥} 237X,

R™ R
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what follows from Holder’s inequality. By introducng new variable
W = X,—Y instead of X; and applying Fubini’s theorem we obtain
thus

IDFF U< 27 [{ [ID, V(Y@L ) 16(~Z: < W < 0)a¥} d(We, X.,)
R™ R '
0
=z¢" [{ [ ID.T(Y@X )d(T®X\)}aW = 28D, T|g.
—-Z; RM
Hence |DFj Ull, < Z|D; Ul, and for each kep [DFE U, < Z*|D*U|,,
what was to be shown. The proof in the case when Z is an arbitrary vector

is based on the formula DFe_"ZU = HTS—Z“E*'DFEZ" U, which can be ob-
tained from definition (10.1). This completes the proof of the lemma. m

If ¢ is not finite, formula (10.5) is not true for every ¥. We can,
however, define the following subspaces of Wj(4).

(10.7) O0"(4) = Wi(4) = {F e Wi (4): im MC, (F; C,¢) =0 Viem)
C—0

(in the case # = 0 O"(A) is the space of uniformly continuous
functions);
ey (A) = {F € Wi o iy (4): gn? MOt gz,00,;) (F'5 Cy £7) =0

VieK};
Wiaim (A) = {F e Wi gy (A): Um MO, (o 00,5y (F5 €y €7) =0
C0 Vie\K}.

The modulus of continuity of local functions and distributions can be
defined in a similar way, using the seminorms.

3. Spaces of mesh functions

An approximation of the spaces introduced in the previous section
will be based on & mesh defined on R™.

Let the family H of parameters be a bounded subset of (0, oo)™
with zero as an accumulation point. Consider the family ™ = {r}'},.z of
the sets defined as follows:

(11.1) w ={XeR" X =kohk, kel™,

The set defined by (11.1) will be called a mesh on R™.

Let us also consider a fixed (independent of L) vector 0 [0, 1]
and state the following one-to-one correspondence between the mesh
points and subsets of R™.

(11.2) If @, e v then CEuay, = {X e R™: Vi (3,4 (0 —e)oh), < X; < (7, +
+80h),) is the cell corresponding to ay;
if X e R® then the relation pt, X =z, < X € CEx, defines the
mesh point corresponding to X.
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For simplifying the notation we will omit the subscript % in the
gymbols of mesh points, mesh functions, ete. Strictly speaking, if for
every h € H ,,is a point of r’ then o will be treated as a family v = {2,};.5:
if ¢ is a relation, ¢(x) is a shortened symbol for: Vh € H p(x;). To avoid
misunderstanding, the points, funetions, ete. on the mesh will be denoted
by small letters, when the points of R™, functions on R™, etc. — by capital
letters, as has been done in definition (11.2). The constants or constant
vectors denoted by capital letters do not depend on the mesh width even
if they are connected with mesh sets or functions; by small letters we
will denote not only the constants depending on the mesh width, but.
also, for instance, the index of the space W} or the power of differen-
tiating D*. Since in many cases the mesh width % and the volume of the
clementary cell A° occur in the formulas, we introduce the symbols

(11.3) mw, = h, ¢V =mw®

which allow us to write, for instance, |f(#)] < |mw|, instead of Vh e H
Ifa(2n)] < |B].
Now, let us define mesh neighbourhoods of points in »™.

(12.1) Let ST be a finite non-empty subset of I™ independent of the
mesh width. The set

nb(z, ST) = {y er™: y =+ jomw, je ST}

is called the ST-neighbourhood of the point @ €™, ST is the stencil
of nb(z,8T); if b < ™ then we define

nb(d, 8T) = | nb(z, ST).

zeb

If b = v, the following mesh set will be also defined using the sten-
cil ST.

(12.2) sb (b, ST) = {y er™: nb(y, 8T) < b}.
It can easily be shown that

(12.3) sb(b, {0}) = b =nb(d, {0});
for any two stencils ST, ST',
sb(b, STUST') = &b (b, ST)Nsb (s, ST'),
nb (b, STUST’) =nb(b, ST)unb(d, ST'),
sb(b, BT +8T') = sb(sb(b, 8T), 8T’),
nb(b, 8T +8T1‘) = nb (nb(b, 8T), ST');
for every stencil ST,
nb (sb (b, ST), 8T} < b < sb(nb (b, ST), ST).
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Therefore, if 0e8T, b < +™, then sb(b,ST) = b < nb(h, ST) and
we define the mesh boundary of &

(12.4) bd (b, 8T) = b\sh(b, ST).

Further, using the notion of the stencil we can state the correspondence
between subsets of R™ and mesh sets.

(12.8) If b = »™, ST is a stencil, then

NB(»,8T) = |J OEa,
zenb(b,3T)

SB(b,8T) = (J OEa

zcs8b(b,ST)

are the ST-neighbourhood and ST-subset corresponding to b;
if B<= R™, ST is a stencil, then

nb(B, ST) = nb({z: CEznB # @}, 8T),
B
sb(B, ST) = sb({z: CEx = B}, ST)

are the mesh sels associated to B.
Now, let us introduce some notation, analogous to that for the func-
tions on R™,

(13.1) If A is a linear space, b = ™, then the symbol (b—A) will denote
the space of all functions defined on b with the values in 4.

(13.2) If a = b = »™ then the exiension and restriction operators on the
mesh, ex,: (a—+A4)—(b—>4), rd,: (b—A)—>(a—A), are defined by
the formulas

exn)@ = {10 § LT, ot = exm,

(rd,f)(x) =f(w) if wea.
(13.3) The support of a function fe(b—+4) is defined by

supp (f) = {z eb: f(x) # 0}.
Similarly as in the second paragraph, if K < m, neK =1k, then we
define
(13.4) r%. — the family of meshes on R* with the mesh width mwyg,
Vg = nwcrej"-z :
scta = {yerk: yOgzwea} i acr™ verlFt;
Pixd = {y e r?5": scha # @} i acr™

(rvif) (@) = fla@gy) if fe(a—B), y €epjga, v &scka.
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(13.5) The following scalar products of mesh functions are defined:
if we(b—R), fe(o+4), A is a linear topological space with the
topology 1nducted by the family of seminorms {|-|,},.z, and the
series D' |eX,, uy(wy)| X, f,(2p)], 18 convergent for every h e H and

Whe";p.n
2 eZ, then

[u,f1 =[f,u] =cv > ex,u()ex,f(2);

aer’?

if K cm and for every o erPz™¥ the neK-dimensional scalar
product [rviu,rv%kf] is well defined, then

[%, fle () = [xvEu, 1vEf] Vze ypieE,

Now, we define mesh translations and finite differences as the dis-
crete analogue of translations and derivatives.

(13.6) If » €™, k e I™ then ts*z = ¢+ komw,
if b= ™ kelIm then ts*h = (v e™: o = ts*y, y eb}.

The operator ts*: (b—A)—(ts"*b—>4) is given by
(13.7) (t8*f)(x) = f(ts*z) V = ets"‘b
if K « m then tsgf = ts Ef, tsgf = ts f.

The finite differences are defined by the recurrent formulas.

(18.8) A%f = A™f — f; Ac;'f = t8,f —F, Aif = tsy f—f for ¢ e m;
445 — A ak), 8 = AT A dor keI B> 0;
oFf = mw"‘A"f, 8**f = mw*A*f for ke I™ k>
Oxf = a“Kf, Pf=0 Kf for K < .
It follows from the definitions that

(13.9) 8*f(x) is the linear vombination of the values of f at the points
from nb(z, k'’), that is,

*: (b—>A)->(sb(b, k') —4),
and similarly,

8**: (b>A)—>(sb(b, —k")>4)
(the symbol %" was introduced in (6.3)).
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Further, let us define auxiliary functions

(13.10) fe(x) =1 Vo er™; is3Y =fsg, —fsz, if o < y;
f52,.(2) = 0(Vie K 2, <), f5i,.(2) =8(ViekK 2> a)
Va,y e 2K, z e ™.
Let 4 be a linear space with the family of seminorms {|-|,},c; (in

the special case Z may consist of one element, then A is a normed space).
We define the spaces analogous to L (B), WZ(B), WP (B).

(14.1) By l,(b; 4) (1 < g < o) we will understand the subspace of (b—4)
consisting of all funections f such that

ne sup{|f(z),: #eb} i g¢g= o

is finite for every z eZ. {|l,;}sez is the family of seminorms in
I,(b; A).

(14.2) If K c m, then I (b, K; A) is the set consisting of all functions
fe(b—A) such that rvifel (sekd; A) for every yepjgb; the
8pace ligy g xz)(b; A) is the subset of I;(b, K; 4) consisting of all
functions f such that the functions g, defined by g,(y} = [tvifllq,.
belong to [, (pjxb; R) for every z €Z; the seminorms are given
by Ifligzetmye = l9ellge: IE b = aDge then I, 5 (0;.4) is iso-
morphic with I,{c; I,;(a; 4)).

(14.3) The symbol w}(b; A) will denote the subspace of (b—A) con-
sisting of all functions f such that 8°f e l,(sb(d, k'’'); 4) for every
kep;

(3 naxs1g,.)™" it 1<g< oo,

kep

1flpge =  MAX {18 st keP} g = oo,
9lg= if g¢= (g, ¢, K), p e SLE, .
g = ItvEfllpggre TOr ¥ €Pigh
form the family of seminorms.

(14.4) The space wZ(b; A) is defined as w% (b; 4)nvn,(b; 4), where vn,, is
the set of the functions vanighing together with their pth finite
differences on the boundary of b:

vo,(b; 4) = {f e (b—=4): ex,(df) = &*(ex,,f) for every k ep},
or, in the equivalent form,
vn,(b; A) = {fe (b—>A): f(z) =0 if zebd(d, pu—p)}.

48 — Banach Center t, XIII
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¥ A =R, we will write 1,(b), wZ(b), @2(b) instead of I,(b; R),
w? (b; R), w2 (b; R).

We prove now some properties of the functions and operators defined
before. First, let us note that if « sl,(b; 4) then 8*u el (sb(b, k""); 4),
gince 8* is the linear combination of the translation operators. Thus,

(15.1) if w el (b; 4) then » ew](b; A) for each p e SL™.
Moreover, we have the following lemma.
(16.2) Levma, If fel (r™; A), el (*™), ¢ 18 conjugaie to q, then
Vi=0 [&*f, %] = [f, 0%u].
Proof. The fact that [6%f, »] is well defined follows from Hilder’s
inequality, To prove the lemma let us take first & = ¢;. We have
[0:fy w] = mw; " [b8,f —f, u].
Since [ts*f, u] = [f, ts~*u], we obtain
[8:f, ] = mw; [f, b8y u—uw] = [f, &} u],
and the lemma can be proved by induction. ®

(15.3) COROLLARY. If fewP(b; 4), w el (b), then for every kep

[0°f, w] = [f, 8" u].

Proof. Following the definition of w?, for every k € p 8*ex,,f = ex,, o*f.
Since ex,, &*f e 1,(+™; 4), ex,,u €1,.(+™), we obtain by applying the pre-
vious lemma

o*ex, f, ex, u] = [ex,f, 0™ ex,, u].

Since ex,f(z) = 0 if zebd(b, pu —p) and **ex, u(2) = ex,, " u(z) if
zesb(b, —k") o sb(b, —p), the corollary is proved. m

Let us now consider the space w?(b). It follows from definition (14.4)
that if & € p then a"f vanishes outside the set b,, = sb (b, (pOk)U — (p EF)).
Thus, the space pr(b) may be isomefrically embedded into the Cartesian
product Hl (brp); similarly to the case considered in Section 2, we take

the embeddmg f—(rd,,, o *F kep-
Therefore, cach hne'u' continuous funetional on w?(b) can be rep-

resented by a vector u € I7ly (by). Let us define the distributions of

kep
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order (p,q) on b as the equivalence clagses in ul (by,) with respect to
the relation

(16.1)  eq2(ty, ¥,) < VfedZ(®) D[, m] = 3 [0*f, 4.
kep kep

If u = ecj(%,), where ec? is the equivalence class with respect to the
relation eq7, we will write

[fy ul = D) [8F, w,).
kep

For every k e p, Corollary (15.3) yields that [o*f, ex, u,] = [f, 8™ ex,, u,],
but since 8*%ex, u,(x) = 8" u,(v) if © esupp(f)  by,, We obtain

[8%f, wx] = [f, 8% u).

Hence

[y w) = 318, ] =[f, Y ex,*wy,

kep kep

what means that every distribution of order (p, ¢) on the mesh can be
represented by a mesh function belonging to [,(d).

(16.2) The space w,*(b) is defined as the space of all distributions of
order (p, q) on b, normed by

“u”—p,g = 8up {[f’ 'M]: f € Tz’g'(b)) "f”p,q’ = 1}'

If b is a bounded subset of #™ then it is finite, therefore I (&), wZ (),
wg?(b) contain all real-valued functions defined on b. Hence the defi-
nition of local spaces is the following:

(16.3) The local spaces I,(b)°, wZ(b)', w;?(b)°, are the sets of all
real-valued functions defined on b, with the topology inducted by
the families of seminorms:

IFUS = ledefllyy  IFUSY = Iedoflpgs 115 = Idcfil_pg)
where ¢ runs over the family of all bounded subsets of b.

We define now the operators ing, inkg: I, (r™, K; 4)—(r"—A) which
are discrete analogues of the operators INp, IN;. If K < m,
feliy(»™, K; A), then

(17.1) (ingf)(@) = [f, Breglal® )y (InEfH2) = [f) I, k(7 )
(the functions fs are defined by (13.10)).
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The following properties can easily be obtained from the definition
of sealar products.

(17.2) Tf fel,(r™, K; 4), g €,(0™, K), then [ingf, glz = [f, inkglg,
(17.8) if fel,(#™, K; A), then ts¥ingf = ingts*f for every k e I™,
The following relation between dp and iny holds.
(17.4) LEvMA. If fely(r'; A) then
din,f = dlinyf = in, &, f = in; &f = f.
Proof. Using the definitions of dg and inp we obtain

ain fla) = mw {mw 3 f(y)8(y < ts'z) —mw D' f(y)é(y < a)} = f(a),

1

. yer yer!

in the same way we show that 8)in}f = f. Take now an arbitrary g eI, (r%).
Applying (17.2), Lemma (15.2) and the equality just proven we obtfain

[in; 8,1, g1 = [8.f, Infg] = [f, oyinyg] = [g, f1.
Sinee g has been taken arbitrarily, the lemma is proved. m

(17.5) COROLLARY. If fel, (r™ K; A), L c K, then

Opingf = ingd,f =ing.,f, Opingf =ingdrf = ink. of
(the notation in,f =in)f = f is here used).

The proof is based on Lemima (17.4) and Fubini’s theorem. m

4. Approximation of L (B)

In order to construct an approximation of L (B) we introduce a set of
double partitions of unity, that is, a set pu]* of functions of two variables —
2 e1™ and X e R™, which sum up to 1 with respect to each variable.

Let us consider functions % e(r™—L,(R™"°), that is, functions
defined on the mesh with values in L_(R™)'°°. The following notation
will be used:

v (@, X) = (0 (2)}(X),

ie. for every h e H, X ¢ R™, m;, €1},

"3h(~’0hs X) = (’5h($h))(—x)i

9 (-, X) is the mesh function defined for almost every X e R™;
if 4 is an operator acting from B < L_(R™"° into B‘ then Av is
the function from (y"—B’) given by (49)(w) = A(v (2)) for each »er™,



A METHOD OF APPROXIMATION OF SPACES OF GENERALIZED FUNCTIONS 707

for example, if F e L (R™' and for every 2 ™ the scalar product
(v (@), F) exists, then (v, F)is the mesh function defined by (¥, F)(x)
— (b (2), F).

Now, we can introduce the definition.

(18) DEFINITION. The largest set of double partitions of unity, pul (denoted
also, if needed, by pul*[mw]), is the set of all functions
? e (™I, (R™)) satistying:
1) Vz er™ 9 (2) > 0;
2). [#,fc] = FC;
3) (9,FC) = fc;
4) there exists a stencil ST9 such that for each zer™

SUPP % () € NB(x, ST 4);

puf® is the subset of pul® cousisting of all functions 4 invariant with
respect to the translation operator, that is, satisfying

b) VEelI™ ¢ = TS*™¥(ts5*0);
pul is the subset of pul® consisting of all functions » which are prod-
ucts of one-dimensional functions, that is,
m
6) »(z,X) = [] v;(x;, X;), where 9, € puj[mw,] for i =1,2, ..., m.
i=1
The scalar product occurring in (18.2) is well defined since as is
required in definition (13.5) the sum J fe(z) |0 ()[5" is convergent for

zer

every bounded sct A < R™, because only finite number of the components
of the sum does not vanish on 4 what follows from assumption (18.4).
Moreover, at almost every X e R™, [v, fc](X) = [ (-, X), fc].

The set pul® is non-empty; for instance, the following characteristic
function ¢ is often used

(18.7) 0y, Y) =mw ¢8(Y eCEy).

Tt can easily be checked that ¢ € pul, as the stencil we can take 8T¢ = {0}.
For each function v epu! let us also introduce the vectors

(18.8) UP4 =UB(ST2)+6, LWo =LB(ST»)+0—e,
which are called upper and lower bounding vectors for SUPP% since
(18.9) NB(z,8Tv) c {X e R™: LWoomw < X —3< UOPb omw},
what follows from definitions (3.4) and (11.2).
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Together with the set pu;™ we will also consider the sets pef”, pef*, pef*
of combinations of partitions of unity.

19.1) DEFIMITION. The set pel (where a is an arbitrary index from
a -~
{i, t, 0}) consists of all functions ¢ for which there exist real numbers

k
81y ...; 8, and functions 91, ..., 9% from puP, such that Y s =1
k t=1
and > st = 9.
1e=1
The numbers (sy,.-.,s;) and the functions (Y, ..., %) occurring in

Definition (19.1) are not defined uniquely. The following representation
of a function ¥ € pe® will also be used.

kp kd kp
(19.2) b =2ti@b‘“+ Zui(g}‘—él); , ;> 0, Zt"-' =1;
i=1 i=1 i=1

For instance,
0.59'40.80°—0.39° = {0441+ 0.69%} + {0.1(9* —9°)+ 0.2 (82 — 3%)}.

Tt follows directly from the definition thatif » € pe® (pc™) then ¢ satisfies

conditions (18.2)—(18.4) ((18.2)—(18.5)), respectively).
Let us also define a modulus of ¥ € pc™ by the formula

(19.3) md,(%) =inf{2]s‘-[: ? =2slf6‘, Zs‘- =1, ¢ epuZ‘}.
It can be checked that

kd
(19.4) inf{Zuf: % is of the form (19.2)}= (md, (5)—1)/2.

{ml

Let us now prove several lemmas.

(20.1) LeMma. If v e (™=R), 1 < ¢ < oo, ¥ €pul®, then for almost every
X eR™

[, 9 1(X)]? < [|ul% 0](X).

Proof, Let ¢’ be the index conjugate to q. We apply (18.1) to obtain
that [[u, 9 ](X)|? = |[wo Y%, 9Y¥)(X)|? for almost every X € R™ It follows
from Holder's inequality and (18.2) that

|[ud e, 9N X) 12 < (b (-, X)L |10 (-, X)L
= [lul?, 8 X [0, £ N (XY = [ju]% 1(X). m
(20.2) Levva. If Ue L (R™", 1< qg< oo, ¥ epul, then
Vzer™ [KU,o (@)>E< TS 0(@)D.
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Proof. Let © er™. As in the proof of the previous lemma, we use
first (18.1), then Holder’s inequality and at last (18.3) to obtain
KT, o (@))1? = [KTD (2)'9, 6 (2)141° < 1T ()10 ()]
= (ITI% 9 (2))<0 (), FOYT = (|U[%, 6 (2)). m
(20.3) LEMMA. If u €l (*™) and b e pul,, where

I i 1<¢< oo,
a = . .
@ {0 if q=(g2,q, K),
then [u, 9] e L(R™) and ||[w, 9 ll, < lull,.

Proof. Let, at first, 1 < ¢ < co. We have to prove that [, 9] € L, (R™).
Since we obtain from Lemma (20.1) that [[«, 9] < [|u]% 9 "9, it is suffi-
clent to prove that [|u|% 9]¢ e L_(R™). The definition of the norm yields

IChsl?, 917908 = ([lul% 31, FC) = [ev Y lu(#)1% (s, X)dX.
R Ter™

The integral of the infinite sum of nonnegative functions is equal to
the sum of the integrals of these functions, therefore by applying (18.3)
we obtain

[ev Y @) (@, X)dX = ov D |u(@)17¢8 (), FC) = 2.

Bm zert® zerm™

Hence |[%,9]ll, < lul, if 1<g< oo. I ¢ = oo then following Holder’s
inequality and (18.2) we have

(%, 9 ]ll., = esssup {|[x, 9](X)]: X e R"}
< es85up {[l4flo 19 () X)la: X € R™} = |l
If ¢ = (qo, ¢i, K) then following the definitions of the norm we have
I, 61l = G, Where G(X) = [RVg[u, ]l
lully = gl Where  g(y) = lITvi %llg,.

Since 4 € pu™, it can be represented as a product
b (z, X) = Vg (@, Xx)V g (@\g) X\ x) = I;I CHE Xi)g v (@, X3),
ek 1
and following Fubini’s theorem we have for X e R*, ¥ e R** (k = ne K)
[, ] (XD X) = cvg ), [rvhu, g](X)0\ £y, T).

m—k
VEr\K
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Therefore

HT) =|ene Y [V, bxlig(y, T)
uer’(”}K

< ev g ) Iirvh e, dxllyd e (¥, T)-
v

ai

By applying the first part of the present lemma we obtain
[[rvi, ’6K:|”qi < llevi iy
hence combining the last two inequalities we get
HI) <[y, 9 x)T),

and by applying the first part of our lemma to the function g we finally
obtain

"G"qz < "g"q:c} tha‘t’ iS) “[u) ‘6 ]”q g ”u"qj

hence the lemma is proved. m

Let us note that if we choose as the function % occurring in Lemma
(20.3) the function ¢ defined in (18.7), then we obtain the following result,
which can be proved by the direct computation of the norms.

(20.4) Remark. Tt u el,(s™), then [u,¢]eL,(R™ and |[u,éll, = |ull.
We also have the following analogune of Lemma (20.3).
(20.5) Loxia. If U e L(R™) and 6 e puZ,,, then
(U, 8y el (™ and KT, 5, < T,
The proof is similar to that of Lemma (20.3).
(20.6) Lemva, If F e L,(R™), f €l (+™), © e pul,, then

[f’ <'{’7F>] = <|:f’73]:F>~

Proof. According to Lemmas (20.3), (20.5) (v, F), <3, |F|) el (™)
and [f,v], [Ifl, v]e L, (R™), hence [f, {», F)>] and ([f, 9], F) are well
defined. Moreover, for every finite subset b of ™ and almost cvery X € R™
we have the estimation

lov D' f(@)6 (, X)F(X)| < [If], $1(X) P (X)),

zeb

therefore by applying (for every fixed h € H) the majorized convergence
theorem (sec, e.g. [4]) we obtain the required result. m

(21) LEMMA. Let us define for v, w e pul the maximal vector of the pair
{v,w} as

MX (v, %) = UB({UP® —LWw, UPw—LW4}),
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and the volume of {0, w} as the number
VM5, %) = (UP$ —LW# +UP#—LW ).

Assume that T e L,(R™ and 9, W epul,. Then (W, Uy el (r™),
[(w, Uy, v] €L, (R™), and the following inequality holds:

1T — [0, U, 9]ll, < CT(q, 8, )MC,(U; MX (%, w)omw),

where
Aoal VM (9, w)e if 1<€q< o0,
Crig 0, %) ‘{(VM(%K, B VM g, 02 if g = (g, @i, ),
and
e(®x, Xg) H"’ (@5 X))y O x(®x) k) =H 1 (@ X3).

ek 1¢K
Proof. Equality (18.2) yields for almost every X € R™
U(X) = U(X)[o (-, X), fe] =[# (-, X), U(X)fe].
Further, from (18.3) we obtain
U(X)fc = ¢, FCOOU(X) = (w, T(X)FC).
Hence
(21.1)  U(X)—[Kw, Uy, 2 ](X)
— [, U(XFCY, 6 (-, X)1— [, Uy, 4 (-, X)]
= [, UX)FO-0>, 4 (-, X))

Let now 1< g< oo and let d = |[U—[<w, Ud, v]Z. Applying equality
(21.1) and Lemmas (20.1), (20.2) we obtain

i = [|[&,TXFO-T), §(-, X)]"4X

nm

< [IK®,U(X)FC—T> o(+, X)]dX

< [, [U(X)FC—-T, 4 (-, X)]dX,

R™
that is,
< [ov 3 [il@, T)UX)-U(T)F4Y5 (@, X)dX
RM

zer™ R

—‘WZ ff'w('v )W O(X) =T (X)) (z, X)dYdX .

zer™ R™ R
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Tt follows from (18.4) that the function under the integral vanishes out
of the set {(X, ¥): X e NB(z, STv), ¥ e NB(z, STw)}. Let us introduce
new integration variable Z = ¥ —X. It suffices to consider Z belonging
to the set NB(», STw)—NB (2, ST%), which is contained in the set

ND[mw] = {Z e R™: (LW& —UP%)omw < Z < (UPw —LW49)omw},
because of (18.9). It follows from the definition of MX and VM that
(21.2) ND[mw] < {Z e R™: —MX (v, w)omw < Z < MX (7, #)omw},
{21.3) the volume of ND[mw] is equal to VM (%, @w)cv.

Hence we obtain

d<ov ) f{ ) ﬁ;(w,X+Z)|U(X)—-U(X+Z)]‘113(m,X)dZ}dX

zerm gm  ND[mw]

= [ {[fev Y bie, D)0X)-T(X+2)ib(z, X +Z)dX}dZ.

ND[mw] gpm rermt

From (18.1,2) we have 0% (w, X+2Z)<cv™? and ov D9 (z, X) =1,
therefore

i<ev™ | f|U(X)—U(X+Z)|“dXdZ.
ND[mw] pm

Taking into account (21.2,3), we obtain

d<ev' [ MO,(U;MX(3, %)omw)'dZ

ND[mw]
< VM(3 , 0)MC,(U; MX (4, i) o mw),

what concludes the proof in the case q < oo.
I# ¢ = oo then (21.1) and (18) yield for almost every X ¢ R™

|U(X)_[<£D) U3, ’3](X)| = |[<72’5 U(X)FC—-U>, 6(: X)1l
<[w, |T(X)FC-T|), 4 (-, X)]

=ev ) [ (e, T)|UEX)-T(Y)4Y (z, X)

zer™ NB(z,8T )

<eov D [ (e, IMCL(U; MX (6, %)omw)dY s (z, X)

zer™ NB(z,3T w)

= MC,(U; MX(9, b)omw).



A METHOD OF APPROXIMATION OF SPACES OF GENERALIZED FUNCTIONS 763

Let us now consider the case ¢ = (gz, ¢¢, K). According to the definition
of the norm, we have to estimate the function

G(Y) = IRVE(U —[<@, U, 9]l
By using Fubini’s theorem, similarly as in (20.3), (20.5), we obtain
(21.4) ¢(X) =||[ [ £, 2) {RVEU - [Co, RVE T, 21142, 6 &|(T),
<[[ib\xl, Z)IRVEU-RVE Ul,dZ, 6. |(T)+
[zl s 2)IRVE U~ [Ciog, RVE U, G]lgedZ, ] (T)
<[ [#oux(", 2)IRVEU -RVE UludZ, 5 £ |(¥

+ [0 s Gard, 0 £ 1(T),
where Gy (%) = VM(9g, wg)""MC,{RVZU; MX (D g, Wgz)omwg) for
Z & R™ ™K, the last inequality can be obtamed by applying the first part
of our lemma to the function RVZT.

Let us now estimate ||Gl,;. The norm of the first component of the
right-hand side of (21.4) can be estimated as in the first part of the proof
of the present lemma, and the second part — by applying Lemmas (20.3),
(20.5). Finally, we obtain the inequality

[Glge < VM(0 g, B0\ ) MC[ U5 mw o(MX (4 x, b, 2)Br 20)) +

A

+VM (B g, o) "MC, T rrw o (MX (8 i, o) D 0))

from which we obtain the required result. =
(22.1) COROLLARY. If B< R™, FeL,(B), v,w € Pugy,, b = 8b(B, STw),

B~ [mw] = SB(b, ST9), then

(b, Fy el (r™), [(w, F),9]eL,(R™)

and

|17 — [¢lo, Fy, 6P 71=") < OT(g, 9, )MCy(F; MX (3, w}omw),

where the motation is the same as in Lemma (21).

Proof. According to the definition of the scalar product, {w, F)
= (w, BX_F>. Hence we can apply Lemma (21) with U replaced by
EX,, F. Further, following definitions (12.2,5),if € b then SUPPw(z) < B,
if X e B-[mw] then supp(¢ (-, X)) = b. Hence the requued inequalities
can be obtained similarly as those from Lemma (21).

Let us now consider a function F e L,(R™} and D epcg‘@. Following
formula (19.2) and Lemma (20.5), (F,%) el,(»™) and

kp kd
(22.2) IKE, 530 < 3 GIKE, @l + 3 wlIKEF 32 =25,

i=l {=al
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Remark (20.4) yields that
(22.3) KT, 9 —2h, = I<KF, §*—2%), ¢ 1l
< IKF, 5%, 6 1—Fll,+ I\F — [{F, %), ¢ ],

If we apply Lemma (20.5) to the first sum on the right-hand side of (22.2),
Lemma (21) to the right-hand side of formula (22.3), and substitute (22.3)
into (22.2), we obtain the inequality

kd
IR, 5], < 1Fll+ ) %, {CT (g, &, §YMO,(F; MX (3, §) o mw) -+

i=1

+0T (g, ¢, 2°)MC,{F; MX (e, #')omw)}.
Hence we have proved the following corollary to Lemma (20.5).
(22.4) COROLIARY, If F el (R"‘), b epely, then <F, 6> el,(r™) and
IKF, 23], < [1Fll;+(md, (9) —1) CT (¢, ? )MC,(¥; MX (9) o mw),
where
OT(g,?) = max{CT (g, 6, 9%): 1L<i<k},
MX (5) = UB{{MX(,"): 1<i<k)),
and ©* are the components of © ocourring in Definition (19.1).

With the aid of the above lemmas we prove the theorem concerning
the approximation of L, (B).

(23) THEOREM. Assume that B = R™ and q is a finile index (that is, either
I<g< o or g =gz, ¢, K) and 1< qpv < o0, 1< ¢i < o0), Let
v, W epcy, and let there ewist a comstant MD (independent of the
mesh width) such that md,,(?) <MD, md,,(#) < MD. Let
b = sb(B,8Tw), B~ [mw] = SB(b, 8Td). If we define the operaiors
15,0 Lo(B)~>1 (™), PR,: 1™ —L,(B), and 18;: L,(B)—>I,(b), PR;:
l,(0)—~L,(B), by the formulas
r8, I = (w, B, PR,f = RDg[9, f1,
rs; F = rd,(w, F), PR,f = RDy[o, f1,
then the families of triples Ap,(q, B, v, 1) = |([,(™)n, t8e1, PReh)],‘eH

and Ap,(¢, B, 9, w) = {(8,(B)n, TS, PRm)] neg Ore internal approxima-
lions of Lq(B) Mm eover, we have the following estimates

vs; Bll, <MD ||}, PR, fll, <MDIfll, for 3§ =e,i,
llvs, Fll, < | Fll, + (MD —1) CT (g, @)MC, (EX,, F; MX (&) omw),
llrs; Fll, < [|Fll, + (MD —~1) CT (g, &)MC, (F; MX (%) o mw),
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|F ~PR,rs, Fll, < MD®*CT (g, 9, i0)MC,(EX,, F; MX (3, %)omw),
|F —PRyrs, P~ =D < MDCT (g, 9 , w)MC,{F; MX.(9 , w)omw).
The symbol a(q) has been defined in Lemma (20.3), the constants CT —

in Lemma (21) and Corollary (22.4). Moreover, Ap,(q, B,c,c) is
reflexive and \PR;fl, = |Ifl; for each f el (b).

Proof. According to Definition (13.5), (w, F) = (w, EX,, F>, hence
the fact that the operators introduced above are well defined and that
the estimations are true follows from Lemmas (20.3,5), (21) and Corollaries
(22.1,4). Therefore if we define for each & € H either

U=V =1LyB), IFIf = IFll,
or
U=V = Lq(B)) IIFII,’: = "R'DB—[h]F"q,

then the conditions (2.1-3) in the definition of the approximation are
fulfilled for corresponding triples Ap, and Ap,. The last statement of
the theorem directly follows from Definition (18.7) and Remark (20.4). &
~ An immediate consequence of the theorem formulated above is the
following theorem concerning the approximation of local spaces.

(24) THEOREM. Suppose that the assumptions of Theorem (23) are satisfied.
If we define the operators

R, L,(B)Y°—=1,(r™) %,  PR,: I, (+™)°—L(B)*",
vt Ly(BY*°—>1,(b)%, PR;: L (B)*—L,(B)™,
by the same formulas as in Theorem (23) then
Ap*(g, B, 9, w) = {(lq("m)}fc’ TSens PRah)}heH
and
AP};OG (¢, B, D, W) = {(lg(b)}foa LG PR‘ﬂz)]heH

are internal approrimations of L (B)°°, and the following estimations
are valid:

v, I < MD [BX,,, FIN®eT4), PR, fI{ < MD |f|f>t45™),
|IF —PR,rs, F[
< MD2CT (g, 5 , i) MONPEASTDSTE)NEX, F; MX (3, #)omw)
for every regular bounded A = B and every bounded a < 7™;
s, FICOAST) < MD|PIED, PR, fIFR@ST™) < MDf |,
|F —PR, 15, F||SBER4STRSTY) < MD2OT (g, 7, )MCE(F'; MX (9 , i0) o maw)
for every regular bounded 4 = B and every bounded a c b.
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Proof. We put in Definition (2) either (for Ap,)
U=V =L(B)", |Fly=IRD,Fl,, VheH |FI] = |Fly

or (for Ap,) _
U=V =L/(B)" |Fly=I|RD,Flg,

VieH |FIf 4 = IBRD gn5—pn Fllgs

where A runs over all regular bounded subsets of B. The applying of
Theorem (23) allows us to prove Theorem (24). m

(24.1) Remark. Theorems (23) and (24) remain true if we replace I (+™)
and I, (r™)°° by 1,(b*) and I,(b+)"°, respectively, where

b+ = nb(B, STd).

This follows from the fact that supp<w, F) c bt. m

The same partition of unity can also be used to approximate the
space C°(B). To obtain an internal approximation, however, we have
to assume according to Definition (2) that the funection 9 used for building
the prolongation operator is taken from pef*n(r™—C°(R™), that is,
every ¢(x) is continuous.

The more detail investigation of this problem will be performed
in the next section.

5. Approximation of the spaces W7 (B) and W_ 7(B)

To approximate the spaces W5 (B), W, P(B) we need functions of higher
regularity than pu}*. Let us first define smoothing operators smy by
the formula

(25.1) if # epul, K c m, then smgd = 0pINg0.
The following lemma can be proved.

(26) LeMma, If 9 epuf, K = m, then smgd e (™ SWEE( R™")  and
Dysmgd = dxv. Moreover, sSmgd salisfies conditions (18.1-5), that is,

smd e pul, The stencil of smyd 4s equal to ST (smgb) = STH — e &~
(the symbol k' wag introduced in (6.3)). If, moreover, ¥ e pul, then
Smg? € pul.

Proof. Let us start from the case where K is a one-element set, for
ingtance, K = {k} (for simplifying we will write % instead of {k}). From
the definition of smg and agsumption (18.5) for # we obtain

A A _ - - “~ — G’ “
smy0 = 0, IN,0 = mw; (85 IN,G —IN,b) = mw; ' DF F IN,© .
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Similarly as in the proof of Lemma (10.6), we can show that
(26.1) smy (-, X) = mwy ¢, FS{"'XHMWI‘)k(X\k)
at almost every X e R™.

‘Hence sm;5 satisfies (18.1). To prove (18.2) let us observe that

[sm; , fe](X) = mwi'([?, fc], FSFeYetmvey, (X ,)

= mw; ' (FC, FS{rXk+™ky, (X ,) =1,

what follows from (26.1), assumption (18.2) for ¢ and the theorem on
the integral of a series of nonnegative functions. The proof of property
(18.3) can be carried out similarly as the second part of the proof of Lemma
(10.6) with ¢ = 1, using formula (26.1) and properties (18.1,3). We obtain
at each z e¢™

(s, (2), FC) = llsmyd (2)l, = mw, Imw;'d (2)]l, = 1.

Now, if X¢ NB(», ST9 —e),.) then for every s satisfying 0 < s < mw,,
the point X - s-¢, does not belong to NB(x, ST9). Hence by applying
formula (26.1) and assumption (18.4) for ¥, we obtain that sm,t (z, X} = 0,
what was to be shown. Property (18.5) of sm,0 can be proved by applying
(18.5) for 9 and property (9.11): for every ¢ e I™

B, = 8pIN, 0 = 8} IN, (TS*™%ts's) = TS ™ ts!5, IN,» = TS ts'sm,s.
Therefore sm,? € puf*. By using Fubini’s theorem it can be shown that
sy, (sm,0) = sm,(sm,d) = By 0 for 4, kemm, ¢ £ k.
Hence smg9 e pu?* for every K = m and by applying Lemma (9.10) we

obtain that smg? e (r’”—>WﬂK"(R”‘)‘°") and Dysmzt = dgb.
The last statement of the lemma can be proved by using Fubini’s
theorem. m

Let us now define operators sm*: pcf—pel in the following recur-
rent way.

(27.1) DEFINITION, If 9 € pul® then sm% =17 ;
A — ktera A
if 5 epul, kel™ k>0, K c m, then sm %9 = smg(sm*s);
4

!
if 0 =3 sb% v'epul, kel™ k0, then sm* = _El.s'.;sm"v.
1=l i=

The following lemma can be obtained from Lemma (26).

(27.2) LEMMA. If ¢ epul, k e I™ k> 0, then sm* b e (r"—>W* (R™"°) and
Dlsm*d = 8*sm*p for every 1 & I™ such that 0 <1< k; moreover,
sm*s satisfies conditions (18.1-5) (with ST (sm*d) = STd —k"),
that is, sm*s epul. If % epef then sm*s e pcf.
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It follows from Lemmas (27.2) and (17.5) that
{27.3) sm*“ G = Dg(inksm*s) for every 0 epul’, K c m, k> eg.
Formula (27.3) will be used for constructing operators sm® when % is not
a nonnegative vector; in this case, however, sm® is defined on a subset
of pei.
Let us first introduce the following definition.
{27.4) DEFINITION, If K < 7, ¥ & pol, then the operator smz is defined by
smgd = Dginko.
Let us investigate smyz. The following identity is true.
SIE D = Z Z (—1)meMinelgm=g
McK LaM
Moreover, Definition (27.4) together with formula (27.3) yield for L < A

—A . % % A W ~
smzv = Dping(Dy pinge 781y V) = Dty 8myp 70

the derivative can be replaced with the summationl because of assump-
tion (18.4). Further, it follows from Definition (27.1) and assumption
{18.6) that

2 (_1)neM+neL]-_n;£sn]M\L,ﬁ — 2 (_l)neM+neLin;u {n mnsma(im,‘;i}
LcM LeM igdl el

_—_Héi”inf(éi—smléi)..
¢M  deM
Bince according to Definition (18) at each point z; er;
SUPP®, (%) = NB(z;, 8T9,) and &,(z,) < mw;'FC,

and because of Liemma (26)

SOUPPsm,(s;) = NB(wz,, STo,—1"),
we conclude taking into account Definition (17.1) of in} and property
(18.2) of 9, and sm!$, thast

SUPP [in} (6, —smis,) (w;)] = NB (x;, STv;)
and

lin} (9, —sm',)(z,)| < FC.

Hence we have proven the following lemma.

"

(275) LEMMA, If K« m, 73 epc'g", then Smﬁ’ﬁ c (?'m%-W—eK"(Rm)lOO) and

SMp ¥ = 2 Dyliag s
McK
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where §5; = [] v; [] inf(3,—sm'4,). Moreover, al each zer™
i€M  deM
SUPPH,, (x) =« NB(x, STo), [ (2)] < cv\MFO.

The following formulas can easily be obtained from (27.3,4) and
(17.5).

(27.6) smz(4*sm*s) = cve 4™ EDgsm*s i I—efp =0, k> 0

mz(A%sm*$) = A*sm" K it k—ex=>0,1>0.
Hence we introduce the following definitions.

(27.7) DEFINITION. If s € I™, s > 0, then the set puj < pu® (pci* = pef)
i8 defined as the set of all functlons ? of the form

A

v =sm'v0+ 2 t, AMsm* 0},

o<igs
where 3¢ e pu™ (pel®, respectively), ¢, € R for each I; for » € pc™ we
define similarly as in (19.3)

k
md,(9) = {led Zsiw =1, 231_1 w epu’"}
i=1

=1 tml

(27.8) DEFINITION. The operator sm™': pc;"—>(rm—>-W"+"(R"‘)‘°°), where
I<ste It = Zl &; 6(l; > 0), is defined in the recurrent way:

=1
if K = 7 then sm ~x Ky =smz?;
it K< m 0<I<8+6 g, then sm_ Fp = sz (SM D );
if i>0, 0<I<s+e then sm~% = sm~}(sm')
for cach ¢ e pc™
Let us now investigate the distribution sm~'9. First, let us represent
it in another form. If % e pe™ has the form as in Definition (27.7), then
for fixed I < s4e it can also be represented as the sum

(28.1) i= D bydmsml-0t-DTongnl
ogng(l—e) T
where
’DM — sm s—(l—e) T —(~! )+’U°—|— 2 tiA*isma—(l—e}++(—t)+—iat"
o<iga—(I—e) T

pul — pro-—atgy(-0Fge=d-a¥+n  for < n< (-0,
bol = 1’ bﬂl = tn+s—(l—e)+ fOI‘ 0 < ﬂl (Z —-8)

49 — Banach Center t. XIII
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Hence by applying (27.6) we obtain the formula
(28.2) sn.l—zq; — Z bnlmWnDnsm(l—e)‘l‘—l'FQ‘,nl,
ons(l-e)t

which will be useful in the following considerations.

Formula (28.2) together with Lemma (27.5) yield that the support
of sm~% (») is bounded and thus if F e WE(R™)', It ep, f el (r™'o,
then the dual pairings (¥, sm~ %) and [f, sm~% ] are well defined. Let
us also extend the definition of the dual pairing (sm~%, F> onto the
case when F € WP(B), B« R™ According to formula (28.2) it iz suffi-

cient to consider the distributions of the form D*smzé. First, if ¥ € W2 (B),
then BX,, I e W2(R™) and we can define in the natural way
(28.3) if k+ex €p then (D*smzpd, F) = (D¥smgv, BEX,, F)

VF e W2(B).

The above definition cannot be applied if F e W1 (B). In this case,
however, we use Lemma (27.5), which yields that for every G € W% (R™)
the value of (D*smz%(»), > depends only on RDyg,s75 @, therefore
it is reasonable to define

(28.4) it k+ex cp, F e Wi(B), NB(z, ST?) = B, then

(Dtsmzpd (2), Fy = D} Liy(), D*DiF),

McK

where #,, are taken from Lemma (27.5).

The following two formulas can be obtained from Definitions (27.1)
and (27.8).

(28.6) It Fe WE(R™), vepel’, 0<<i<s+te tep, 120, I+ -7 ep,
then

" (F, sm~9) = (DY, sm™ >,
(28.6) If fewZ(r™), kel™ v epc™ 0 1< 8-+%k+e then
D'[sm*s, f] = [sm*~*2, &f].
Let us now estimate the norms of ¢F,sm%) and [sm*v, f].

(29) Lemma. If few?(r™), b epuf, k= UB(p), then [sm*s,f] e W2(R™)
and

l’[smké ’f]”p,q 5\<. "f"p,q'
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Proof. If © epuf* then by applying formuls (28.6), Lemmas (27.2)
and (20.3) we obtain for every lep the inequality
ID [sm?s, £ 1l = Ilsm®8, 81, < 18, -

Hence the lemma is true.

(30) LEMMA. If Fe WK (R™), K < m, 5 epu®, then (F, smgo > el (+™)
and

IKF, smgd — ), S VLS D' ovy Dy Flly,
P McK

where the number VL is defined by VIH = (UP» —LW9)".
Proof. According to Lemma (27.5),

(30.1) IKF, smzd =)l < D) IKD3F, G2l

P#+McK

From the estimations in (27.5) for §,, and Hélder’s inequality we have
in the case 1< g¢< o

Vo er™ [ KD3uF, (@)
< [ wyP@prax( [ evgevax)
NB(x,STv) NB (z,5T1)

Because of (18.9) the volume of NB(z, ST%) can be estimated by mwVIsd;
hence we obtain the inequality

KD3F, dadii<ev D) [ IDRF(X)PAX(mwVLH) vy,
Ter™ NB(z,5T 1)
< v VL9 | Dy PIS(VL 5 )2 evi evly.

Thus, by substituting this inequality into (30.1) we obtain

IKF, smzd — 3, < VLG ' evy Dy Fll,.
 BEM K
If ¢ = oo then the required inequality directly follows from (30.1)
and (27.5). If ¢ = (g«, ¢i, L) then the proof can be carried out similarly
as in Lemma (20.3), starting from inequality (30.1) and using the esti-
mations from (27.5). m

(31) LEMMA. Assume that p e SL™ and the vectors k, 1, s € I™ are such that
UB(p)<k s=(—et and Viep (I-9)*+iep. Let v epul
wepul If FeWE(R™) then

(P,sm~)y ew?(r™), [sm*d, (F,sm~'w)>] e W2(R™).
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Moreover, there erist constants KA, KB, KC e R, and KD € R™, such
that for every I e Wi(R™) and i e p the inequalities hold:
16°CF y sm™ )], < \D' Py + ( 2 R poi (1) 81— 1, W) (D" P, +-
ne peil\ ] )
+ > mw" 2 KBy (w,s,1—1,n, r)MC,(D""'F; mw, r);
ne(poi)t o<r<e—(l~i—g)t
D (F — [sm™ , CF, sm™w)])ll, o
S KO(#,w, g, k—1i,1—1, $YMC,(D'F; KD (%, 0, k—1i,1—i, s)omw)+
+ 2 mWnKApei("bJ 8y l“'i) ") “-DnHF“g‘[‘
ne(pSH\{0)

+ 3 mwh ) KBpoi(th, 8, 1—1, n, r)MCy(D"*'F; mw, 7).
ne(pei)t V<r<g—(l—i—e)t

(KA, KB can be dertved from inequality (31.6) and fulfil estimation
(31.9), KC, KD are defined by (31.10)).

Proof. Let us denote (I—e)t by j,I1t—(l—e)* by ex. Following
formula (28.2),
(31.1) (P, sm ') = Z b, mw™ (D**F, smzw™).

05n<y

Let us thus investigate the function «™. First, if iem, & epul,
G e L,(R™"°, then (18.5) and (9.6) yield

’
MW, a A

(A%, @ = (bs73 —4,G) =(TS % —4,6) = &, DF " G,
hence we obtain by induction )
(31.2) (A2 @) = (¢, DF* &> for every kelI™ k>0.

As can eagily be checked, (31.2) remains true if wereplace 2 by #,, oceurring
in Lemma (27.5). Hence,
(31.3) (F, sm~w%> = (F, smpsm®t =D 0y 4
+ 2 t,(DF’ . F, Smisms—ﬂ(—lﬁ—tﬁ’i)!
0<is—]
and if 0 < # < j then

(31.4) (D*'F, smzi™y = (DTS, D*"F, smpsmDFps—itny,

For cvery G e W.K'(R™" and # epu” by applying Lemma (30) and
(20.5) we obtain the following inequality

(31.5) IKG, sme&)ll, < [KG, 23]l + <G, smg 2 — 2D,

<|1G|lq+VL£ Z eV |1 D2 Gl -
PAM K
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If we estimate the right-hand sides of (31.3,4) according to (31.5), sub-
stitute the obtained results inte (31.1), and introduce the notation
CS(w, §,1) = max ({VL(sm* 0440y 0 < 4 < s—jju

U {VL(sm-2% 927+ 0 <4 < j}),
then we obtain

(3L.6)  IKF, s~ < | Pll,+08(, 5,7) Y ovIDy Fll,+

B#McK
+ 3 M {IDFL g Pl +08(, 8,) 3 ovar IDFL g Dy Bl +
0<ia—j B#M=K

+ D) lbylmw {[DF*, D P, +08 (i, 5,1) 3 OV 3¢ D2, Dy D Flh

0<n=<} B+xMcK
The applying of Lemma (10.6) yields
(31.7) IDF? o D"F|l, < mw! | D"HiF), £ «diep,
IDF. e D"Fll, < mw? |DF” . D"*F|, if an+gept, r=0, r+g =1.

By substituting (31.7) into (31.6) and changing the order of summation
we obtain

(3L8) IF, sm~' ol < IFly+ 5 mwKA, (i, 5, 1, n)| D"Fll, +

nep\ (0}
+ M mw® > KB,(d,s,1,n, MC,(D"F; mw, )
nep+ 0<rse—]

(KB is not uniquely determined), where

(31.9) 2 KA;:J('&’;&:Z:“)"I" Z 2 KBp('ﬁ’ssﬁl:”:")

nep\ {0} nept 0<r<s—i

< CS(w, s, 1)27 % 2 It
i s
To obtain an estimation of |8°(F, sm~'w)||, let us remark that according
to formula (28.5) for every iep
" (P, sm~'wd = (DYF, sm*~ ),
and then apply inequality (31.8) with 7,1, p replaced by D'F,1—1, p Of,
respectively. Now, by applying formulas (31.1,3) we obtain
I — [sm*3 , (B, sm~0)]l, < 1P~ [sm*6, (F, sm*~I+=D T3, -
+ |Iism*5 , (F, sm? =700 — smy s =T+ Ry -
+ 3 (tlilsw*6, (DF P, smzeme = +-0¥=ih ) +
p<i<s—j

+ D) bl mw" [sm*s, <DF, smzd™>],-
0<nej
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The first term on the right-hand side can be estimated by using Theorem
(23), the second one by applying Lemmas (20.3) and (30), the last two —
by taking into account Liemma (20.3) and further as in the first part of
the present proof. Finally, we obtain that ||F—[sm"s, (F, sm~%b)]||,
can be estimated by the sum on the right-hand side of inequality (31.6)
with ||F'fl, replaced by the number

(31.10) CT (g, sm*s , sm*~#+-DFHo)MC, (F'; MX (sm*5, sn1*"“’+“’)+zb°)omw),
which will be denoted by
KO(d,%,q,%,1, s)MC,(F; KD(v, w, k, I, s)omw).
Moreover, by applying formulas (28.5,6) we obtain for every i ep
DYF —[sm*d , (F, sm~)]) = D'F—[sm* %, (D'F, ts’sm* % }].

Therefore our lemma is true. ™
Similarly as in the previous section, let us formulate the following
‘corollary.

(32.1) COROLLARY. Assume that p, k1, 8,9,% fulfil the assumptions of
Lemma (31). Let

BcR", b=sb(B, |J ST@")—(s4¢—1)"),
bSn<s
B~ [mw]= 8B(b, STy — k"),
If F e W2(B) then
(F,rdysm~'w) ew)(d) oand [sm*$, (F,rd,sm~wd] e WE(R™.
Moreover, the numbers

16°<E, rdysm~illy, |1 DH(F ~RD5[sm*5 , (I, vd,smio) ) [ =

can be estimated by the terms on the right-hand sides of imequalities
from Lemma (31).

Proof. By representing sm~'% in the form (28.2) and applying
Lemmas (27.2) and (27.5), and formula (13.9) we come to the conclusion
that if zeb then SUPPsm "w(r)c B, and if X e B-[mw] then
supp (sm*s (-, X)) < b. Therefore the corollary can be proved similarly
a8 Lemma (31) using Definition (28.4). m

(32.2) Remark. The condition occurring in the agsumptions of Lemma, (31),
Viep I—i)t+iep, is equivalent to the condition I< LB(p*).
Hence if p = {kelI™: [kl < n}, m =2, then the only vector sat-
isfying this condition is 7 = 0. )
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Proof. Let us take an arbitrary ¢ e p*. Then (I—4)* 44 ep if and
only if (I—4)* =0, that is, 7 <4, what was to be shown. m

(33) LmmMA. Assume that F ¢ W;»(R™), F = ECZ(F,), and %> UB(9).
Let wepud. Then (sm*n,F) ew P(r™), smhw, F) = ec?(3,),
where 2, = {sm*~'w, F)>, and for every fewd(r™), [f, (smFw, F)]
= ([sm*b, f], F).
Proof. Let f € wE (*™). By applying Lemma (29), [sm*®, f] € W5 (R™).
Thus, since F = EC}(F,), we have
[sm", f1, F» =2<-D1[Smk’:be]; Fy =2<[D15mk"27’f]9 Fp,
lep lep
and by using Lemma (20.6) combined with Lemma (27.2) we obtain

DD smtiv, £1, By =[ 3 (D'sm*io, By, f| = [(sm*®, F, f1.

lep lep
Hence

[(sm*w, Fy, f] = {[sm*w, f1, F).
Moreover, formula (28.6) and Lemma (20.6) yield
DD, f1, By = Y (sm*b, 81, By = Y [sm* 0, Fyy, &f).
lep lep lep

Thus, the lemma is proved. m

(34) LEMMA. Assume that fewg?(r™), v epul, and l e I™ i3 such that
1<s+e I<LB(p*). Then [f,sm™%6]e W;P(R™ and for every
F e Wi.(R™)
F, [f, sm~9 ]y = [f, (F, sm~'9 )],
Proof. It f = ec?(f,) then following Definition (27.8)
[sm~3,f] = Y [*sm~'d,f,] = ) D™[te*sm*~4, £,].
ken kep
If for every %k € p we represent sm*’9 in the form (28.2) and denote
(I—k)yr—(1—%k—e)t by exq), We obtain
[ts*sm*~'9, f,] = Z Dy gk TOW" [ D" Sy 0™F 8875,
s<ng(l-k—e)t

and hence by applying Lemma (27.5),

[sm~*9  J1

- 3 (), Dt g
kep osng(i—k—e)T M cK(k)
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Therefore we have the formula

(34.1) <(F,[sm7'%,f])

YD YD Y S e e
kep osns(i—k—e)T McE(k)

from which the representation of [sm™* ,f] can be derived, since for

every (k,n, M) from the domain of summation, k+n - ey, € p. Moreover,

because of the estimation of #;, given in (27.5) we can prove similarly

as L.emma (20.6) that for every %, n, M

DR, G TR = KD OME, 3Ry, tH.
Hence, applying (27.5) and (28.2) once more we obtain
k+n+e

( -1)‘R+E'M[ bn,l—k mw" <-D
osn<(i—k—e)t MKk

MF “nl k>

= (D¥F, sm*~1p).
Thus, combining the above formula with (34.1) and (28.5) we get

(3¢.2)  (F,[sm~'6,fIy = 3 [(D*F,sm* 5}, ts"f,]

kep

= N[5, sm716 ), fy] = [(F, smi5), 11,

kep
what was to be shown. W

(36) LEMMA. Assume that F € W, P(R™) and the vectors k, 1, s satisfy the
inequalities k > UB(p 1<s+e I <LB(p?). Let ¥ e pul, w e pu™
Then [sm‘sz (smfo, FY]e W P (R™) and there ewist constants
KE(w,?,k,1,8)eR, KF(w,9,k,1,s) e R" and KG(w,l,s)eR
such that the following mequalzty holds

|IF — [sm~w, {sm*, FY]_,.,

< KE-MC (F; KFomw)4+KG|mw|: |[F]_, ,.

—b.q

Proof. The first part of the lemma is a simple consequence of Lemmas
(33), (34). To obtain the estimation we have to investigate the term
(G, F—[sm~p, (sm*3, F)]> for every G e WE(R™ according to the

definition of the norm. Let us assume that F = EC;’(E )y le. (G, F)

P

:-{2 (D'@, F,>. Following formula (34.1) and Lemma (33) we have
e

(35.1) <@, [sm~4b, <smFd, B 2 2 2 (-1)‘"*'3'1”‘><

1@1} osn<(l—i—e)t M cK()

X by 1mw"(DHMEMG [§% 7% ts~ sm* %0 , B 1) .
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Let us first consider the term

S0 = D) {<D'G, By —by,_(D'@, (95, ts~* sm*~45 , F D}

tep

Following Lemma (27.5), §5'~* = %"~' ¢ pe™, and according to formula
(28.1), by;_; =1, therefore

(85.2) I8l < D ID'Gl IF; — [48%, t5= Gsm*=45 , T,

iep

< D) ID*Gllp md, (@) OT (g, %™, sm*~*5) x

{ep
XMO, (F;; MX (0™, sm*~*§ ) omw},

what follows from Theorem (23). Following Lemma (27.5), for every
i, n, M

Lg% ts~* Com* =% , F 510, < VL (™) ev,y IKsm*— , F>|,,
hence

1+ﬂ+£

(36.3) by mw" <D M@, [, tsT em D, BT

n+e - 1 e
<mw Hip, VL@ DM By,

By substituting estimations (35.2) and (35.3) with n +e3; # 0 into (35.1)
we obtain the required result. o

With the aid of the lemmas just proven the following theorems can
be stated.

(36) THEOREM. Asswme that B < R™, p e8SL™ and ¢q 1is finite. Suppose
further that 9 € pe?, w e pc™ and the vectors k, 1 from I™ fulfil the
inequalities k> UB(p), < LB(p™), I <s-+e. Let there em’st a con~
stant MD independent of the mesh width such that mdy(?) << MD,
md,(w) < MD. ZLet b =sb(B, |J ST(#")—(s+e—1)"), B [mw]

I<n<s
= SB(b, STY —k”). If we define the operators rs;’': W?(B)—wZ(b),

PRY: w?(b)->TE(B), rs;%: W2(B)—>w? (™), PR¥: w?(r™)~WZI(B), by
the formulas

rs;'F = (rd,sm~b, Fy, PRYf = RDg[sm*s, f1,
rs;'F = (sm~w, F), PRf = RDg[sm*s, f],
then

Api(P: q, B) '5 ’ k: ":D: '_l) = [(wg(b)h) rsi—hl’ PRi‘ch)]helI
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is an internal approvimation of W=o(B), and
_ Ap,(p, 9, B, v, k, w, 1) = [(wi’(""”’)m 1’35;!1 PRffh)}eeH
£8 an external approzvimation of ng’(B). Moreover, there exvist constants
KH(w,1,s), KI(¢,w,%k,1,s)e R and KJ(9,w,k,1,s)eR™ such
that
lies; ' Bl g < MD (L +EH [mw|) [ Fllp,q,
IPRFflp, e < MDfllp,g  for J=1,¢;

|F —PRra; ' FIE ™) < MD* KI MO, ,(¥; KJomw),

|F —PRErs; |, , < MD*KI-MC, ,(BX,F; KJomw).
The first inequality can be replaced by an inequalily following from
Corollary (22.4), similarly as in Theorem (23).

Proof. The part of the theorem concerning Ap; directly follows from
Definition (28.4), Lemma (29) and Corollary (32.1), the second part can
be proved by applying Definition (28.3), Lemmas (29) and (31). =
{37) THEOREM. Suppose that the assumptions of Theorem (36) are satisfied.

Let

b = sb(B, STé —%"), B~ [mw]=SB(b, |J ST(@")—(s+e—1)").

0sn<s
If we define the operators rsf: W7?(B)—»w;?(b), PR;': w;?(d)
W ?(B), tsf: W P(B)—»w;?(*™), PR w?(r™—~W;P(B), by the
Jormulas

rof B =rd,¢sm*, Fy, PR;f = RDgylsm™'w, f],
sk F = sm*s , B, PR;'f = RDg[sm~", f1,
then
Ap,(—p,q, B, ﬁ” -1, "37 k) = {(’w;p(b)m rsf, PRE;I)]he_H
and
Ap,(—p,q, B, w, 1,9, k) = {(wz? ("™, ts}, PRI} rer

are internal approzimations of W P(B). Moreover, the following esti-
mations are true:

Iesf Fll_pg <MD |Fll_pq, PRy < MD(1+EKH mw)If[l_pes
j =i e
|F —PR;rsf F|| 5, =) ¢ KE-MC_,, ,(F; KFomw)+KG|mw|: [|F_p
|# —PR; 18t Fil_, , < KE-MC_, ,(EX,, F; KFomw)+KG [mw||[|Fll_,4

where the constanis KE, KF, KG, KH are same as in Lemma (38)
and Theorem (36).
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Proof. First, let us observe that according to (9.3),
(&, F) =(G,BX,F) for every G ¢ WL(B), F e W;?(B),

(9, f]1 = [g,ex,f] for every gewl(b), fewy?().
Thus, following Lemmas (33) and (34) we have

(&, PR'f> = [f,15;7'6] and [g,rsfF] = <F, PRg),

where PR} and rs;? (j = 4, ¢) are the same as in Theorem (36). Hence the
first two estimates can be obtained a8 in Theorem (36), the last two follow
from Lemma (35). m

Let us now consider an approximation of the spaces C7(B). In the
end of the previous section it was said that to build an internal approxi-
mation of (°(B) we need a function % € pef*n (r™—C" (R™)). As can easily
be seen, such a condition is fulfilled if we take 9 = sm*, £ e pe*. But
at the same time we can take a larger class of the functions # used for
building the restriction operator for an internal as well as external approxi-
mation. Indeed, if # € pe]* then for each « e+™ the distribution sm~°Z (z),
which is a linear continuous functional on the space W¢ (R™), can be
prolongated in natural way onto the space C°(R™). An example of such
a distribution is sm~% (where ¢ iy the characteristic function defined by
(18.7)), which is the Dirac distribution

{sm~% (x), F) = F(z+6omw).
Thercfore the following corollaries are true.

(38.1) COROLLARY., Let B = R™ Assume that ¥ e pel', wepch, and the

vectors k,1 from I™ fulfil the inegqualities

ifqg = oo, p e SL™ thenk = UB(p)+e¢ I <LB(p*)+e6l<s+6;

if ¢ = (oo, gi, K), p € SLE, then k> UB(p)+ex, I <LB(p*)+

+6’\K! lé 8+6;

if ¢ = (gv, oo, K), p eSLE, then k>=TUB(p)+eg,

I<LB(p*)4ex, L<s+te.
Let the symbol qc be obtained from g by setting * insiead of oo. If
we define the sets b, B~ [mw], and the operators rs;': WE (B)—>w?(b),
PRE: w2 (0)>W2,(B), 8] : WE(B)>wi (™), PRE: wl (™)~ WE,(B),
by the same formulas as in Theorem (36), then Ap;(p,q, B, v, k,w,
—1) is an internal approzimation of Wi.(B), and Ap,(p,q, B,",
k,w, —1) is an external approximation of W2 .(B). The estimations
given in (36) are satisfied. Moreover, if the vector k satisfies only
the inequality % > UB(p), then PRY: w?(d)—>W? (B), PRE: w2 (™)
—~W?(B), and the operators quoted above form only an exiernal ap-
proxzimation of Wi, (B).
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(38.2) CorOLLARY, Let B = R™ Assume that © epel, w epc™, and the

vectors k, 1 from I™ fulfil the inequalilies

ifqg= oo, peSL™, then k>=TUB(p)—e, I<<LB(p*)—e,

1< s+te;

if ¢ = (o0, qi, K), p € SLE, then k> UB(p)—e £,

IS LB(p*)—e g, I<s+¢;

if ¢ = (qz, oo, K), p € SLE, then k= UB(p)—eég,

I<LB(pH)—eg, < s+e.
Let the symbol qo be oblained from q by setting * instead of co, If
we define the sets b, B~ [mw], and the operators xsf: W2 (B)—w;?(b),
PR;': w;?(d)—WF(B), vsk: W, P(B)—>w,*(r™), PR;': w ?(™)
W (B), by the same formulas as in Theorem (37), then
Ap,(-»,9, B, w, —1,9, k) and Ap,(—p, ¢, B, w, —~1, 9, k) are in-
ternal approximations of WP (B). The estimations given in (37)
are true. Moreover, if the vector 1 satisfies only the inequalities
IS LB(p"), 1< s+e, then PR w;? ()W, 2(B), PR, % wi® (™)
W, #(B), and the operators quoted above form only am external
approzimation of W F(B).

Similarly as Theorem (24), the following result concerning the ap-
proximation of local spaces can be proved.

(38.3) COoROLLARY. Theorems (36), (37) and Corollaries (38.1), (38.2) remain
true if we substitute all the spaces ocourring there by the local spaces
with the same indices. The estimations of the seminorms are analogous
1o those obtained in Theorem (24).

The last question discussed in the present section is the existence
of a reflexive approximation of W% (R™), i.e. an approximation satisfying
(2.4). The problem is solved, however, only in the case when p = n'’,
E=1=n.

Let us thus congider Ap;(n’, g, R™, ¥, n, ®, —n). According to the
definjtion of Ap,, condition (2.4) is equivalent to

Vf € ’WE" (»™) <Sm_n{0; [sm"’?) y 1 = f)

and hence to

(39.1) Vo, y er™ (sm™™b(x), sm™ (y)> = cev1d(z = 9),

what can be proved by using Lemma (33). Let us take

(39.2) 9 =6, @ = > 4" rgmnie with 4 = 1.
o<<i<(n—e)t

Following formulas (28.1,2),

sm™™p = 2 t,mw'Ditsgsmygé, where K = {j em: n; > 1}.
Iign—e) T
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Let us compute the left-hand side of the equality in (39.1). The appli-
.cation of formula (9.2), Lemma (27.2) and Definition (13.8) yields
{sm"¢ (w), Dismge) = (D*smn (z), smze) = (—1)11¢a*%sm™ ‘e (x), smgé>
= (ts7*0"sm™ ¢ (x), smzc).

Further, by applying Definitions (25.1) and (27.1), condition (18.5),
formula (28.5) and Lemma (9.10), we obtain the sequence of equalities
(for j = ¢)

(516 (), tspsmged = (OLINgsm' “%é (z), tapsmgd)
— (INgsm' %G (z), dptspsmpé)

= (DgINgsm' Eg(z), 6>= ¢sm' Eé (x), 0
{the third term should be understood in the sense of Definition (28.4)).
Hence
(sm"6 (2), Dismgé (y)y = ¢ts~*osm”™ " Fé (0), 6(y))
and thus condition (39.1) is equivalent to
Yz, yer™ 2 1 (ts_"/]‘smn_{—eEé (), é(y)> =mw*é(z =7y).
o<i<(n—e) T

Following (18.5), it is sufficient to consider an arbitrary but fixed point z,
e.g. # = 0, and following Lemma (27.2) and property (13.9), it suffices
to take y from

ts~inb(0, i — (n—i—eg)") = {y er™: —(n—e)omw <y < 0}.
oi<(n—e)t
Hence we have obtained the system of [] n; linear equations with the
jeK

same number of unknowns ¢; (including ?,). It is sufficient, however, to
consider w as the product of one-dimensional functions,

~ A s 3 _— +__ —_l A
w(z, X) = [ [ (e, X;), where i = D sty smr R

jem ogk(ny—1) T

We have thus for each j € K the system of linear equations

(39.3) 2 shmw, (ts~F A smm*1¢4(0), 6,( —1-mw;)) = 8y,
DSkSnj—-l
l1=01,...,7m-1,
and for j e \K — the single equation -
sgmw_;'(éj(o)! 61(0» =1,
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which is satisfied with s} = 1. As can easily be checked, the transposi-
tion of the matrix of system (39.3) satisfies the assumptions of Lemma
(40), formulated at the end of the present section, with n = n,and b, =1
for each k. By applying this lemma we conclude that system (39.3) is
uniquely solvable and that sj =1, hence #, = 1 as has been required.

Similar results can be obtained for Ap/(—n",g¢, R™ w, —m, 0, n),
therefore we have shown the following corollary.

(39.4) COROLLARY. The appromimations Ap,(—n',q, R™, w, —n,?,n)
and Ap,(n'’, ¢, R™ ¥, n,w, —n) are rveflexive, if 0, W are defined as
i (39.2) with the coefficients t; = H_ sgj and s, determined by linear
system (39.3). jem
At last, let us prove the algebraic lemma which has been used in
the proof of corollary (39.4).

(40) ALGEBRAIC LEMMA. Let us construct the sequence of matrices as follows.

A, = [“E’?)]i,j-o,...,n—u

where
n—1
a‘l("TiLc) = bn’ a,gl-l'l) = a"(iﬂi)l,j_a"sﬁ)l,j—l fO?‘ N = 1,
Je==0Q
1<esn, 0<j<n;
M =0 for 0<i<n—1,j=—1orj=n.

Then detd, = [] ((—=1)*7d,).

feml
Proof. The proof is carried out by induction with respect to #. If
n =1 then the equality holds. Let us assume that it is true for n = %.
Then

%
det Ay = D) (—1Yafi ) det Ay,
=0
where A,; is obtained from A, by striking out the row number 0 and
4th column. Let us denote the jth column of A, by cg"). Then following
the definition of A4,

k) (K k k k
Ajoyry = o8 o — e, ooy e — ey, o)y — o, ey o — ey, — )]
By the elementary transformations of the determinant we obtain that

detAk+1‘j = ( '_1)k_j det_A.k,
therefore

ic
detidy,, = D afftD(—1)*det A, = (—1)*b,, det 4y,

j=0
and our lemma can be proved by applying the inductive assumption. m
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