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In theoretical computer science universal Horn formulas play a growing role,
as well in the algebraic specification of abstract data types as in
" programming languages like PROLOG. In this note we present and discuss
an algebraic description of closed sets of universal Horn formulas — similar
to the well-known description of closed sets of equations as fully invariant
congruence relations. We include the treatment of negations of conjunctions of
equations, since we think that mainly in connection with partial algebras
they might be quite useful at some occasions — in particular negations of
term-existence expressions. But we state and prove the main result only for
many-sorted total algebras; the corresponding techniques of proof for partial
algebras can be taken from [5], where we already indicated in Section 144
results of the kind stated here without formulating the corresponding
theorem explicitly. A description of closed sets of positive Horn formulas has
already been presented — for homogeneous partial algebras — in [1],
Theorem 3.4.5, and in [5], Theorem 14.3.3, where even infinitary operations
are allowéd, while we want to restrict considerations in this note to finitary
similarity types, although there are no great differences to a treatment of
infinitary similarity types (see [5]). Our methods are based, say, on [3], [8]
or [2], where an algebraic encoding of implications and of their satisfaction
is presented. We include a list of derivation rules for universal Horn formulas
and a description of the closure operator of consequences corresponding to
some axiom system in the case of positive Horn formulas. This may help
with respect to a more specific algorithmig treatment.

Let us recall from [1] or [5] that a class K of (heterogeneous partial)
algebras is definable by positive universal Horn formulas iff it is closed with
respect to the formation of isomorphic copies, subalgebras and reduced
products of K-algebras, and it is definable by universal Horn formulas —
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including negative ones — iff it is closed with respect to the formation of
isomorphic copies, subalgebras and reduced products with respect to proper
filters and non-empty families of K-algebras. In each case such a class
contains an initial object.

1. Some basic concepts

Although we hope that the reader is familiar with the basic concepts needed
(see [1], [4], [9] or [S5]), we briefly sketch those which we think most
important to understand this note.

Let Q be a set which will be called the ser of operation symbols. A
(finitary) similarity type t is a sequence (1 =) (n,),.o of natural numbers —
including zero — such that each @eQ designates an n,-ary operation
symbol, Moreover, let S be any set, chosen as set of sorts. A heterogeneous
signature X (with respect to the similarity type v and the set § of sorts) then
combines with each operation symbol ¢ and n,-ary sequence (INPUT (¢): =)

(1.0 52,00 -+ o5 s,,w)eS"“’ (of the “input sorts” for the arguments of ¢) of

elements of § and an element (OUTPUT (¢):=) s, of S, the (output) sort of
@. A heterogeneous X-algebra A = (A, (¢*),.q) consists of a family A = (A4,),
of sets, and for each operation symbol ¢ one has an n,-ary heterogeneous
operation ¢@*: Agp % e xAs"M — 4,,. A, is called the phylum of A of sort

s and A is called a sorted set; the elements of A, are called the elements of A
of sort 5, and sometimes we shall treat A4 just as if it were the disjoint union
of the family (A,),.s (see also the remark below). Observe that we allow phyla
to be empty as is done in [6], [9] or [5]

Let 4 and B be two ZX-algebras; a (X-) homomorphism f: 4— B is a
family (f,: A, — B,),s of mappings between the corresponding phyla such
that for each operation symbol ¢ and for each sequence (a,, ..., a, )€ A, , X

X ... xAs%'q, in A of the appropriate sorts one has

S (0@, . a)) = (0o , @), - S, o (00))).

A congruence relation R of a Z-algebra 4 is a family (R, of
equivalence relations, R, being an equivalence relation on A, such that for
each fundamental operation ¢* and any sequences (@, ..., a,) and

by, .-, b,,q,) in A of elements of the appropriate sorts one has:

%R, bi_ for 1<i<n, imply o¢*a,..., a, ) R,, o*(b,, ..., b,,?).

The intersection of congruence relations means the family of intersections of
the corresponding equivalence relations on the phyla.
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If R is a sorted binary relation on 4, i.e., a family (R,),.s such that each
R, is a binary relation on A, then we denote by Cong,(R) (or simply by
Cong(R) if the reference to the algebra under consideration is clear) the
smallest congruence relation of A which contains R, i.e., the intersection of all
congruence relations on A4 which contain R. For a X-algebra 4 and a
congruence relation R on A the factor algebra of A with respect to R is
denoted by A/R.

If f: A— B is a homomorphism, then ker f designates the congruence
relation on A induced by f, ie., (ker f);:= |(a, d)| a, d'€ A, f,(a) = f(a')} for
each seS.

Remark. For those who are familiar with the concepts concerning

partial algebras we want to hint upon the observations in [4] and [5] that a
heterogeneous signature can be considered as a partial algebraic structure
(¢%)pep ON the set S of sorts such that each partial operation ¢° has as
domain exactly one sequence, namely (s;,, S2,, .- s,,w_,p), and the
corresponding value is s,, i€, @*(5;.4, S2.p5 -+ s,,‘p'q,) = 5,
. Let us consider for a X-algebra .4 the carrier 4 as the disjoint union of
the phyla; then we get a mapping v,: 4 — S, the sort mapping, assigning to
each element of A, its sort s, and ¢* can be considered as a partial operation
on A in such a way that v, becomes a closed homomorphism from A4 into S
(ie., @* is defined on a sequence in A iff ¢° is defined on its image sequence
in S with respect to v,). A homomorphism f: 4 — B between X-algebras then
becomes a homomorphism between partial algebras satisfying vy f =v,,
ie. being compatible with the sort mappings; conversely, each closed
homomorphism between the partial algebras 4 and B which is compatible
with their sort mappings is a homomorphism between the corresponding X-
algebras. Thus a X-algebra can be represented by a partial algebra together
with its sort mapping — and conversely. .

A (Z2-) term of sort s on a sorted set X = (X,),s of variables is defined
as follows: '

(1) Each xe X, is a term of sort s.

(2) If ¢ is an operation symbol of sort s, =s with input sequence

(S1.6> S2.95 -~ Sny0h and if — for 1 <i<n, — f; is a term of sort s, ,, then

Oty ..ty — the concatenation of the symbol ¢ with the terms under
consideration — 1s again a term of sort s.

Ty designates the S-family of the smallest sets of terms on X (of sort s
for each s in S) satisfying (1) and (2). The corresponding Z-algebra of terms

on X is denoted by Ty ((prx: (24, ..., t,,¢)+—->qotl...t,,¢).
It is well known that each sort respecting mapping f: X = A allows a
homomorphic extension f: Ty — A.
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Let X be a sorted set of variables, and let ¢ and ¢’ be any two terms on
X ; an equation (X: t £ t) can be formed by them iff ¢t and t’ are terms of the
same sort — we use the symbol “£” as equality symbol of the object
language, since “°” shall remind the reader of the fact that in the case of
partial algebras the corresponding semantics also makes a statement about
the fact that for each term involved the interpretation has to exist (see [1],
[4], or [5]). An equation (X: t £¢) is valid in some X-algebra A4 iff each
homomorphism f: Ty — A identifies ¢t and ¢'.

Universal first order formulas on X are built in the usual way with the
symbols “7” for negation, “ A” for conjunction and “=" for implication, i.e.,
if (M: ®) and (M: ¥) are any first order formulas on M, then so are
(M: @), (M:®d A V) and (M. &= V) — as usual we omit brackets when-
ever possible, and 7 is binding stronger than A, which is binding stronger
than =.

Observe that each formula has to be connected with a finite set of
variables containing all its free variables, since the semantics of a formula
depends on the set of variables it is connected with because of the fact that
we allow empty phyla: If X does not allow a mapping into a X-algebra 4 —
since in A some phylum is empty which is non-empty in X —, then each
universal first order formula on X is trivially valid in 4. In a universal
formula (X: @) X is called the reference set of variables, while fvar(®)
designates the set of all (free) variables really occurring in &.

Semantics are extended from equations to other universal formulas in
the usual way.

2. Universal Horn formulas

A universal Horn formula is now — as usual — either an elementary
implication of the form

(pH)

M:t; £t A AL, =t,=>t£1) (positive universal Horn formula)
or a negation of a conjunction of equations:

(nHf)
(M: (t; £ty A... AL, =1)) (negative universal Horn formula).

Since we want to present an algebraic and set-theoretical description of
closed sets of universal Horn formulas, we have first to give a set-theoretical
description of universal Horn formulas:

The positive universal Horn formula (pHf) is represented by an ordered
pair consisting of the set of the pairs of the terms occurring in the equations
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of the premise together with all the pairs representing the variables and a
pair of terms representing the equation of the conclusion

(pHfY (1x, x), (5, 1)) xe X, 1 i< nl,(1,1)),

and the negative universal Horn formula (nHf) is represented by the set of all
pairs representing the equations in (nHf) and of pairs representing the
variables in X:

(nHIY {(x, %), (4, 1)) xeX, 1 <i<n).

With respect to these representations we can say that the positive universal
Horn formula (pHf) is valid in some X-algebra A iff for every homomorphism
f: Ty — A one has:

If f identifies all pairs of terms representing the premise, then it also
identifies the terms representing the conclusion, i.e.,

W, )l 1<i<n) ckerf implies (¢, ¢) eker f.

Similarly the negative universal Horn formula (nHf) is valid in 4 il no
homomorphism from Ty into A satisfies all the equations involved, i.e., iff one
has for every homomorphism f: T, — A:

s ) 1<ig<n) gkerf.

We shall call a pair (¢, ') of terms on some sorted set of variables equational,
if t and t’ are terms of the same sort.

Then let us finally observe that for any finite set F = {(t;, t)| 1 <i<n}
of equational pairs of terms and for an equational pair (¢, t') on some sorted
set X of variables (F , (t, t’)) represents the positive universal Horn formula

(fvar({t, ¢, 6, 6l 1<i<n)) t, S63 A AL Z,=>t Y1),
and F represents the negative universal Horn formula
(fvar({t;,, ] 1<i<n)): Ot £, A At 1)

Moreover, if we say that F is a set of equational pairs on a sorted set M,
then this will usually mean that M =fvar({t, | (¢, t)eF}), ie. that M is
exactly the set of all variables really occurring in some of the terms
contained in an equational pair of F.

3. The main result

In what follows we shall always assume that the representations (pHf)
respectively (nHf)' really are the corresponding universal Horn formulas, i.e.,
when we speak of a universal Horn formula, then it is given either as (pHf)
— in the positive case — or as (nHf) — in the negative case ((pHf)
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respectively (nHf) are just other codes for it). Moreover, we assume X to be a
sorted set of variables with a countably infinite phylum of each sort, and
each sorted set of variables considered below is assumed to be a subset of X.
Let Q* be any set of universal Horn formulas; then Q will designate the set
of all positive universal Horn formulas in Q* and Neg(Q*) the set of all
negative universal Horn formulas contained in Q*, while for each finite set
F:={(t;, t)| 1 <i< n} of equational pairs of terms we denote by Q(F) the
set of all equational pairs (t, t') such that (F, (¢, t')) belongs to Q*, ie.,

Q(F):= {r, 1) (F, (1, t))eQ*}.

Moreover, for any class K of X-algebras let Horn(K) designate the class of all
universal Horn formulas which are valid in each K-algebra, while for some
set H of universal Horn formulas Mod (H) will designate the class of all X-
algebras in which every Horn formula from H is valid.

In this terminology closed sets of universal Horn formulas can be
described as follows:

THEOREM. Let Q* = Q u Neg(Q*) be a set of universal Horn formulas.
Then the following statements are equivalent:
(i) @* = Horn Mod (Q¥).
(1) For any finite sets F, F' of equational pairs on sorted sets M and M’ of
variables, respectively, one has:

(I1) Q(F) is a congruence relation on T.

(I12) F = Q(F).

(I13) For every homomorphism f: T\, — Ty which satishes (f xf)(F) < Q(F"),
i.e, which maps F into the Q*-consequences of F', one also has

(fxf)(Q(F)) < Q(F), i.e., f then also maps all the Q*-consequences of
F into those of F'.
(N1) F eNeg(Q*) implies Q(F) = Ty x T.
(N2) If FeNeg(Q*), and if there is a homomorphism f: T, — Ty which
maps F into the Q*-consequences of F', then one also has F'e Neg(Q*).
Notice that in the case when F = F' = () in the above theorem in (ii),
and if we are in the homogeneous case and forget about the possible empty
algebra, then we can choose M = M’ = X, and (I1) and (I13) just describe the
set of all equations valid in Med(Q¥), in particular (I3) just describes full
invariance of the congruence relation Q(Q). Thus this theorem is indeed a
direct generalization of the well-known Birkhoff Theorem for equational
theories of homogeneous algebras. In the heterogeneous equational case (I1)
and (I3) are just the algebraic counterpart of the description of closed sets of
equations for heterogeneous algebras as given by Goguen and Meseguer in
[6]. If “Horn” only stands for positive Horn formulas, i.c., for elementary
imphcations with one conclusion (i.e., for quasi-equations), then (i) ts ob-
viously equivalent to properties (I1), (I2) and (I13) of (i).
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Proof. Let us first show that (i) implies (ii). Thus assume that
Q* = Horn Mod (Q*); then we have to show that (I1), (I12), (I3), (N1) and (N2)
are true:

Let F be a finite set of, say n, equational pairs on the finite sorted set M
of variables, and let F*:=(M: p, £q, A ... A p, = q,) be the corresponding
conjunction of equations contained in F. Moreover, let F belong to Neg(Q*).
Then F* cannot be satisfied in any model of Q* and therefore F* implies
any equation between terms with variables in M; thus (NI) is proved.
Moreover, if F’ is another finite set of equational pairs on some finite sorted
set M’ of vanables, and if f: Ty, — T, is any homomorphism mapping F into
the Q*-consequences of F’, then the conjunction F'* of all equations con-
tained in F’' cannot be satisfied for any valuation into any model of Q*, since
otherwise the restriction of f to M followed by the homomorphic extension
to T, of this valuation would yield a valuation of M which satisfies F* in
contradiction to the assumption Fe Neg(Q*). Thus also F’ has to belong to
Neg(Q*), and (N2) has been proved.

(I1) and (12) easily follow from the fact that for each set F of equations
on some sorted set M of variables the set of all consequences of F with
respect to Mod(Q*) is the intersection of all congruence relations induced by
homomorphisms g from T,, into models of Q* such that g identifies all pairs
in F: this intersection is itself a congruence relation — containing F — on
Tu-

Finally, let F and F’ be finite sets of equations on finite sorted sets M
and M’ respectively, and let f: Ty, — T,,» be a homomorphism mapping F
into the consequences of F' with respect to Mod(Q*). Let v be a valuation of
M’ into some model of @*, and let v’ be its homomorphic extension to Ty,-.
Assume that v’ identifies all pairs in F’; then it also identifies all pairs in
Q(F’), and therefore ¢'- f identifies all pairs in F and therefore also all pairs
in Q(F). This shows that f maps Q (F) into the kernel of v". Since this is true
for each valuation of M’ identifying F’ in some model of Q*, f has to map
Q(F) into the intersection of all the corresponding kernels, t.e, into Q(F’). If
there is no such valuation starting from M’, then F’ belongs to Neg(Q*),
Q(F') equals Ty x Ty and the statement of (I3) is trivially true. Thus also
(I3) and therefore all properties stated in (ii) have been proved for Q*.

Conversely, let us assume that all the properties of (i1) are true for the
set Q* encoding universal Horn formulas. Define

K:={T,/Q(F) F¢Neg(Q*)is a finite set of equations with variables in a
finite sorted subset M of the sorted set X of variables].

If we can show that Q* = Horn(K), then the general properties of a
Galois correspondence imply that (i) is true:

Let (F,(t,?)) be any element of Q* with a finite sorted set M of
variables, ie, F is a finite set of equational pairs of terms from T,,.

— Let us first assume that F belongs to Neg(Q*), and as above let F*
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.designate the conjunction of the equations contained in F. Let us assume
that there exists some finite set F’ of equations on some finite heterogeneous
set M’ of variables such that F’ does not belong to Neg((Q*) and that F* can
be satisfied in T,,/Q (F’). Then this means that there exists a homomorphism
g: Tu/Cong(F) = T/Q(F) and therefore there exists a homomorphism
f: Ty = T, mapping F into Q(F"). Thus (N2) implies F’ € Neg(Q*) contrary
to our assumption on F'. Hence the negation of F* as well as the
implication (F, (t, t)) are valid in K.

— Next, assume that (F, (¢, t))eQ, and that F does not belong to
Neg(Q*). Let, for some finite subset F’ of Ty, x Ty not belonging to Neg(Q*)
(M’ a finite sorted subset of our sorted set of variables), f° T, — T),- be any
homomorphism mapping F into Q(F’), ie, f induces — respectively is
induced by — a homomorphism g: T,,/Cong(F) = T,,/Q (F'). Then (13) tells
us that f also maps (¢, t') into Q(F’), i, the implication corresponding to
(F, (t, 1) is satisfied in Ty,/Q (F’) with respect to the chosen valuation of M

into T/Q(F'). Since this is true for any such valuation, the implication
(F, (¢, 1)) is valid in K.

These arguments show that Q* is a subset of Horn Mod (K).
Finally, let (F, (¢, t')) be an elementary implication which is valid in K —
with finite sorted set M of variables:

-~ If F* — the conjunction of equations contained in F — cannot be
satisfied in K, then F belongs to Neg(Q*), since (I12) implies that each finite
set F' — not belonging to Neg(Q*) — of equational pairs is at least satisfied
in T,./Q(F). (N1) then tells us, too, that (F, (¢, t')) belongs to Q*.

— If F* above can be satisfied in K, then F cannot belong to Neg(Q*)
— for else we would get a contradiction with (N2). Therefore let us consider
the identity homomorphism f: T, — Ty,. f maps F into Q(F), by (12), i.e., the
equations in F are satisfied in the object T,,/Q(F) of K. The valuation
corresponding to f followed by the quotient mapping with respect to Q(F)
only satisfies equations represented in Q(F), i.e, (¢, t') has to belong to Q(F),
and therefore (F, (¢, t')) belongs to Q*.

Thus equality between 0* and Horn(K) has been established; and the
theorem has altogether been proved.

Remark. Observe that (N1) does not say that “Q(F) =Ty, xT,~
implies that F belongs to Neg(Q*), even when Neg(Q*) is non-empty.

However, let us define for a closed set Q* of universal Horn formulas
the set

Possible Neg (Q*):= |F| F is a finite set of equational pairs on some
sorted subset M :=fvar(F) of X of variables such that Q(F)= Ty x Ty}
of all “candidates” for negative Horn formulas with respect to the positive
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Horn formulas in Q*. Let, for any sorted set B, Sorts(B) be the set of all
sorts s of S for which B has a non-empty phylum.
Moreover, define

Sorts Possible Neg (Q*) : = {S'| §' = Sorts (T,,.r), F € Possible Neg(Q*)}.

Then (N1) and (N2) together imply that the set V of all sets Sorts(T,,.r,) for
some F in Neg(Q*) forms an upper end of Sorts Possible Neg(Q*) with
respect to set-theoretic inclusion, and we have

FeNeg(Q*) iff FePossible Neg(Q*) and Sorts(7,,.r) belongsto V.

Conversely, it is easy to realize (see also [5], Proposition 14.4.4) that for
any closed set Q of positive universal Horn formulas and any upper end V of
Sorts Possible Neg(Q) one has:

The union Q* of Q with the set of all sets F in Possible Neg(Q) for
which Sorts (T,..r) belongs to V is a closed set of universal Horn formulas.

4. Corresponding rules of derivation

From the above theorem it is quite easy to deduce the well-known rules of
derivation for elementary implications with respect to a given implicational
axiom system.

The following statements are equivalent for some set Q* of universal

Horn formulas:

(i) Q* is closed, ie, Q* = Horn Mod(Q).

(i) Q is closed with respect to the following special derivation rules (general
rules are the transitivity of derivation, and finiteness of derivation), where
the premises F and F’ are in each case finite sets of equational pairs
on sorted sets M, M’ < X of variables, respectively, and in particular
Fr*=t, £ty A...AL =L
(IR1) F(M: F*=t=1) for all teT, ((I1), reflexivity).

(IR2) (M: F*=>t £ ) (M: F*=t¢' £1) ((I1), symmetry).

(IR3) (M: F*=>t£¢t), (M: F*=t' =) (M: F*=>tZ¢t") ((I1),
transitivity).

(IR4) {(M: F*=1, £0) 1<k<n,}l (M: F*= o1, o £ ot} cootnh
@ ef2  ((I1), compatibility).

(IRS) F(M: F*=r,£1t), 1<i<gsn ((I2).

(IR6) (M: F*=>t £ 1),
{(M': F* =1q,) meM)=1j(q,l meM)) 1 <i<n}

F (M F*=t(g,] meM) £ ' (g,] meM)
., t', t, ti, q, arbitrary terms (1 <i < n, meM) on the
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corresponding sets of variables, each g,, being a term on M’ of the
same sort as m, and t(q,| meM) — and each of the corresponding
other terms — is obtained from ¢ by replacing each occurrence of m
in t by the term g, ((I3)).

(NRI)(M: " F¥(M: F*=t =1¢), (t,t) any equational pair of T,
((N1)).

(NR2)(M: 1 F"), (M': F* =y, (gm| meM) < ti(gml meM)) 1< i< n)}(for
some family (g, meM) of terms in T, ) (M': OF™*) ((N2).

It is easily derivable from the above theorem that this system of rules is

complete and sound. And it is also obvious that in the case of positive
universal Horn formulas we need only rules (IR1) through (IR6).

5. The closure system of consequences for a given axiom system

For the case of total Z-algebras we add another description of the clas-
ses Q(F) for a closed set Q of positive universal Horn formulas, when
Q is generated by an axiom system, say (I,:=(F!, (!, "), ...,
I:=(F", (", t"'))), of positive universal Horn formulas. Naturally, the remarks
of this section will also work for an infinite axiom system, but they will not
work so easily in the partial case, where not only the congruence relations
are to be generated, but also their domains. We shall show the

ProrosiTiON. For each finite sorted set M of variables the sets Q(F), F a
set of equational pairs with set M of variables, form an algebraic closure system
of congruence relations on T,,.

In the proof a system of finitary partial operétions on Ty x Ty is given
such that the system of Q(F) becomes the system of subalgebras of the
corresponding partial algebra.

For more information of this kind see [5], Section 14, or [7]; here we
only want to list the partial operations which prove the above statements:

For each term t in T,, we introduce a fundamental constant cM :=(t, t)
(the cM (meM) would suffice).

Moreover, let ¢ be a binary operation defined for any two equational
pairs of terms of the same sort by

(a,d) il b=c,
(b, @) else.

Thus ¢ takes care as well of transitivity (first part of the definition) as of
symmetry (second part of the definition). The operations defined so far will
take care of the fact that we deal with equivalence relations.

For each fundamental operation symbol ¢ we define ¢™ to be the

o (a, b), (¢, d): = {
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induced product operation of Ty x Ty,. This takes care of the fact that the
closed sets will be congruence relations.
Now consider the implications

L=Mg: 5 £f A a2, 1<kgn,

We define for it an n.-ary partial operation i, whose graph is the
following relation:

graph () 1= (£ (%), £ (9, .., (S, £ ), (@), £ ()

|f: Ty, = Ty is any homomorphism|,

ie., 1, maps any sequence in Ty x T, obtained from the premise of I, by
substituting each of its variables m by f(m) onto (f (%), f(¢*)). This takes care
ol the substitution rule (I3).

The closed sets of Ty x T, with respect to this algebraic structure are
now easily seen to be congruence relations R on T, such that T,,/R is a
model of the given axioms; and it is also obvious that each congruence
relation with this last property has to be a closed set with respect to the
operations defined above.

6. Partial case

Although we have proved the main result only for total X-algebras, we think
that the treatment of negative Horn formulas becomes especially important
in the case of partial Z-algebras, where one forbids e.g. the existence of
special terms in some objects (e.g. in rings with partial inverse zero must not
have a partial inverse, or when considering projective planes as partial two-
sorted algebras the connecting line of two identical points and the intersec-
tion point of two identical lines must not exist). Here mainly the case of
universal Horn formulas is of importance, which we have called in [5]
“existentially conditioned universal Horn formulas” (ECH-formulas), where
the premise of a positive ECH-formula only contains existence equations
where both terms are equal, and the same is true for negative ECH-formulas.
Since we do not want in this note do develop the techniques of dealing with
partial algebras, we only present to the interested reader who is familiar with
these techniques the differences of the results for total and for partial X-
algebras, and only in the case of universal Horn formulas (the case of ECH-
formulas reduces for total X-algebras to the equational case).

THEOREM (partial case). Let Q* = Q u Neg(Q*) be a set of universal Horn
formulas. Then the following statements are equivalent:

(i) 0* = HornMod(Q*).
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(ii) For any finite sets F, F' of equational pairs on sorted sets M and M’ of
variables, respectively, one has:

(I1p) Q(F) is a closed congruence relation on the relative subalgebra

1 Q(F) of Ty, which is formed by all subterms of terms occurring in
Q(F); | Q(F) is generated by M.

(12p) F < Q(F).
(I3p) For every homomorphism f: | F — | Q(F) (where | F is the relative

subalgebra of Ty of all subterms of terms in F joined with M) which
satisfies (f xf)(F) = Q(F'), i.e., which maps F into the Q*-conse-
quences of F', one also has (f xf)(Q(F)) < Q(F'), ie., f then also
maps all the Q*-consequences of F into those of F'.

(N1p) F eNeg(Q*) implies Q(F) = Ty x Ty.
(N2p) If FeNeg(Q*), and if there is a homomorphism f: | F — | Q(F)

which maps F into the Q*-consequences of F', then one also has
F’ €Neg (Q*).

Similarly the rules (IR1) through (IR5) become only a little bit more
complicated and can be formulated as follows, where

Fr=t,E1\ n... AL =L,

and where F'* is also a finite conjunction of equations:

(IR1p)
(IR2p)
(IR3p)
(IR4p)

(IR5p)

(IR6p)

(IR7p)
(IR8p)

(M: F*=x = x) for all xeM ((I1p), reflexivity).

M: F*=t =) (M: F*=>t=1) ((I1p), reflexivity).

(M: F*=>t =)} (M: F*=1t =1) ((I1p), symmetry).

(M: F*=>1=1), M: F*=1t £t") (M: F*=1 = ¢") ((I1p), transi-
tivity).

M: F*=> <) 1<k<n,),
(M: F*=oty...1,, S 0t L) (M: F*= o1, .1, <ot )
pef2 ((I1p), closed congruence relation).

(M: F*=ot;...1,, £ ot, Lt )b (M F* =y, Zt)lI<k<n, @eQ
((I1p), M-generated)

FM: F*=>y =), 1<i<n  ((I2p).

(M: F*=t =1), (M': F*=q,, <q,) meM),

(M2 F*=t;(q, meM) Zti(g,] meM)) 1<i< n}

F(M: F*=t(q, meM)=1'(g, meM)) (0, 1,t,q, arbi-
trary terms (1 <i < n, meM) on the corresponding sets of variables,
each g, being a term on M’ of the same sort as m, and t(g,| meM)
— and each of the corresponding other terms — is obtained from
t by replacing each occurrence of m in ¢t by the term ¢q,) .((I3p)).

(NR1p) (M: 7 F*)|- (M: F*=t1 =1, (t,t) any equational pair of T,

((N1p)).
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(NR2p) (M: O F*), (M': F*=gq, = 4,)| meM],
(M': F*= t;(g,] meM) £1;(g, meM)) 1 <i<n)
for some family (g, meM) of terms in T (M': 7 F*) (m and
q. have to have the same sort) ((N2p)).

=

Let us add some examples for the concepts and results presented in this
note:

ExampLE 1. Let us first briefly illustrate for the cases of equations
and implications the dependence of the semantics of a formula in the
heterogeneous case on its reference set of variables:

Let S:={s,5,5",5"}, Q:=(¢, ¢, ¢",¢"), 1:=(0, 1, 2, 2),

Z: () o) (nullary constant of sort s),
@ —{(s

¢ —((s, §) > s"),

117

) > 5) (unary operation of sort s with input sort s5™),

¢" —((s, s)—s"’) (binary operations of sort s” with input sequence

(s, 57).

Without any axioms around this specification means for a X-algebra A:

A, is always non-empty, since it contains the nullary constant ¢“ (in the
partial case this is achieved by the axiom ¢ £ ¢). _

If A, is also non-empty, then — because of A, # ® and of the
specification of ¢” — A,. is non-empty, too.

Now, let x, x', x”, x’” be variables of sort s, ', s and s, respectively.
Consider the equations

E:=({x, x}: ¢"(x, x) £ ¢" (x, X)),
E’:=({x, x’, xu/}: {pu(x, xr) é (p”’(x, xr)).

Then E' is trivially valid in the term algebra T, ., while E is not valid
in 'IE.I.J:’:' ’

Notice that with respect to its interpretations E’ is equivalent to the
implication (= positive universal Horn formula — here we do not need any
additional reference to the set of variables)

i "

xEx AXEX AX"EX"=0"(x, X) £ @"(x, X).

ExampLE 2. As an example of a total X-algebra where positive Horn
formulas are needed, let us consider a signature X, where it shall be specified
that a phylum of sort s is (behaves like) a subset of the phylum of sort s’, and
that all operations ¢ applying to elements of sort s at some place have
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a corresponding operation ¢’ for which in the input sequence of ¢ each
occurrence of s is replaced by s’

For the representation of the inclusion we need a unary total operation
©o mapping elements of sort s onto elements of sort s and being injective,
i.e., satisfying the implication

X, Ylst @o(X) £ @o(y) =>x £ ).

Moreover, if ¢ has arguments x,,...,x, of sort s and arguments
Xg+1s --+» Xy+4 Of other sorts, then ¢’ has arguments y,, ..., y, of sort s’
and arguments y, ., ..., ¥x+; of other sorts such that x,,; and y,,; are of
the same sort (1 <i < /), and we have the axiom

({xl e Xg ) (0'(‘Po(xl), ooy Po(Xi)s Xewps ooy xk+l) < QOO(CP()C:, “eny xk+l)))-

ExampLE 3. Finally, let us briefly sketch a simple application of the
Proposition in Section 5: We use the same signature as in Example 1, and as
only axiom we use

U

(x, X', X"} 9" (x, X) £ 9" (x, X) = ¢' (x") £ @).
The situation is here relatively simple, since premise and conclusion have
different variables, and therefore we get: Whenever a set P of equational
pairs on some sorted set M of variables — or the congruence relation on Ty,
generated by P. — contains for some terms ¢ and ¢ of sorts s and s,
respectively, a realization of the premise, i.e, an equational pair of the form

(0™, v), " TM(t, '), then the closure of P contains all pairs of the form

e

(quM, oM (t"))and ((pTM'(t”’), (pTM) for any term " of sort s’ in T,,. The closure
of P is then the congruence relation on T, generated by P and all these pairs.
And this congruence relation is the closed set on T,, x T,, generated by P and
the other pairs listed above with respect to the total operations defined in 5.
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