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Introduction

In this paper we consistently use the notion of differential space introduced by
R. Sikorski [13], [15] and we treat the subject from this point of view. As follows
from papers of P. Walczak [16], [17], for the particular case of differentiable spaces
which appear in this paper, our aproach is equivalent to that proposed by Aronszajn
and Szeptycki [1] and developed in papers of C. Marshall and M. Breuer [2], [9],
[10]. For all basic definitions we refer to Sikorski’s papers [13], [15] or to a paper
by Mostov [12], where a brief introduction to the theory of differentiable spaces
is given.

If M is a differentiable space (for short a d-space), then C®(M) denotes the
differential structure (for short the d-structure) of M. For a set {8,} of functions
on M denote by Gen {;} the smallest d-structure on M containing {8, }. The union
TM of all tangent spaces M, to the d-space M has the natural d-structure C* (TM)
called the structure of the tangent d-space to M (see [6]). If C°(M) = Gen{f,},
then C2(TM) = Gen({8; - n}v {dB,}), where =: TM — M is the natural projection
and

df.(v) :=v(f,) for any veTM.

Denote by TTM the tangent d-space to TM and let TM:, where v € TM, denotes
the set {V € TM; n,v = 0}, where m,: TTM — TM is the tangent mapping to =.

Below, by a Euclidean space E™ we mean the set of all real n-sequences p = (p°)
= (p', ..., p") with the usual scalar product. If it is convenient, the points of E" x E™
(resp. E*", E*", etc.) are denoted by (p', ¢%) (resp. (p', 4%, (p', ¢', '), etc.). For
0 < n £ m the Euclidean space E" is identified with the subspace of E™ spanned
by the first # coordinate axes.

Let fe C*(E"), h = (W)eE", K = (W)eE" and p e E". We denote
2Wf(p) 1= Y f.(PIH,
I=1

11° (163]
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o o f(p) = O fuPHKY,

Li=1

02 f(p) 1= 0w 0 f(p),
where f.;(p), f.ij(p) denote the respective partial derivatives.

In this paper, by a d-space we mean a space which is, up to an imbedding,
a differentiable subspace (for short a d-subspace) of a certain Euclidean space. In
[2], [4], [11] it was proved that if a d-space M is Lindelof, as a topological space,
and each point p € M has a neighbourhood U,, which may be imbedded in E”,
i.e., dmM < n, then M may be imbedded in E2"*!, For a point p of a d-space M
we denote by .#, M the set of all imbeddings x of an open neighbourhood U, of p
into E", where n = dim M, (we define E® as the d-space consisting of 1 point). It
can be proved (see [4]) that 4, M # Q.

We define the mapping j: TE" — E” by the formula

J(©) := (v(z")) for any v e TE",
where n', ..., n" denote the canonical projections on coordinate axes. The mapping
TE"> v+ (a(v), j(v)) € E"x E" is a diffeomorphism (see [6]).
Let M be a d-subspace of E" and let i: M — E" denote the inclusion mapping.

The set C°(M) = Gen {n‘|M} consists of all functions «|M where a is a C°-function

on an open neighbourhood U of M. We denote
v:i=joiv) = (v(n'|M))eE" for any veM,,

M, :=__j(M,) c E" forany peM,
T™ :={(n(v),v) € E"x E"; v € TM}.

It can be proved [4], [10] that M, ={he E"; dyx(p) = 0 for any x € C*(E"),

alM = const}.

The mapping TM 3 v+ (7(v), j  is(v)) € TM < E"x E" is the natural diffeo-
morphism of the d-space TM and the d-subspace TM of E?". Thus, in the above
manner, the tangent differential space TTM to TM may be identified with the d-
subspace TTM (:= T(TM)) of E*", and TM,, where v € TM, may be identified

with the corresponding linear subspace TM, (:= (TM),) of E?", These identifi-
cations are given by the formulas:

TM, s Vs (V@ o 7), V(d(|M))) € TM, < E,
TTM 3 (v, V) (n(9), v, V(2 < 7), V(d('|M))) e TTM < E*".

Let M be a d-space, pe M, n:= dimM, and x € .#, M (note that x: U, - E").
For brevity we denote

J_C,..B_l,,:=jox..(M,,) for any pe M,
oha(p)ly := aa(x(p)) forany peM,he M, acC=(E"), i=1,2.
We write ¢, a(p)|, instead of 9} «(p)l,.
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It is not difficult to verify that a sequence (v,) of elements TM converges to
a vector v € TM (in the topology of the tangent d-space, see [6]) if and only if for
a map x € .# ,,, M we have

x o n(v) = limxn(v,),

Xe? = limx,v,.
n

§ 1. The second tangent space to a d-space

PROPOSITION 1.1. Let M be a d-space, pc M and v e M,. The vector spaces
M, and TM} are isomorphic.

In fact, the isomorphism I: M, - TM; may be defined as follows:
Iw)(aom):=0,
(Iw) (do)) = lim (da(v + ew)—da(v))/e,
&—0
for any v € M, and any « € C*(M).
COROLLARY 1.1. We have
() dimTM} = dim M, for any v € M,,.
(b) dimTM, = dim M, +dim(z, TM,).
PROPOSITION 1.2. For any d-subspace M of E", any point pe M and any v € M,
the following relations holds:
(1) 7V = V(@ om))e E" for any VeTM,,
2 (V(d('|M)))e M, = E* for any V e TM},
where n': E" — E is the projection on the i-th coordinate axis.

Proof. The proof of (1) is trivial. For the proof of (2) take a vector V € TM,
and denote (¥{(dn'|M)) € E" by h. From the proof of Proposition 1.1 it follows
that there exists a vector w € M), such that

V(B) = (%) (6) = lim (dB(o -+ ew)— dB(2))] e
for any f € TM. For « € C*(E", M) we obtain

V(da) = lirg (0 + ew)(a|M)—v(a[M))/e = w(a|M) = 0.

Because d(x|M) = Y. a ; o n d(7'|M), we have
i=1

0 = V(d(lM) = D a,(p) V(d(M)) = dyalp).

=1
Thus h € M, € E" by an arbitrary choice of x € C*(E", M). m
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The following example shows that, contrary to the case of a manifold, the
equality

dimTM, = dmTM, if wv,v'eM,
does not always hold.

ExaMpLE 1.1. Consider a d-space M := {0}u{l/n; n=1,2,...} of E. Then
dimM, =1 and dimM, = 0 for other points x of M. Therefore

ITM ={(l/n,00€E*; n=1,2,..}u{(0,y); yeE}
and
TTM ={(1/n,0,0,0); n = 1,2, ...}3u{©0,y,0,7); 0 £yeE,neE}u
w{(0,0,&,7n); &, n€E}.
Thus dimTM .0y = 2 # | = dimTM,1).

PROPOSITION 1.3. Let M be a d-space,p € M,v € TM. Then
7w(TM,) = 71,(TMy,)
Jor any real o # 0,
In fact, the mapping TM 3 v - av € TM is a diffeomorphism for any a # 0.
PROPOSITION 1.4. Let X be a smooth vector field on a d-space M and pe M.
Then
T TMy () = M,.

Proof. According to [6], the vector field X can be identified with a smooth
mapping X: M — TM such that = o X = idy; 5o 7, ©c XW(M,) = M,. &

COROLLARY 1.2. Let O be the zero-vector of M,. Then
2(TM)o = M,.

DEFINITION. A point p of a d-space M is called regular if there exists an open
neighbourhood U of p such that
dimM, = dimM,
for any g € U. The set of all regular points of M we denote by M. .
It can be proved (see [6], [10]) that
1" M_ is an open and dense subset of M,

2° pe M_ iff any vector v € M, can be extended to a smooth vector field X
on M.

CoROLLARY 1.3. We have
(a) M, = n,(TM,) for any pe M_ and any v € M,,.

(b) The set {pe M; M, = n,(TM,) for any ve M,} contains an open and
dense subset of M.
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PROPOSITION 1.5. Let M be a d-space and v € TM. The following two conditions
are equivalent:

() 7a(TM,) # {0},

(b) There exists a sequence (v,) of elements of TM such that limv, = v and

n(v,) # n(v).

Proaf. It is sufficient to consider the particular case where M is a d-subspace
of E" and n = dimM,,,. Suppose (b) and denote p := z(v), p,:= 7(v,) for n
= 1, 2, ... Passing if necessary, to a subsequence, we may assume that the sequence
((p—pn)/|p—psl) converges (in E”) to a limit 4 (# 0). Note that
a(h,O) a(ps ‘U) = lim (“(P’ 'yn)_ a(P,,, 'En))/[P"PnI

for any o € C*(E?"), and J¢, gya(p, v) = O if «|TM = const. Consequently (%, 0)
e TM, and n, TM, # {0}.

Suppose that (b) is not satisfied, i.e., there exists an open neighbourhood
U of v in TM such that TMnU < M,. Consequently, if « € C*(M), then a o m(w)
= const = a(v) for any we U. Hence, for any vector Ve TM, we get 7,V (x)
= V(x o n) = 0; so (a) cannot be satisfied. m

§ 2. The set Z(TTM)

We define CP := C=(E"), C, .:={xeC=(E"); a|x(U,) =0} and & x(p)l«
= 02, ,a(x,p)forany ae CP, he M,.

NOTATION. Let M be a d-space, p € M and x € .#, M. We denote

P.M,:={heM,; 8 a(p), =0 for any a € C2,},
PM,:= () P.M,,

xe.,llpM

PTM .= | 2M,,
PEM

PM:={peM; M, = PM,}.

PROPOSITION 2.1. For any d-space M and any vector v e TM the following in-
clusion holds:

TMt « P(TM,).
In fact, from the proof of Proposition 1.2, for any ¥V € TM%, follows the existence

of a smooth curve ¢: (—&, £) > TM such that ¢(0) = v and ¢(0) = V. By [8] V
belongs to #(TM,).

CoRroLLARY 2.1. If V, and V, are vectors of P(TM,) such that m,V, = n, V>,
then span{V,, V,} ¢ #(TM,).

Proof. The only interesting case is that of dim(span {V;, V»}) = 2and =, V; # 0.
As Vi—V, e TM: <« #TM,, the plane span{¥,, V,} contains three .vectors such
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that any two of them are linearly independent. Thus span {V,;, V,} € #TM, (see
[8]). =

PROPOSITION 2.2. Let p be a point of a d-subspace M of E", let (p,,v,) be a sequence
of elements of TM tending to (p,v) e TM, p # p, for any n and let

h = lim((pa—p)/1ps—pl) € E".

Then (p, h) € n, (PTM,).

Proof. From [8] it follows that there exists a subsequence (p,,, va,) such that
the vector

V = lim((ps,—p, va,—0) [V | P, —PI* +|va,—2I* )
belongs to #TM,. Now notice that there exists a number ¢ such that (p, ch) = #, V.

PROPOSITION 2.3. Let p be a regular point of a d-space M. Then n (PTM,) = M »
for any ve M,.

In fact, if dim N, = n for any p € N, then dim TN, = 2n for any v € TN; hence,
T(TN) = PTN (see [8]), which implies the above statement.

COROLLARY 2.2. The set {p; n,P(TM,) = M, for any ve M,} contains a
dense and open subset of M.

In fact, the subset M. of M is open and dense in M.

§ 3. First and second derivatives of the coefficients of a Riemannian metric
Let U an open subset in E", W < U. We denote by Q(U, W) the set of all smooth
functions w(g, v) on TU = Ux E" such that
() w(g, av) = «’*w(x, v)
for any (¢, v) € Ux E" and any real « > 0,

(%) w(g,v) =0 for any (¢,v) e TW < UxE".

Denote by Q(U) the set of all functions satisfying only (x).

If M is a d-space, p € M, n = dim M, and x € .#, M, then we denote by @, ., O,
the sets Q(E", x(U,)) and Q(E"), respectively. It can be proved {8] that each w € Q(E")
is a smooth quadratic form on E”, i.e., there exist w;;€ C°(E") such that w(x, y)

= D w(x)y'y.

DEFINITION 3.1. Let p be a point of a d-space M. For a map x € A, M we
denote by #F M, (resp. ¥xM,) the set of all pairs (h, v) € M, x M, such that

ahw(p’v)]x = a{.ﬂw(x(p)s 3*7_)) =0
(resp.
% o(p, V)lx 1= %40 (x(p), xav) = 0)
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for any w € Q,.x. We set

FM,:= (\ F.M, IM,:= (\ LM, FM:={peM;M,x M, =FM,}
xe MM xa M M

and
IM: ={peM; MyxM,=FM,}.

PRrOPOSITION 3.1. Let M and N be d-spaces, let f: M — N be a diffeomorphism
andpeM. Then (h,v) €e FM, (¢ S M,) if and only if (fu h, fuv) € FN;;p)(€ FNypy).
Consequently, the equalities {(FM) = FN and (M) = N hold.

PROPOSITION 3.2, Let M be a d-space, p € M and x € #, M. Then:

() FM, = F,. M,

(b) If pe FM, then ¥ . M, = S M,.

The proof is obtained by straightforward calculations.

COROLLARY 3.1. Let N be a d-subspace of M, pe N and xe #,N. Then #.N,
c FM,and FN, c M, . Ifpe FM, then . N, ¢ M,.

PROPOSITION 3.3, Let M be a d-space, pe M, and xc MyM. Then ¥ M,
c F.M,. Consequently M, c FM,.

Proof. Let n =dimM, >0, (h,v)e S M, and weQ, .. We show that
apw(p, v)l = 0. Denote by (]) the scalar product in E”. It is evident that the function
w': E"x E" > E defined by the formula

o'(§, u) := w(§, u)(Elxsh) for any (§,u)e E"x E"
belongs to @, x. As djw(p,v)l; = 0 for any v € M,, we obtain
0 = ' (p,)lx = 2(hlh) 3w (p, V),

for any v € M,; hence dyw(p,v)l, =0. m
COROLLARY 3.2, ¥M < F M for any d-space M.

COROLLARY 3.3. If there exists a map x € M,M such that ¥ M, =M, xM,,
thenp e M.

PROPOSITION 3.4. Let M be a d-space, pe M, (U,x)e #,M, dimM, = n.
(a) The following conditions are equivalent:
1°pe FM.
2° If g and g' are two Riemannian metrics on E" such that
M x*g = x*g,
then
g.(x(p)) (@, w) =0
forany (v,w)eE"andi=1,2,...,n.

(b) The following two conditions are equivalent:
3 pe M.
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4° If g and g’ are two Riemannian metrics on E" satisfying (1), then
g.1;(x(2)) (v, w) = 0
forany (v,w) E"andanyi,j, 1 <i,j< n.
Proof. We omit the details of the proof, which is straighforward. In the following

we need only the implications 1° = 2° and 3° = 4°. To show them, it is sufficient
to notice that for two Riemannian metrics g, g’ on E" satisfying (1) the map

w(E"xE"> (9,0)— (g-£) () (v, v))
belongs to Q(E", x(U)). Hence, if p € # M, then
(g.l_'g.’i) (x(P)) (v, w)
= $(0,,(x(p) (@+w)~w,,(x(p)) @)-o, (x(p)) (W) = 0,
(8.,—8.1) (x(P)) (¥, w)
= %(w_ u(x(P)) (v+ W)—w, iy (x(P)) ("’)"w.u (X(P)) (W)) =0. =
LemMma 3.1. Let M be a d-subspace of E", pe M, n = dimM,, and let N and N’
be two submanifolds of E" of dimensions less than n and such that p €e NnN'.
(@) If p e F M, then for every w € Q(E", M—N)

2 w(p,uy =0 for any uec E".
(b) If pe M, then for every w € Q(E", M—NnN’)
3 wo(p,v) =0 for any veE"

Proof. Let f, f' € C*(E™ be such that N < f~1(0), N' = f'~*(0) and there
exist vectors A, h’ € M, such that h(f|M) = 8,/(p) # 0, k'(f'|M) = dw f(p) # 0.

(2): Take w € Q(E", M—N) and put &(q, w) := f(q)w(g, u) for any (g, u)
€E"xE" If pe FM, then {(h}xM, c FM,, so c')fd»(p,g) = aff(p)w(p,jv)+
+f(p)3£m(p,~g) = 0 for any v e M, = E". As f(p) = 0, we obtain (2).

(b): Take w € Q(E", M— (NUN")) and put
) @(g,9) := f(@) S () w(g,v) for any (g,v) € E"x E".

If p e ¥ M, then
o(p,v) =0 for any v € M, = E".

From (4) and the above equality we immediately obtain (3). =
As a consequence of the above lemma we obtain

PROPOSITION 3.5. Let M be a d-subspace of E", n = dimM,, and let g, g’ be
two Riemannian metrics on E" such that

Jj*g =j'¢,
where J: M—{p} > E" denotes the inclusion mapping. If p € FM, then
g(p) = g'(p).
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PROPOSITION 3.6. Let M be a d-subspace of E", pe M, m = dimM,, and let
N;, N,, N, N, be m-dimensional submanifolds in E" such that {p} = N,nN,nN;nN,
and no two of them have any other common points than p.

(@A Ifpe FM, then M & NJ\UN,UN,.

b)Ifpe M, then M ¢& N\UN,UN,UN,.

Proof. Without loss of generality we may assume that there exist functions

J1+ )25 [, fo € C2(E™ satisfying
) Nycfr'(0) for i=1,2,3,4,

grad fi(¢g) := (fm(‘I)’ ---1f!.n(q)) # 0
fori =1,2,3,4 and every q € E". Put

w(q, u) := (grad f,(g)|u)(grad f,(9)iu) f3(a).
w(g, w) := (grad fi(9)|«) (grad f1(DIu) f3(9) fa(9),

for any (g, u) € E"x E", where (|) denotes the scalar product in E". Now pui

h; := grad fi(p) for i = 1, 2, 3, 4. Note that it is always possible to choose f; and
f3 in a such way that

(5) (h1lhg) > 0,
6 (hslhy) = 0.
For v := h,+h, and h := h;+h,, after easy calculations and considering (5),
(6), we obtain
on,0(p,v) = (Alhy+hy) (halhy +hy) (hslhs) # O,
On@d(p,v) = (hylhy+hy)(halhy +hs) (hslhs+he) (halhs+hy) # 0
(note that f3(p) = fu(p) = 0). From (4') it follows that w € Q(E", N,VUN,UN;)

and ®eQ(E", NN\UN,UN;UN,); hence, if pe FM, then M ¢ N,uUN,UN, and,
ifpe M, then M & NJUN,UN;UN,. B

ExaMmpLE 3.1. This example shows that the assumption that p € M in Prop-
osition 3.2 (b) is essential. Let M = {({, n); {n = 0} be a d-subspace of E* and
p=(0,0). Let i: M —» E? denote the inclusion mapping and let x: M — E? be
defined as (, ) — (£, n+?). Consider v € M, such that v = (1, 0). It is obvious
that (v,v) € ¥ M,, but (v,9) ¢ S« M, because EXZxE?s (({, n) (', n)— (n—-
—{?) (&) belongs to Q,., and é2w(®)|. = —2. In this case

FM, = {(0,a), (0,0)); acE}u{(a,0),(a,0); acE}.

§ 4. Algebraic criteria

Let ¥ be a real vector space. For any non-empty subset ¥ of ¥ we denote by span W
the smallest vector subspace of V containing W. By v ® w we shall denote the tensor
product and by 2O w (= v @ w+w ®v) the symmetric product of vectors v, we V.

Consequently, V® ¥V (VO V) denotes the tensor product (the symmetric product)
of V.
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PROPOSITION 4.1. Let M be a d-space,pe M, x € M, M and let
p: Myx M, - M,@(M,OM}), y: M,xM,—» (M,OM)®(M,0OM,)
be mappings defined as follows:
ph,v) := h@(vOv) and ph,v):= (RO (OYV)
for any (h,v) € M, x M,. Then:
1)) ¢~ (Spang(F, M) = F. M,,
€3 v~ (spany(S: M,)) = & M,.

Proof. We prove equality (1). The proof of (2) is similar, We should prove the
inclusion

3) ¢~ (span@(F . M,)) = F. M,.

Let us take w € @, . and notice that the mapping 2: M, x M, x M, —» E defined
by the formula

‘Q(hvv: W) = }(3,.w(p,v+W)I,—3,.w(p,v)l,—3,.w(p, w)lx)

for any (h, v, w) € M, x M, x M, is 3-linear on M, and symmetric with respect to
v, w. Consequently, there exists linear mapping £2: M, ®(M,©OM,) - E satisfying
the equality

Qh,v,w) = Q(h@v@w) for any h,v, we M,.
Now one should notice that d,aw(p, v)l, = Q(h, v,v) for any h,v e M,; hence
C)) Golp,v), = 2-ph,v) for any h,veM,.
If (h, v) € p~'(spang(F: M,)), then there exist a collection «', ..., «° of real numbers

and a collection (h,,v,), ..., (hs, v5) of elements of F, M, such that

§

g1, 0) = ) ad'glhy, v).

i=1
Therefore, from (4) it follows that

o(p, v = Z oo e, v) = a‘B,,lw(p, vl = 0.
i=1 i=1
As weQ,.; and (h,v) € p~'(spang(F . M,)) were chosen arbitrarily, the above
equality implies (3). ®
In the following corollaries we assume that p is a point of a d-space M such
that n := dimM, > 0.

COROLLARY 4.1. We have pe FM (resp. pe M) if and only if there exists
a map x € #, M and a collection (h;, v;) of n*(n+1)/2 (resp. n*(n+1)*/4) of elements
of F:M, (resp. ¥=M,) such that the set {hQ@v,0v;} (resp. {MONL@V:OV;))
Jorms a basis of M,@ M,O M, (resp. of M,0 M, ® M,0 M,).
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COROLLARY 4.2.If (h,v)eFM, fori=1,...,k, then (span{h;; i=1, ...
o k)x{v} e FM,.

CoroLLARY 43. If (h,v)e&¥M,, i=1,2,..,.k and span(h;Oh;) =
span {i; } O span{h;}, then (span{h;}) x{v} = £ M,.

COROLLARY 4.4, Let = be a 2-dimensional linear subspace of M,. If
() (h,v))e FM, (resp. € M) fori=1,2,3,
(ii) span {v, }nspan {v, }nspan {vs } = {0},
()0 £ v,enfori=1,2,3
then
hixnc FM, (c ¥M,).

Proof. If the assumptions are satisfied, then span{v;©Ov;} = #®=. Hence
if {(h,v;))} =« FM,, we obtain

g({h}x7) = (N ®nO7 = {h}@span{v,Ov;}
= span{h®@v,00;} < spanp(FM,) © p(FM,).
Similarly we obtain the inclusion
' p({h} x7) = (& M,).
By (1) and (2) this completes the proof. =

§ 5. Relations among 7, TM,, #M,, M, and F M,

PROPOSITION 5.1. For any point p of a d-space M the following conditions hold:
@Ifh,v)e M,, v #0, thenhe PM,.
(b) M = #M.

Proof. Let (h,v)e ¥M,, x€ MM, n = dimM, and (|) denote the scalar

product in E". For any ¢ € C7°, the mapping w: E"x E" - E defined by
w(g, w) := @(g)(wiw) for any (g, w) € E"x E",
is an element of Q,,.. Hence
= 0ho(p, 0)lx = R (Pl (Xa2lxa®),

which proves (a). Condition (b) follows immediately from (a). =

LEMMA 5.1. Let M be a d-space,pe M and (h,v) e M, x M,.

(@) Ifhen,TM,, then (h,v) e FM,.

®) If
M PEFM,
?2) hen, ?TM,,
then

3) (h,v) e PM,.
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Proof. It will be convenient and involve no loss of generality to consider the
case where M is a d-subspace of E”, n = dimM,. Take w € Q(E", M). Then

L)) w(p,u) =0 for any ue E"

Now notice that w may be interpreted as a function on E”x E” and then it satisfies
the condition

&) w|TM = 0.

(a): Assume that henr,TM,, i.e., that there exists a vector H e TM, such
that

H=0,V)eTM, « E"XE".
From (5) we get
0 = Oqw(p,v) = w(p,v+¥)—w(p,v)—w(p, V)+du(p, v).
By virtue of (4), it follows that

0 = dha(p,v) = Syw(p, V),
where i: M — E" stands for the inclusion mapping. As w € Q(E", M) was chosen
arbitrarily, we obtain (h,v) € #; M, (for the last equality see Proposition 3.2).
(b): Let (1) and (2) be satisﬁ;d, i.e., there exists a vector H € #TM, such that

(6) H=(hV)e2TM,
and
@) Spo(p,u) = d,0(p,v) =0 for any uecE".

By virtue of (7) and (5), there exists a C®-curve (—¢, £)3 ¢t (p(t), v(t)) € E* x E
such that (c(0), #(0)) = (p, v), (¢(0), #(0)) = (h, ¥), where dots denote derivatives
with respect to the parameter ¢, and

d?>w o (¢, u)/dt?(0) = 0.
According to the last equality we obtain
dho(p, 0)+28,0(p,v+¥)-28,0(p, v)~-20,0(p, V) +
+ 8oy 0(p, V) +20(p, V) +o(p, v+i(0))-o(p, ) —w(p, ¥0)) = 0.
Now considering (4), (7) we get
3§w(p,g) = 0.

By virtue of Proposition 3.2, the above equality implies (3). »

PROPOSITION 5.2. Let p be a point of a d-space M. Then:

@ {h,v); hen, TM,,veM,} c FM,.

(b) Ifpe FM, then {(h,v); he n,PTM,,ve M,} c ¥M,.

COROLLARY 5.1. Let M be a d-space. Then:

(@) M_ c SMnPM.

(b) MNPM contains an open and dense subset of M.
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§ 6. Limit criteria

Let | | denote the Euclid #» norm in E”. For a d-space M and p € M, denote by £ M,
the set of all pairs (4, v) € M, x M, such that there exists a sequence (v,) of elements
of TM and a map x € .#, M satisfying ’
p # v, for any n,
v =limv,,

Xyh = lim (x(zvR) = x(p))]Ix(zxv,) — x(p)I,

PROPOSITION 6.1. Let M be a d-space, p e M, x € M, M. Then:

(a) M, c FMnS M,.

(b) Ifpe FM, then ¥M, c S M,.

This statement easily results from Propositions 2.2 and 5.2.

COROLLARY 6.1. If a point p of a d-space M belongs to the closure of the set
{ge M, dimM, > 1)}, then:

(a) There exists (h,v) € F M, such thatv # 0, h # 0.

(b) If pe FM, then there exists (h,v) e M, such that h # 0 and v # 0.

It suffices to notice that if the assumptions are satisfied, &M, contains (&, v)
as above.

PROPOSITION 6.2. Let M be a d-space, pe M, h,v € M, and let (v,), (h,) be
two sequences of elements of TM such that

¢)) Pni=nv,=mh, for n=1,2,..,
2 (p, h,v) = (lim p,, lim h,, lim v,),
3) dimM, =dimM, for n=1,2,..

Then the following conditions hold:
@) If (ha, v,) € FM,_ for any n, then (h,v) e FM,.
(b) If (ha, vs) € S M, for any n, then (h,v) € S M,.

Proof. Suppose that x € #, M is a map such that p, € U, for any n. For any
o €, we have

(4) ah“’(P: v)]x = lim ah,,w(Pm vn)lx’
(5) aﬁw(p’ ‘U)], = lim alf,,w(pm vn)lx-

By (3), if (ha, v,) € FM, (resp. € ¥M,), then the right-hand side of (4) (resp.
of (5)) is zero, which completes the proof. m

ExAMPLE 6.1. Let us consider the cone M := {(x,y, z); 22 = x*+z* = x*+
+y2}. Put p=(0,0,0), p,=(0,1/n,1/n), h=v=v,=(1,0,0) for any n
=1,2,... Then (M- {p}) c M = M, dimM, = 3 and dimM, = 2 for any
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qe M—{p}, (h,v,) € M, for any n. But (h,v) ¢ ¥M,. In fact, the function
w: E"x E" — E defined as follows:

w(p, u) := acz—aby—a*x for any p = (x,y,2), u=(a,b,c)ekE?

belongs to Q(E3, C) but 3,§w(p,g) = —1. We conclude that assumption (3) in
Proposition 6.2 is essential.

§ 7. The products of d-spaces

For every point (p, q) of the product M x N of d-spaces M and N, the tangent space
(M xN)p. o is identified with M, xN, (see [14], [15]). Let the mapping

Ji (MXN)p, gy X (M XN)p.q) = MyxNyx M, xNg —+ M, x M, xN;xN,
be defined as follows:
Jo,w,v',w) = (v,v',w,w') for any v,v' e M, and w,w €N,.

PROPOSITION 7.1. For any point (p, q) of the product M x N of d-spaces M and
N the following equality holds:

M J(FMxN)g,pn) = FM;xFN,.
Moreover, if pe FM and q € FN, then
@ HSMxN).p) = SMx SN,

Proof. As the proofs of the two equalities are similar, we shall prove only equa-

lity (2). To simplify the notation below we identify the elements v of M, (or w € N,)

with v € M, (or w € N,, respectively) and denote all these objects without under-

lying, e.g., (M,N)p.p = E"XE". Let M c E™, Nc E" and m =dimM,,
= dimN,. First we shall prove the inclusion

) J(FMxN),. ) © SM <IN,
Let
3 (h,g,v,w)e FIMxXN)p.gy <« E"<E"XE™"xE"

and w € Q(E", N). We let
Q(plv qls v’s W') = w(p’s vl)
for any (p',q’, v, W) e E"xE™x E"x E™. As Q belongs to Q(E™x E", MxN), it
follows from (3) that dfw(p,v) = d%.,, 2(p,q;v,w) = 0; hence (h,v)e M,
(see Proposition 3.2). An analogous recasoning shows that (g, w) € #N,.
Now we proceed to the proof of the opposite inclusion, i.e.,

4 ;i(.SP(MxN),,,_ ,,,) > M, x¥N,.
Assume that
&) (P, ) e FMxFN,

6) (h,v) e M, «c E"XE™,
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N (g, w)e N, < E"x E",
(8) a € QE"xE", MxN).
Denote by 8 a smooth bilinear symmetric form on E™ x E” such that
a(p’, ¢’ v, W) = B, 450, Wi v, W)
for any pairs (p’, q), (¢', w') € E™ x E". For the proof of (4) it is sufficient to show
the following equality:

€] %n.eye(p, g3v, w) = 0.
By simple computations we obtain the equality
Oty 2(P, 450, W) = (204,01 0.5 %+ s 0y 2+ Ff0. v (P, 4; ¥, 0)+
+ (401, 0) 0.0y B+20%, 0,8 +2000,8) (P, 4:v,0; 0, w)+
+ (Oh 03 00, » &+ i, 0y %+ 800,y @) (P, 5 0, W).

We shall prove that each of the above nine terms is equal to zero. It is easy to notice
that, by symmetry, it is sufficient to show the following five equalities:

(10 9.0 90.002(p,¢;v,0) = 0,
(1) O 0ya(p, g;v,0) = 0,

(12) 0.y (P, 4;v,0) = 0,

(13) Ow.0) %0, PP, 9;7,0;0,w) =0,
(14) 8%, 0 B(P, q;0,0;0,w) =0.

For every point ¢’ € N the function
' (E"xE™3 (p',v") > a(p', ¢'; v, 0))
belongs, by (7). to Q(E™, M). According to (5) and Proposition 3.4 we obtain
¥ (p,v) =0

for any g" € N. The function o'(E"3 ¢’ — dya* (p, v)) belongs to C*(E", N). There-
fore

%0.0)%m. 0y P, ; v, 0) = Gpa’(q) = 0.

This completes the proof of equality (10).

For the proof of (11), it is sufficient to notice that «f € Q(E™, M),
é&4.000(p, q;v,0) = 92 a(p, v) and make use of (5).

Now observe that

a*(q") := a(p, ¢’;,0)
for any g’ € E" belongs to C®(E", N). From (6) and Proposition 5.1 we obtain
Oo. (P, g3, 0) = Jfx"*(g) = 0,

and so we get equality (12). Now we need

LEMMA 7.1. Let X be a d-subspace of E", p € X, dimX, = n. Denote by Lin(E", X)
the set of all linear forms w(q,w) on E" vanishing for (q, w)e TX.

12 Banach Center t. 12
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() If (h,v) € FX,, then dyw(p, v) = 0 for any w € Lin(E™, X).
(b) If (h,v) € M,, then éf w(p,v) = 0.

Proof of Lemma 7.1. If w € Lin(E", X), then £2(g, w) := w(q, w)(h/w) belongs
to Q(E", X). Consequently 0 = 8, 2(p, v) = d; w(p, v)(v|w), i = 1, 2. This completes
the proof of the lemma.

We proceed to the proof of the proposition. For every (¢°, w) € E"x E™ the
formula

BT (p', ) = B(p',q';7',0;0, w),
for any (p’,v)e E™"xE™, defines an element f9°* of Lin(E™, M). Hence
om0 BY " (p,v) = 0 for any (¢, w) € TN. Finally, applying the lemma to a func-
tion _
B(E"XE"3(q', W) 00,7 " (p,v))
belonging to Lin(E", N), we obtain the equality
%0.)9n.0»P(P, 951,050, w) = gﬁ(q’ w) =0,

which completes the proof of (13).

Finally, in order to prove (14) note that §%° e Lin(E", M). Making use of (5)
and the lemma we get the equality

%0 8(p, 4;v,0;0,w) = 83 p*¥(p,v) = 0.

This completes the proof. m

COROLLARY 7.1. For d-spaces M and N the following equalities hold:
F(MxN)=FMxFN,
FS(MxN)= FMx ¥N.

§ 8. The Riemannian curvature tensor of a Riemannian 4-space

DEFINITION. Let M be a d-space. A map g (M 3 p— g(p)), where g(p) i1s an
inner product in the vector space M,, is called a Riemannian metric on a d-space
M if a mapping TM 3 v g(p)(v, v) is smooth. The pair (M, g) is called a Rie-
mannian d-space. If (M, g) and (¥, g’) are two Riemannian d-spaces, then a smooth
map f: M - N is called an isometry if g = f*g', where f*g’'(v, w) is defined as
g(f(P) (fuv,fuw) for any pe M and v, we M,.

It is easily proved (see [6]) that if M is a manifold, then our definition of a Rie-
mannian metric is equivalent to the classical one. Moreover, if (M, g) is a para-
compact Riemannian d-space, N is a manifold and /: M — N is an imbedding, then
there exists an open subset U in N and a Riemannian metric g’ on U such that g
= f*g’ (see [6]). In particular, we have:

LeMMA 8.1. Let (M, g) be a Riemannian d-space,p e M, n = dimM,, x e A, M.
Then there exists an open set U in E" and a Riemannian metric g’ on U such that
(H x(Uy) = U,

@) x*¢' =g on U,.
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DerFINITION. Let (M, g) be a Riemannian d-space, pe M, n = dimM, > 0.
A real 4-linear mapping R, on M, is called a Riemannian curvature tensor of (M, g)
at the point p if there exists a map x € .#, M such that

3 R, = x*R¥

for any Riemannian metric g’ on an open subset U of E" satisfying (1) and (2),
where

XERE(Vy, ..., vg) 1= R¥ (x40, ..., XyU4)

foranyv,,...,v, € M, and R¥ is a Riemannian curvature tensor of (U, g’). Similarly
we define the sectional curvature k on the set of all 2-dimensional linear subspaces
of M,, the scalar curvature, etc. The set of all points p € M for whose the Riemannian
curvature of (M, g) may be defined in the above manner we denote by Riem(M, g),

Remark. As the sectional curvature determines the Riemannian curvature
tensor (see [3]), Riem(M, g) is exactly the set of all points p € M for which the
sectional curvature may be defined in the above manner.

Immediately from the above definition we obtain

‘LEMMA 8.2. If R, is a Riemannian curvature tensor on a Riemannian d-space
(M, g) at a point p € M, then (3) is satisfied for any map x € .# , M and any Riemannian
metric g’ on any open submanifold U in E", provided that (1), (2) are satisfied.

Lemma 8.3. If g, g, are two Riemannian metrics on a d-space M, then
Riem (M, g) = Riem(M, g,).
Proof. Take
4 p ¢ Riem(M, g)

and fix a map x € .#, M. We shall show that p € Riem(M, g,). Let g’, g”, g1 be
Riemannian metrics on U’, U”, U,, respectively, such that x(U,) <« U'nU"nU,,
xtg = xtg" =g(q), x*g. =g(q) for any qeU; and x}R* # xjR*’". Now
notice that (g;+g' —g’’) is a Riemannian metric on an open neighbourhood ¥V
of x(U,) in E" and such that x¥(g\+g& —g’") = x*gi = g.(q) for any ¢ € U, and
xy R84+ x; R¥ — x5 R®" # xjR%;so p¢Riem(M,g,). »

By virtue of Lemma 8.3, for any d-space M, the set Riem(M, g) = M is inde-
pendent of the choice of the Riemannian metric g; so we denote this set by Riem M,

Now note that in local coordinates on a manifold the coefficients of a Riemannian
curvature tensor may be expressed by means of first and second partial derivatives
of the coefficients of the Riemannian metric. Hence, from Proposition 3.4 we im-
mediately obtain:

THEOREM 8.1. ¥ M < Riem M for any d-space M.
Now we present an example of a d-space M such that RiemM # ¥ M.

ExaMpLE B.1. Let M = M'UM"”, where M’ = {(x!,x?); x'x? =0} and
M” = {(x!, x¥); |x¥'] < (x»)?, |x?] < (xY?, D2+ (xD2=1/n,n=1,2, ...} (see

12*
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Fig. 8.1). We shall show that p = (0, 0) € RiemM— %M. It is easily seen that
[((a,b), (—b,a); (a,b)e E*Ju{((1,0), (1,0)), (0.1, (0, 1)) = LM,. We
recall that according to Proposition 6.1

) LM, = FM, < S M,,

where i: M — E" denotes the inclusion mapping. It is not difficult to prove that
substituting in A®vOo the pair (4, v) successively by the following six elements
(l,iii)) and ((2, 1), (—1,2)), we obtain a basis of E?® E2® E?; hence. by virtue
of Corollary 4.1, we obtain p e # M.

Fig. 8.1

Let two Riemannian metrics g and g’ on E? satisfy the equality i*g = i*g’.
We set

2
©) 0(@,9) = D oy’ 1= gg) @, v)~g'@) (. v)
i,j=1

for any (q,v) € TE? = E?x E2. It is obvious that w € Q(E?, M). According to (5)
we get
) Bow(p,v) = Y wyu(piho' = 0
for any (h,v) € £M,. For (h,v) equal to ((1,0), (1,0)) and ((0,1), (0, 1))
we obtain
(8) w11,11(p) = 0,
9 wzz,zz(P) = 0.
Similarly, taking (%, v) equal to ((1, @), (—a, 1)) € &; M,, we obtain the equatior
0 = G, ?) = 022,11(P) + 222,12+ @13, 1) (P)a+
+ (w11, 1 =403, 12 +013,22) (P)a* +
+2(wy1, 12— D13, 22) (P)@ + 0,4, 22(p)a*.
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As there is no restriction on a, all the coefficients of the above polynomial
with respect to 4 have to vanish. In particular, we get
(10) ®32,11(p) = wy4,22(p) = 0,
11, 11(P)— 4wy, 12(p) +@11,22(p) = 0.
By virtue of (8), (9) the last equality is equivalent to
(11) ®;2,12(p) = 0.
Now observe that the Riemannian curvature tensor R, of (E?, g) at the point p

expressed in the natural coordinates in EZ has up to the sign only one non-trivial
component, namely

Ry:2(p) = (312.12_311.22/2—822. 11/2 -
- Z (F;1P52—11f2 iZ)grs) (811822 —gfz)- ! (P),

where 'Y, = g"'(gu.j+8j1,:—&ij.1)- As pe FM, it follows from Proposition 3.4
that I'f(p) = I'}(p) for any i, j, k, where I';} denote the Christoffel symbols of the
Riemannian connection on (E?, g’). Therefore, according to (6), the following
equality holds:

R%313(p) = RY312(p)+ (12,12 —0.504,20—0.5033,11) (811822 —&12) "' (P)-
Thus from (7), (8) and (10) we obtain the equality

RIZIZ(P) = Rizlz(P)~

Consequently, p € Riem M and M = Riem M.
To see that p ¢ &M let us notice that the formula

Q(x, v) := x'x2(v!)%+ (x2)%v'e!,

for any (x, v) € E2 x E?, defines an element of Q(E?, M) such that 3%, 1,w(p, (1, 1)
= 2.

Y

Fig. 8.2

ExaMPLE 8.2. Let M := {(0.5+¢")/te E%; t > 2}u {(0,0)} (see Fig. 8.2).
Let p = (0,0) and let j : M — E? the inclusion map. We show that p € M, and
so M = #M. In fact, for any « we have

(h,v) := (0.5¢'%, '+ ™) e P M, = E2xX E2
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Putting & = 0, /2, —=/2, ®/3,2x/3, 4rc/3, — /3, ©/4, — /4 we obtain nine elements
Gi,o), i=1,...,9, of M, = & M, such that (hOhvOV; i=1,...,9)
is a basis of E2Q E*® E2Q E2. Hence, by Corollary 4.1 and Proposition 3.3,
we obtain p € M.

ExAMPLE 8.3. Consider a cone C, = f; '(0) in E3, where fo(x, y, z) := a?x?—
—y*—2z%, a # 0. The point p = (0,0,0) € C; does not belong to #C, (e.g.,
22f[(ex)*(p) = 2 # 0), and so, by Proposition 5.1, p ¢ ¥ C,. By means of quadratic
forms E3xE3s ((x,y,2), (X,Y,2Z)) = (x*—y*—2*)(X*+Y?+Z?) and E*xE?
3 ((x,y,2), (X, Y, Z))— («*xX—yY—zZ)? it can be proved that #(C,), = L(Cy),
= {((1, asinp, xcosf), (X, Y, Z)); «*’X—asinfY—acosfZ =0, f e E}, and that
dim(span {(hOh®vOv; (h,v) € $(C),}) =28. As dim(M,0 M, ® M,O M,)
= dim(E3Q E*® E*Q® E3) = 36, the following conjecture arises: If = is a plane
“in the general position” containing p, then p € &#(C,w =) (note that dim £2Q E*®
®E*QE? =9 > 36—28). But it can be proved that for the (y, z)-plane this is
not true.

ExaMPLE 8.4. Let C = C,uCs < E3, where « # f. It can be proved that
p=(0,0,00e £C,andso C = £C.

§ 9. Isometric immersions of a Riemannian d-space with a non-positive sectional
curvature

For a d-space M denote by §2M the set of all points p € M such that for any map
xe M, M and any ¢ € C*(E"), where n = dimM,, the following statement holds:
If the function ¢|x(U,) has a local maximum at x(p), then

(1) dtplp =0,

2) X2p(p) £ 0 for any smooth vector field X on E".

It has been proved in [8) that £2M < @M and &2M x €2N = &*(M x N) for any
d-spaces M and N.

Below, by an immersion we mean a smooth mapping with the 1-1 tangent
map at each point. It can be proved that each immersion is a local diffeomorphism
onto its image (see [10]). Moreover, it has been proved that every Lindel6f Rieman-
nian d-space (M, g), satisfying, for certain natural », the condition

dimM,<n foreverypeM,

can be isometrically immersed into a Euclidean space E™ of sufficiently large dimen-
sion m [5]. The following theorem gives a lower estimation for m.

THEOREM 9.1. Let (M, g) be a compact Riemannian d-space and let n be a natural
number. If

(a) M = §*M = Riem M,

(b) the sectional curvature of (M, g) is non-positive,

(c) dimM, > n for any p € M,
then M cannot be isometrically immersed into E*"~1.
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Proof. The case n = 0 is trivial; hence assume n > 0. Let /1 M — E™ be an
isometric immersion. We let

o(») = (vly) for any ye E™,

where ( | ) stands for the inner product in E™. Let ¢ = f(p) € f(M) be a point at
which ¢ has a maximum on f(M) and »’ := dimM,. Let N be an n’-dimensional
submanifold of E™ such that Nnf(M) is an open neighbourhood of g in f(M). By
(@), d(g|N)|, =0, X*(¢|N)(p) < O for any smooth vector field X on N. Hence, from
Weingarten’s formula we get (see [3], vol. II, p. 28)

XM = ("X, X))+ (X]X) at p
for any smooth vector field X on N, where «" stands for the second fundamental
form of the submanifold N of E™. Therefore

(ay (v, 2)lg) < (vlv) for any veN,.
Consequently
3 af(v,v) #0 for any geN.
According to (a), (b) the sectional curvature of N at ¢ is non-positive. In [3] (vol.
I1, p. 28) it has been proved that, in this case, (3) holds only if
mz2n" = 2n

which completes the proof. =

ExaMPLE 9.1. Let W be a d-subspace of E? and let p, g, ¢’ be three different
points of W such that W=W-={q,q'} is a 1-dimensional submanifold of E?2
and W— {p} contains two componets which are diffeomorphic to the d-space
constructed in Example 8.2 (see Fig. 9.1).

A
P W
q q
Fig. 9.1

The d-space W is compact and, according to Example 8.2, W = YW = Riem W.
It can be proved that W = &2W. Denote by S* the unit circle in E2. For a natural
k let us set
M*:= WxS'x... xS! c E?*+D

k




184 A. KOWALCZYK

and denote by g* the Riemannian metric on M* induced from E2*+!, According
to Proposition 7.1 and [8] the Riemannian d-space (M*, g*) satisfies the assumptions
of Theorem 9.1 with n = k+1; thus there is no isometric immersion f of (M*, g
into E2¥+1 (notice that it is essential that f is an isometric immersion, because M*
can be imbedded into E*+3). For k = 1 it is easily seen that M! (see Fig. 9.2) may
be imbedded in E3. According to the above theorem, (M*, g!) cannot be isometrically
immersed into E?. It can be proved that the last sentence is equivalent to the following
statement:

There exists no smooth map f: E4 » E3 such that

li’rln |/ (pa) —f(P)I/IPa—p| = 1

for any sequence p, of points of M! converging to a point p € M!,
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