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§ 0. Introduction

The main purpose of this paper is the proof of asymptotic error estimates for
the finite element Galerkin approximation of the boundary integral equations
for a mixed Dirichlet-Neumann boundary value problem for the Laplacian
in a plane polygonal domain. This is a generalization of [58], where the case
of a domain with a smooth boundary was treated. This generalization is
natural in two respects:

On the one hand, it is well known that the solutions of elliptic boundary
value problems have a similar kind of singular behaviour at corner points of
the boundary and at points where the boundary is smooth but the boundary
conditions change.

On the other hand, a lot of applied problems leading to mixed bound-
ary value problems for the Laplacian (for some examples see the introduc-
tion of [58] or [51]) actually involve domains with nonsmooth boundaries.

The method used in [58] is analogous to the Fix method for 2-D finite
elements [59], [53]. It uses the decomposition of the solutions of the
boundary value problem into a singular and a regular part, where the
singular part is a finite linear combination of known singular functions which
do not depend on the given boundary data but only on the geometry, and
the regular part is approximated by regular finite element functions. This
decomposition was proved, e.g., by Lehman [34] using conformal mappings
for piecewise analytic boundaries and the Dirichlet problem, by Kondratiev
[31] using the Mellin transform and the framework of weighted Sobolev
spaces for general boundary conditions, by Kellogg [28], [29] using
cigenfunction expansions, and it has been generalized by various authors
(e.g., [38], [39], [18], [4], [37]). Our standard reference is [20].
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The main tool for proving the convergence of a Galerkin procedure is
strong ellipticity ([52], [22]. [55]). For the boundary integral equations this
means that one has to prove a Garding inequality for the integral operator
involved. There are¢ two ways known to do this:

For the Dirichlet problem one can exploit the coerciveness of the
Dirichlet bilinear form. thus reducing the boundary integral equation of the
first kind to the variational problem on the two-dimensional domain. This
was used to show the positivity of the integral operator of the single layer
potential on smooth curves in [24], [35] and of other integral operators
[43], and error estimates for the Galerkin approximation for the boundary
integral equation for the Dirichlet problem on polygonal boundaries were
treated in [7]). The boundary integral equations for the mixed problem on a
smooth boundary are of a spectal form which allows the reduction of the
Garding inequality for the whole system to the one for the single layer
potential. This was used in [57], [58].

On smooth boundaries there exists also the notion of strongly elliptic
systems of pscudodifferential operators, which can be used because the
boundary integral operators are pseudodifferential operators. The Garding
inequality in this case can be proved by showing the positivity of the symbol
which is calculated by means of a local Fourier transformation or expansion
into Fourier series. This was used in [56], [52]. '

For the mixed boundary value problem on domains with corners none
of these two methods works. Even for the proof of the continuity of the
integral operators in the appropriate Sobolev spaces one has to find diflerent
tools.

We use the Mellin transform, and it turns out that this is a very useful
tool, which allows us to prove not only the continuity of the integral
operators but also the required Garding inequality and even the decomposi-
tion of the solution into regular and singular parts.

The usefulness of the Mellin transform in connection with domains with
corners was shown by Kondratiev [31] and generalized to pseudodifferential
boundary value problems by Komet [30]. For the boundary integral equa-
tions it was used, c.g., by Eskin [9] for the mixed problem on smooth
domains and by Fabes et al. [10], [11] for the Dirichlet problem (in Lf
spaces) in a sector. The latter authors use an integral equation of the second
kind involving the operator of the double layer potential, and they calculate
its Mellin symbol. For singular integral equations with piecewise continuous
coefficients and curves with corners the Mellin transform was used by
Duducava [8] and similarly in [6] to obtain a calculus of symbols. (Cf. [14].)

The use of the Mellin transform for the investigation of the operators of
the single and the double layer potentials in Sobolev spaces seems to be new.
Therefore, in spite of the fact that the aim of the paper is the investigation of
the numerical approximation scheme, we devote a lot of space to the
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derivation of functional analytic properties of the system of integral cqua-
tions and a calculus of symbols, which then allows us quite easily to find
the explicit form of the singular parts of the solution. It turns out that we do
not need the local Fourier (ransformation. Potential theoretic arguments arc
essentially only needed for the uniqueness proof.

There exist numerical methods for approximately solving mixed bound-
ary value problems on polygonal domains by means of boundary integral
equations (see [ 1], [23], [27], [40], [46]). They are based on the collocation
method, and in general no error estimates are available [47]. The error
estimates which we obtain are of the same order as those obtained by the 2-
D fimte element method ([5], [12]). But, in contrast to the latter, we get
simultaneously error estimates in higher Sobolev spaces and not only in the
energy norm (i.c., the norm which corresponds to the weak formulation of
the boundary value problem). This allows us, eg., to get easily L*-estimates
as well as error estimates for the coefficients of the singular functions, which
have a direct and important mecaning, c.g. as stress-intensity factors in
mechanical problems.

Some problems which we have not yet treated but which are solved for
smooth boundaries in [58] are:

Investigation of the perturbations arising from curvature terms if one
considers curved polygons:

[nvestigation of the mapping properties of the integral operators in
Sobolev spaces with negative indices. This would give higher orders of
convergence by using the Aubin-Nitsche trick [25] and error estimates for
the Galerkin collocation method [25]. This method is easily implementable
on a computer and gives good numerical results, as was shown in [33] for
the case of a smooth boundary. The paper is organized as follows:

In § I we collect some [acts from potential theory and give the decom-
position of the weak solution of the mixed boundary value problem into
singular and regular parts.

In § 2 we collect the necessary facts about Sobolev spaces (with and
without weights) on polygons and on the Mellin transiorm in weighted
Sobolev spaces. Here we prove a result on the Mellin transform in H'/*(R,).
Then the Mellin symbols of the integrals of the single and double layer
potentials are computed and used to prove the continuity of the integral
operators in Sobolev spaces. The Girding inequalities for the system of
integral equations corresponding to the boundary value problem are derived:
one for the original system in the Hilbert space which corresponds to the
energy norm, and a second one [or a modified system in the Hilbert space
which corresponds to the standard Galerkin procedure for integral equations.
Unfortunately, these two Hilbert spaces do not coincide, and this causes a lot
ol trouble.

In § 3 the unique solvability of the system of integral equations is
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derived. At this point we need an assumption (V) on the domain, namely that
there is no eigensolution of the exterior Dirichlet problem. This can always
be achieved by a scale transformation of the domain. Then we show the
bijectivity of the integral operators and the equivalence of the system of
integral equations with the weak formulation and the distributional formu-
lation of the boundary value problem.

In § 4 we use the calculus of Mellin symbols and calculate the explicit
form of the singular functions as well as the compatibility conditions which
have to be satisfied by the data and by the solution in various special cases.
Here we also obtain the regularity results for the solution of the integral
equations which are needed for the equivalence theorem in § 3.

Finally, in § 5 we define the augmented finite element spaces and the
Galerkin approximation schemes. Then we show the stability of the Galerkin
operator in the energy norm. With the help of the convergence and inverse
properties of the augmented finite element spaces we then prove asymptotic
error estimates in various norms.

§ 1. Various formulations of the mixed boundary value problem

1.1. We consider the mixed boundary value problem for the Laplacian

Au =10
u=g,
P
® u _
('311_92

where Q is a bounded simply connected domain in R* with a polygonal
J

boundary F=F_IUF; = I, I’ being open straight line segments. By
ji=1
t;(t; =0,...,J), we denote the corner points where I'; and I';,; meet

J
(t; = to). The interior angle at t; is denoted by w;.
Let D, N, and M be the subsets of |1, ..., J} for which t;eI'}, t;e I, or

rjef_l m—l—g, respectively. du/én means the normal derivative w.r.t. the outer
normal #, which exists outside the corners. The definition ol Sobolev spaces
is as usual [20]. [36]:
H'(Q) = {ug ue H*(R*)] (seR);

| ue H**'2(R?)] (s > 0),
H () = {LZ(F) (s =0),

(H~*(I) (dual space) (s < 0);
H'(F) = {wr) ue H(I)} (s20) (j=1,2; similarly for I,
A5(T) = lue B*(F))| e H(I')' (s = 0)".

(1.1)
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uonl; : : :
Here i = ! means the continuation of u by 0 outside ;.
0 on I'\TI;

Finally,
H ) =(AT)) (<0,
Hs(ry=(H>TIy)) (s<0).
The most general case where (P) can be converted into a varnational

problem is the following:

g, e HY3(I'y). g,e A 'Y3(I'y) are given, and we look for ue H'(Q).
5 |
In this case, g—leﬁ‘”z(rz) < H Y2(I') is defined by Green’s formula:
n

Lemma 1.1 ([48], p. 6). Let ueH' (4, p, Q):= lue H' (Q) due [F(Q)]
(p>1), ve H' (). Then

cu
(1.2) Au-vdx+ {Vu-Vvdx = (-, v|, .
an H™ U2y x B2

9] L8]

The mapping LH—-V(;:L‘ : H'(4, p, Q) —» H Y2(I) is continuous.
‘n

r

Here {- means the duality between these spaces.

- >H— IIZ(I)XHUZ([')

1.2. In addition to the distribution formulation (P) of the mixed
boundary value problem, we need the variational formulation for the same
problem and the boundary integral equations which are obtained by insert-

1
ing the fundamental solution > log|z—{| for the Laplacian into Green’s 2nd
. T

identity. For this, we have the following representation by volume potentials
and boundary potentials:

LemMa 1.2. Let ueH (A, p, Q); Au = fel?. Then for zeQ

(1.3) u(z)= %jf(x)loglz—xl dx+

1
t5. ju(C)—logI«-—Cld ——j—(ol glz—{lds;.
r

Here ds; is the measure on I' defined by the arc length and

[(8u/dn)log|z — (| ds;
r

is to be understood as {du/én, loglz—.1>, - 1121y, gis2(n-
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Proof. For v, ve H*(Q) we have Green's 2nd identity ([42]):
] v Ou

(udv—Au-v)dx = J (u——— r)ds.

[ oo,

(1.4)

]
We use this for v(x)=~27 log|z—x| and Q, = Q\K,(z), where K,(z) is a
n

small disc with centre - and radius £ which is contained in Q. Thus I', = 09,
= I'u dK,(z). Obviously, ve C*(Q,). Now C™(Q) is dense in H'(4, p, Q)
([20), Lemma 1.539), and if w, —»u in H'(4, p, Q) then Wy, —uly, in
HY2(r,) and (e.g. by (1.2) (du/en), —(du/én), in H™'3(I,). Therefore,
(1.4) holds for ue H' (4, p, Q). Now, inside K, (z) we have ue H*(K,(z)) ([36],
p. 125, Th. 3.2) and therefore the representation formula

. . W
(1.5) u(z) = du(x)v(z—x)dx+ (u—(f—ﬂv ds
on {On

s

K(2) 3K (=)

holds. Now we use Adv =0 in Q,, du = f, and observe that the normal
vectors in (1.4) and (1.5) have opposite directions. Thus we obtain (1.3) by
adding (1.4) and (1.5). =

In addition to this we shall need the following continuity properties of
single and double layer potentials:

LemMma 1.3. (i) ([32], Th. 219). Ler ge C°(I) and
u(z):= ——

T[ '

1

* -
“ U .
9(0) - loglz—{lds; (=€),
(ﬂ;

Then u is harmonic in §2, continuous in Q. and

l |
(1.6) u(z) = —g(@)- jg(f:)-i loglz—{lds, (zeT).
n on;
y 4
(it) ([13), Satz 1) Let ge L7(I') (p> 1) and

.
u(z)=—EJ.a(C)loglz—Clds (e ).
i

Then u is harmonic in Q and continuous in Q.

13. Let us now suppose that ue H'(Q) is a solution of (P) with
g e HY*(I')) and g,e H '*(I',). Then, if veV:= {veH'(Q)lvl,l = 0!, by
Lemma [.1 we have
(1.7) [Vu-Vodx =gy, 0>,

4 1= 125 112 4y
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(Note that v|,,e A'?(I";) because v/, ¢ H'/>(I') and v|;, = 0) This means
that u is a solution of the following variational problem: Find ue H' (Q) with
uly, =g, such that for each veV (1.7) holds.

The converse 1s also true: Let u be a solution of this variational
problem. Then | FuVv =0 for all ve C§'(2) and thus u is harmonic in Q. By

2
Lemma 1.1, du/éne H™V2(I') and &u/dnj;, = g,. Thus u is a solution of (P).
In order to use Grisvard’s regularity results for the weak solution of (P),
we want to formulate the variational problem in a different way which is
equivalent to it:
Let g, e H'?(I') and §,c H™ "2(I) be, respectively, extensions of g, and g, to
I'. By the trace theorem (see [20] and Lemma 2.11) there exists an he H' (Q)
with hl, =§, and 0h/in|; = §,. Define weu--he H'(Q). Then from (1.7)
follows

(18) t Pw-Prdx = — ‘ Vh-Vvdx + <QZa U|[2>H - 1/2“2“”1/2”_2).
Q

0

The right-hand side of (1.8) defines a bounded linear functional on ve V. The.
variational problem now reads: Find we V such that (1.8) holds for each
ve V.

By the coercivity of the Dirichlet bilinear form on V and the Lax-
Miigram theorem this problem has a unique solution w.

If the data arec smoother, eg, (g,,g,)e H¥*(I';)x HY*(I,), then
he H*(Q) and by using Green’s formula again the right-hand side of (1.8) can
be rewritten as

(1.9) [Pw-Prdx = | Ahwdx
o Q

because, on I';,, dh/dn = g,.

(1.9) is the weak formulation of (P) which is of the same form as the one
used by Grisvard in the mixed problem for the inhomogeneous Poisson
equation with homogeneous boundary values.

1.4. For the solution of the variational problem the following regularity
result holds:

Theorem 14. Let (g,,g,)e HX(F)xH Y(I';) be such that
g1l g€ H (I) for I =Ty and g, continuous at t; for je D and gal € H*~1(I'Y)
Jor V< Ty Let s>4% and (s—3wyn¢ Z for je NuD and (s—ow;/n+3¢Z
for je M.

Then the weak solution ue H'(Q) admits a decomposition

(110) U= Z C,‘uk+u0
k=1
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where uge H** l’Z(Q) and u, (k =1, ..., r) are singular functions not depending
on ¢,, g;, which are described below. The following a priori estimate holds:

k=1 i

['J'c['l
To each cornmer point ¢; there belongs a set of singular functions u;,,
I=1,2,3, ...
Define

Injw; for jeDUN,

Ay =

=y for jeM.
(Uj

Then for a;¢ N

o;/'sina; ¢; for jeD and for je M with IV = T,,

1.12) wu; =< g ) .
(112) 5 (x) {Qj"ICOS a;¢; for je N and for je M with IV < I'y,

whereas for a;e N
(1.13)  up(x)

: o;''log ¢ sin a;,¢; +¢; 0’ cos a;, ¢; for jeD and for je M with IV = I',,
~ |o/Mlog o cos a; ¢ —; 0/'sin a ¢; for je N and for je M with IV T}.

Here (g;, ¢;) are positively oriented local polar coordinates at the vertex t;
such that ¢; =0 on I'’*! and ¢; =w; on I'.

The functions u, in (1.10) are constructed from the u;, by multiplication
by a C™-cut off function which is 1 near t; and whose support does not meet
' for jr¢lj,j+11.

In (1.10) we find exactly those functions u;, for which

t<l<Zis—1p for jeDUN,
T

I<l<Zs—1/2+% for jeM.
T

Remark 1.5. The general form (1.10) of this theorem, which goes back
to Kondratiev [31], is well known (see, e.g., [5], Th. 8.3.1, p. 271, and [29],
Th. 1, p. 593 and p. 598 I.). Proofs for special cases are given by Grisvard
[18], Th. 2, (s = 3/2, also the W*>”-case for p # 2 is treated there; ([20], Th.
5.135, p. 5.1.34) (s—1/2e N, also for oblique derivatives and p # 2. The
explicit form of the u;, was also derived by Raugel [48].

The general case for noninteger s = 3/2 can be derived {rom the results
of § 4 in connection with the result for integer s~ 1/2. The singular functions
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u;; in (1.13) are solutions of nonhomogeneous problems with smooth (poly-
nomial) boundary data.

For the present case we want to use a simple consequence of Theorem
1.4: In order to derive the boundary integral equations for the solution ol the
variational problem we have to satisfy the assumptions of Lemma 1.3:

CoRroLLARY 1.6. Let s =3/2+k, ke Ny and g,, g, satisfy the assumptions
of Theorem 1.4. Then

ou
W, eCO(I  and ('Tn elr(I, p> 1.
('. ’

Proof. From the representation (1.10) follows u|,e H**'/*(I) where
d@ < min a;. From the definition of aj follows aj > 1/4, and hence @ = 1/4 is

it :
possible. Thus u|, € H**(I') =« C°(I') by Sobolev's embedding theorem. For
Oufonl; we use the explicit form of du/én = ('Q;ﬂ*lEL‘D, p>1 and
uoe H**12(Q) =« H*(2) whence uy/dn|,e H'*(I') < 12(IN). =

1.5. Let ue H' () be the variational solution of (P). Then by Lemma 1.2
we have the representation formula

ou(()

1 . 0 . 1 C ,
(1.15)u(z)=5T;Ju(g)ra;clog|:—g|dsc——-j‘ anﬂlog]z—qu; (ze Q).

2n
r I
Suppose now that (g,, ¢g,) satisfy the assumptions of Theorem 1.4 for
some s = 3/2+k, ke N,. Then, by Corollary 1.6, the densities on the right-
hand side of (1.15) satisfy the assumptions of Lemma 1.3. By this lemma we
can take the limits of (1.15) for zeI and get

utd)

I d 1
u(z) = 2)+—Ju(s)—10glz—sld; [
an, 27
r r

or

1 du
(1.16) u(z)=— [u(@')——logk— Idsg———J‘—a&L—)loglg—glds; (zer).

y
If we introduce the integral operators of the single layer potential
] A ¥
Vg(2):= —;fg(é)bglz—gldsg (zeT)
: J

and of the double layer potential

1
(1.17) Kg(z):= ——jg({)——loglz— (| ds; = *EJQ(C)dB;(Z),

r I
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where 0-(z) is the angle between {—: and some fixed direction, then (1.16)

reads
u
n' )

%
¢

(1.18) (1+K)(u},) = V(

If we insert into this equation the given data g, = u|, and g, = du/dn|;, and
denote the unknown boundary data by v = u;, and ¢ = du/dn|, , we get the
system of integral eguations

(1.19) [I+K22 EVIZ'J[U;I_[ - K2 sz][!h:l
' — K3, Viv [ W 1+Ky =V (92
where for j, k=1, 2

1 { . ¢ 5
Kjg(z) = —= g0~ loglz—(lds; (zeT}),
n on.

&

L §
V,'kg(:)=—;t» g(Q)log |z —¢lds; (ze ).

This system, which we abbreviate by
(1.20) doU = 400G,

1s a coupled system of a Fredholm integral equation of the second kind for v
on I', and an integral equation of the first kind for ¢ on I',. For the case of
a smooth boundary curve, the mapping properties of this system have been
analyzed and asymptotic error estimates for the corresponding Galerkin
approximation procedure have recently been obtained in [58].
Analogously, from (1.18) one can derive boundary integral equations for
different boundary conditions. If instead of the mixed Dirichlet-Neumann
problem (P) we have, for example, a mixed Dirichlet-Robin problem

u
Uy, =4 bﬁ”“

then instead of (1.18) we get

' Vy,d 0]
.2 } U= #4,G.
.21 R o |

From the results of the next section it will be clear that this differs by a
compact perturbation from (1.20). Then from the general results [52] it
follows that the optimal error estimates for the approximation of (1.20) imply
those for (1.21) (compare also Lemma 5.2). (1.21) was approximately solved by
collocation in [40].

=g, (d a smooth coefficient function),

)



BOUNDARY INTEGRAL EQUATIONS 185

§ 2. Mapping properties of the integrak operators

In the case of a smooth boundary i1t was shown in [58] that (1.20) is
a strongly elliptic system of pseudodifferential equations, which means that
for .«/, there holds a Garding inequality in some Hilbert space. This is the
essential tool for the proof of convergence of Galerkin’s procedure. In this
section we want to show that again there is a Géarding inequality in
appropriate function spaces. In contrast to the case of a smooth boundary,
the integral operators in (1.20) in general are not pseudodifferential oper-
ators, so that the Fourier transform is no longer a valuable tool. It has to be
replaced by the Mellin transform, which, however, naturally acts in weighted
Sobolev spaces and not in the usual Sobolev spaces (cf. [31], [3], [4).
Therefore we need a detailed investigation of the connection between or-
dinary and weighted Sobolev spaces and the Mellin transform.

2.1. Before considering function spaces on the whole polygonal bound-
ary I, we take a closer look at function spaces on a single segment or, more
generally, on the semi-axis R, . The weighted Sobolev spaces on R, which
were introduced by Kondratiev [31] for integer m, have the norm

[lull = | (x*[D™u(x)|*+ x*" " |u(x)*)dx
W:'(R+) 0

0
The general definition and a lot of properties of W(R,) for se R can be
found in [4]. We need only the case a =0, where we have for s = m+ao,
me Ngy, 6¢(0, 1) the norm

(2.1) ully, = lulls . +lIxull?
W_s(')(n ) H(R ) I (R )
with
[= 73N &
|u |HS(R y f . ID™u(x)—D™u(y)*|x—y ="' "2 dxdy.
00

1]
This space coincides with P** in [18]. For s < 0 we define W3 by duality:

0 0-5 ’
WS(R+):=( WO(R+))-

It follows from [4] that these spaces coincide for all se R with the spaces
H3,;(R,) which are defined via the Mellin transform (compare (2.4) below).
The definition is as follows:
For ¢eCg (0, cv) the Mellin transform ¢ is defined by

(2.2) () := af ¢ M (e Ndt = Tx”"cb(x)dx.
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Thus the Mellin transform is a composition of the Euler transform xr—e ",
which maps R, onto R, and the Fourier transform. For more general
distributions on R, the Mellin transform is generalized by using the usual
generalizations of the Fourier transflorm. The inversion formula is

1 -
(2.3) ble™) =5 f e § (1) di.

ImA =const

ExampLEs 2.1. (i) ¢peC2(0, v)<>pe ¥, ie. ¢ is an entire function of
exponential type which is rapidly decreasing for Re 4 » + .

(i) ye CF[0, x) with supp(l—y) < (0, oc)<>j(4) = ()i with de 2
(Im 4 < 0).

(i) u(x) = x*x(x) with x as in (i)=i(l) =¢(A)i—ia with dez
(Im 4 < a).

(iv) u(x) = x*(log x)' x(x) with y as in (ii) = a(4) = ¢ (A)/(1—ia)'*" with
pe (Im A <a, leN).

LemMma 2.1 (Parseval equation for the Mellin transform 4], p. 367, 373).
For ¢eCZ(0, occ) we have the equivalence of norms

(2.4) ol ~ | (U+IAPPI9@ANPdE (seR),

W{)(n“ Imi=y-1/2

0
and W(R,) is the completion of CZ (0, o) in this norm. ‘
Since we are interested in the Sobolev spaces without weight, we shall
need a similar characterization of the Sobolev space H'/?(R,) by means of
the Mellin transform.
The norm in H'?(R.) is given by

||“||:,1/zm+, = ”“”12.2+|u|f11/2(n+)
with the seminorm defined in (2.1).
Lemma 23. For ueCg§ (0, o) holds
(2.5)
(md coth nd— 1){a(A) 2 di ~ —iEfIﬂ(i)lzdi
’ 1+]4 '

Imi=0 Imi=0

ful

2
HU2R,)

1
2n
Here again ~ means equivalence of norms.

Proof. By (2.1)

Wl g 12n,, = g glu(x)—u(ynzlx— Y~ 2dxdy.
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We substitute g(¢t) = u(e™') and get

= o] e &
o
2 _ [ 'g(t)_-g(‘t)'z e—(,+t'dtdr
‘U'Hlll(n+) = ———Ie_,_e_rlz
o o

- TP
a

T la—g? L[ [let+m—go?
- 4[sinh((:-r)/z)]2d“h“i j J snhZ(h/) Ll

- T

Now i = Fg, the Fourier transform of g. By the Parseval equation lor

the Fourier transform we obtain

jlg(t+h)—g(r)|zdt =5 f|(e+-'“'—1)a(;»)|2dz.

Thus
1 |ei).h_ 1|2
2 - n 211 —
lul,,llz(.+) = j i (A)] (4 snhZ(h/2) dh)dl.
With
4 ilh 2 ” 2 K

e —1| sin* (1h/2) 1 —cos Aih )
Ly dh= | = =—""dh= | —————dh=nlcothmi—1
| SinhZ(h/2) J- sinh? (h/2) cosh h—1 A coth A

- - @

by [49], 3.583.2, we obtain (2.5). =
CoroLLaRY 2.4. There exists a C > 0 such that for ue Cg(0, «)

144

(2.6} ||“”i1— Y2g,) < j ) VE
Imi=0

d(A—i)*dA.

if the integral exists.
Proof. By definition H~"*(R,) = HY*(R,Y. Hence

2
|<u9 "II>L2(R+)' |<u, |//>|2

< su 2
v Wiz

llulig-1 = sup
[ e VP IT 3
(Ry4) IPEC&'(O,X) ”w”HI[Z(.+)

Now by (2.5) and the Cauchy-Schwarz inequality we have
1 - L
—1;. j A=y (A)da

ImA=0

2 2

Iy

1 —
|<u, )I? = 2;{’ j a(Ay(A)di

ImA=—1/2
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I R 1 A2
o 7  —i“dA —— (AN d
<5 J S hili=) L
Imd=0 Imi=0
S S i .
< Cli, J |7|'2~'Juu—:)|2dz,
Imd =0

where the path of integration has been shifted according to the analyticity
and rapid decay of & and .

(1]
The weighted Sobolev spaces Wj(R.), se R, have the interpolation
property

0 0 0
(27 [We°(R.), Wo' (R.)To = W5(R.) |

(S0, 51 €R, 0€[0, 1], 5 = (1 —0),,+0sy).
Here [+, -], is the complex or the real (8, 2) interpolation functor. The proof

of (2.7) follows from [54], Theorem 3.4.2, p. 275.

0
Remark 25. It is easy to see that 'W;| aeR! for fixed s and

0
{ s

‘W .1 seR) for fixed a are interpolation scales, but the corresponding

(semi-) groups do not commute, so that (2.6) is indeed nontrivial.
On the semi-axis R, we have the following relation between the

0
weighted Sobolev spaces W;(R.) and the Sobolev spaces H*(R.) of

H®(R.)-functions possessing an extension by 0 on R_ in H*(R). (See
Definition 1.1.)

LEmMa 2.6. Let xe CE [0, o0). Then the mapping ut— yu is continuous
from Wi(R,) in F*(R.) and from B(R,) in Wi(R.) for s> 0. This means
that the norms of ‘9V3(R+) and EF(R.) are equivalent on compact intervals.

For s < 0 the mapping uvw yu is continuous from I?VS(R+) in H'(R.,) and

Jrom H*(R,) in ﬁ’o‘(R;,).

The proof of the lemma follows directly from [54], (4.3.2/7), or from
Thm. 118, p. 69 in [36] by interpolation and duality.

Now we want to describe the Sobolev spaces H*(I') and H*(I'}) as

defined in (1.1). To this end use a partition of unity (x,, ..., x;) with the
following properties:

(2.8) g, is the restriction of a C§(R?*)-function to I,
x; =1 in a neighbourhood of the vertex t;, and

i j+1
suppy,c "o iylor .



BOUNDARY INTEGRAL EQUATIONS 189

For every function u on I' we then have

J
(2.9) u= ) x;u,
j=1

so that y;-u is the “local representation” of u at 1;. Each x;-u has its support
on the angle IVu {1} UI’"'. By means of an affine transformation of
variables this angle can be considered as a part of an infinite angle I/ with

iw;

sides I'_ =¢ 4. R, corresponding to IV and I', = R, corresponding to
it

Thus, x,u can be considered in a natural way as a function on I/, and
thus also as a pair ((x;u)-, (x;u).) of functions on R,. We will use these
natural identifications without further mention if no confusion is possible.

Re

Besides the decomposition (2.9) we can also consider the restriction of u to
each IV and in this way obtain a natural identification of functions on I" and
J-tuples of functions on the segments IV, j =1, ..., J. With these identifi-
cations we have the following description of H*(I).

Lemma 2.7 (Grisvard [16], [20] LS, 2, {15)).

(i) For |s| <1 H*(N) = HH’ (7).

(ii) For se(3.3): HY (I = lue n H(I')| (x;ju). e H*(R,) and
j=

(). —(Guw-e B (RL) (=1, ..., )},

J
(A S (AN A ,+Il(x,-u)—ll,f,s(,,+,+ll(x,-u)+—(x,-u)-llf,s(,.+,}

(iit) For s >3 H*(I') = lue [[ HY(I') (x,u). e H*(R,) and

(x,u) (0) = (x;uw)-(0) for w; # n and
O u) e — (g u) - e H*(R,) for w; =7},
CorovrLAry 2.8. Let tv>z(1), T€[0, L] be the paramerrization of I'y by

the arc length. Then z*: H*(I')) - H*[O, L] defined by z*f = foz is an
isomorphism for |s| < 3/2. H*(I'®) does not depend on we (0, 2r) for |s| < 3/2.
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Proof. If [O, L]=U7j; ie. I'=z(J;), then for 0<s <32
j=1

H*[0, L] = [] H*(J;) is the subspace which is characterized by compatibility
j=1
conditions equivalent to those stated in (i) and (ii) of the lemma:

no conditions for 0 < s < 1/2;
continuity on all of [0, L] for 1/2 <s < 3/2; and for s = 1/2:

dt _ _
J]ﬁ(1k+t)_ﬁ+l(rk—r)|27 <o, Wwhere j].lj = fni=k, k+];.

0

T =Im.},,+1; and ¢ > 0 1s small enough.

The condition for s = 1/2 just means (x, u), —(x u)- € H'*(R,) lor f = z*u.
For —3/2 < s < 0 the result then follows by duality, because the result
for 0 <s < 3/2 is obviously also true for the H*-spaces =

Remark 29. For s = 3/2, H°[0, L] contains more compatibility con-
ditions than H*(I'{) if at least one angle in I', differs from n. For w; = n and
s = 3/2 there are compatibility conditions on the derivatives, too, cf. (iii) of
the lemma. For s > 1/2 and w; # n the conditions in (ii) or equivalently in
(iii) of the lemma just mean the continuity of u at t;.

CoroLLARY 2.10. The spaces H*(I')) and A*(I';) for |s| < 3/2 have the
interpolation property, i.e.,

[H(,), H(T,)] = HY(T',);
[A°(Iy), A (I'))e = A(Iy) (0€(0, 11; so, 5, €(—3, )i s = 05, +(1=0) s50).
Proof. The spaces H°[0, L] and H*[0, L] have this property. m

Lemma 2.11 (Grisvard [20], .§ 1.5.2, [16], [17], [19], or [48]).
J
is surjective from H**'Y2(Q) onto [ H*~'(I")

I j=1

Jor s>1if wy#n(j=1,...,J).

0
(i) The mapping ur—»—u
on

ou
(i) The mapping uH(ul . EB;

) is surjective from H**''%(Q) onto the
,

subspace of H*(I’)x [| H*~'(I'Y) which is characterized by the conditions
. =1

F]

du d
(Xj %)_ 0) = '—d—x(xj u).(0) and

- d .
(xjg—:)+(0) = u-0 o =g, and » for s> 3/2,

% d : in
(Zj—)+(0)= E(x,-u)t(()) if 0=
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and

Cu d -
(05). * =B R0 5
. Ls <.

2.10 -
(' ) 2 2

J—
2
3][ ’ ‘

Cu d .

(For 1 <s < 3/2 there are no conditions, and for 3/2 < s < 5/2 the two sets of
conditions coincide.)

LEmMa 2.12. For 0 < s < 3/2:

(i) H(M)={u=(u_,u,)eH(R.)| u_—u,ecH(R,));

(i) H (M) =lu=w_,u)cH*(R,) u_-+u,cH*R,).
Furthermore, the mapping

(2.11) D:(u_,u)—(u_+u,,u_—u,)
is an isomorphism
D: H¥(I'*) - H*(R.)x A*(R.) and
D: H*(I'*)—» H *(R,) x H *(R,).

Proof. (1) is a simple consequence of Lemma 2.7 (ii), ¢f. [16]. This means
that D: H*(I'*) - H*(R,) x H*(R,) is an isomorphism. If we note that
H™*(I'*)y= A~*(I'") = [H*(I')} and D’ = D, the result (ii} follows by taking
adjoints, whence
(212) Bl gy ~ e + D= msim,, H D= =Gl @

2.2. In order to show the mapping properties of the integral operators in
system (1.20) on I' we first investigate the operators on the reference angle
r“, to which the general case will then be reduced by localization.

The natural identification of functions on I'° with pairs of functions
on R, induces a natural identification of integral operators on I'* with
(2 x 2)-matrices on integral operators on R, . We denote this correspondence
by =.

In this way for the operator V of the single layer potential we have

A[V__ V+_]
V=
Ve Vi

1
V.. ¢(x) = - J logix—yl ¢ (y)dy

0

where for ¢ Cg [0, x©)

1 1
- ——J log yd)(y)dy——J log 1-%4’0’)@
18 n y
0 0

=:lp+ Vo ¢ (x);
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1 ( ,
(213) V., d(x) = —;j log [x —ye'| ¢ly)dy
0

1L .
= 1¢—-’J logil —Z:-e""”qb(.v)dy =:lp+V,d(x);
° - b

Vio=V_ s Vo=V, .
For the operator K of the double layer potential we have
~ Koo Ko :
K= with K__=K,,=0
[K-»f K++] ’

because of the geometric interpretation of the double layer potential by the
change of the angle (cf. (1.17)).

0

1 1
K,_¢(x)= x J‘ Im (}‘e,-a,__y)‘ﬁ(})dy =:K, ¢(x),
2.14 0
( ) K ,=K,_=K,.
In short, we have on I

C [V Y| ([0 K
l’ Vm VO’ - K(:)O .

The decomposition of V is made in such a way that the kernels of the
operators Vg, V,, are homogeneous functions of degree 0, so that the Mellin
transform will convert them into multiplication operators (up to a shift). For
the double layer potential K this Mellin transform was also calculated by
Fabes, Jodeit, and Lewis in [11].

LemMma 2.13. (1) Let ¢peC3 [0, o). Then

(2.15) V=

—~ - . cosh me .
b (1) = Vol lh=i)i= = oo Gli—i
sinh nt/A )
(2.16) ) % (Im Ae(0, 1)).
—~ .. ) cosh(in—w)/ . . |
V() = V() gla—i)i= e (A=)
/ sinh

(i) Let ¢ C§ (0, ). Then

—~ - - sinth(rt—m) A -
217) Koot = R, (= -2 FZD 2 500 (mie(~1, 1)).
sinh n~,

Proof. We have to use the formula (see, e.g., [9], [50])

€z

J' e*ilrdr ) ei'i.(w-nl

(2.18) —— = jr———= {(we(0, 2n), Im ie(—1, O)).

e*r i 1

sinh mt4

I
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We use the definition of the Mellin transform via the Fourier transform and
then the convolution theorem for the Fourier transform.
For K, we obtain

> 2]

] 1
Ka)¢(e_-') = - j Im(—_—‘—iw———_?)d)(e_t)e—rdr
n e e —e
1 1 1 B
:5; Jv(e_('_')+iw_l_e_(l—t)—im_1)¢(e )dT

where (by (2.18))

o d]

Alw —n) - Me-—rn)
Ff(d) = J e~ f (1) dr = L(in ¢ inS )

2ni\ sinh td  sinh A

- an

inh(t—w)4 -
_ IO g, (mie(=1,0).
sinh 4
From Im(1fe***—1)) =Im(1f(e”***—1)) it follows that f is an even
function, and thus Ff (1) = K_(4) also for Im ie(0, 1). By the convolution
theorem we have K_$(4) = Ff(1). $(4), whence (2.17). For V, we write

[

! . * »
V,d(e™ ) = — [ logll—e"" """ p(e™")e "dr = | fle-1)g(v)dr.

- xX

Here
Fo)= [ e"™e " gl )dr = $(A—i),

and by integration by parts and the use of (2.18)
—iit 1 ~t—iw
Ff()= | e ™| ——)Re(log(l—e ) dt
n

- a

@«

= — J;—e'ilr'Ree—_Hdt
inA 1—e '
cosh(A-w)2 .
it bt R 7 —1,0).
Tsinh o (A for  ImAie(—1,0)

13 — Banach Center Publications 15
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This gives (2.16) if we notice that I, is a special case of V,. =
CoroLLArY 2.14.

0 [8)
Vo and V,: Wo(R.) —> Ws* ' (Ry)  for sl < &
0 0
K, Wi(R.)—=W3(R,)  for se(—4,3)

are continuous.

Proof. This follows immediately from the Parseval equation (2.4) and the
fact that |V,(4)) ~ 1/(1+]4]) on each line ImA=he(—1,0) and K_(4)
bounded on Im 4 = he(—1, 1). For example,

IV, #l1% ~ o (HAT AN dA
Wit Ry ma=vrag2
<C | (1+A%Fle(A—il*dA
Imd=s+1/2
~ [ (+IAPY (A1 dA
Imd=5-1/2
~lpll; =
WE(R )

Now we can prove the continuity of the operators V and K in the
Sobolev spaces without weights. The exact distinction between H* and H® is
crucial for the proof of the compatibility conditions for the image of the
operators on I

LEMMA 2.15. Let xeCF[0, ) with supp(l—y) =(0, ©). Then the
mappings
ursx(I+V)qu: AF(R,) - H* ' (R,) for se(—3/2, 1/2);
ury(I+Vo)yu: HS(R,) - H " (R,) for se(—=3/2,1/2);
u—s (Vo= Vo s H (R - AN (RL)  for  se(—3/2,1/2);
us Ky | ﬁg:;:’:g:; for  se(—1/2,3/2);
are continuous.

Proof. Let A: ur-y(I+V,)xu be defined on L?(R.). We first show the
continuity of 4 from H*(R,)—- H**'(R.) for se[0, 1/2): urI(xu) is by
(2.13) a continuous linear functional on H*(R,) for all s > —1/2. (But
x(x)-log x¢ HV2(R,)). So ursy-l(xu): H(R,) — H'(R.) is continuous for
s> —1/2 and all t. By Corollary 2.14 and the local equivalence of norms in

A and I?VOS (Lemma 2.6) yV,x: B*(R,) - A**'(R,) is continuous for
se[0, 1/2). Thus 4: H*(R.)— H**'(R.) is continuous for se[0, 1/2).
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Now 4 is a self-adjoint operator in [*(R.). The adjoint operator A’ is
continuous from A " '(R,) into H *(R.) (0 < s < 1/2) and coincides on the
dense subspace I*(R,) with A. Therefore we can use interpolation and
obtain for every 0 <s < 1/2 and 0¢[0, 1]:

A: [A*(R.), B * " (R,))y—»[H*'(R,), H” S(RJ,)],, is continuous. By
the interpolation property of the spaces H*(R.) and H*(R,) we obtain A:
H (R,)- H*'(R) continuous for all re[—s—1,s]), hence for all
re U -[s—1,s]=(-3/2,1/2).

0<s<1/2
Let Ag: ur—sy(I+Vy)xu. Then we have AO—A u—y(Vo—V,)yu and
o— A is self-adjoint.

As xV, x: A (R,)— A"*'(R,) is continuous for re[0, 1/2), we get
Ag—A: A (R,) = H' (R.)— A *'(R,) cont. for re[0, 1/2). By taking ad-
joints we obtain

Ao—A: H " "(R,) - H "(R,) cont. for re[0, 1/2).
By interpolation we obtain as above

Ao—A: H(R,) - B**'(R.) cont. for se[—r—1,r]
and all re[0, 1/2), and thus for all se(—3/2, 1/2).

Now let B: ur—s K, xu be defined on L*(R,). From the equivalence of
norms and Corollary 2.10 we know that B: A*(R.) — H*(R.) is continuous
for se(—1/2.3/2). For se(—1/2, 1/2) the spaces H*(R.) and A*(R.) are
identical. Therefore, if we prove that B: H*(R,) — H*(R.) is continuous for
se(1/2, 3/2), then the result for the whole range will follow by interpolation.
Thus let se(1/2, 3/2). Choose ¢ € C§ [0, o0) with supp(1 —¢) = (0, o0). Then
for ue H*(R,) we have the decomposition
(2.19) u=u(0)-¢+u, with ugeH(R,).
where ur—u(0)¢: H2(R,) - CE[O0, ) is continuous. Then

Bu = u(0):- Bo + Bu,.

We know that u+— Bu,: H*(R,)— H*(R.), and hence into H*(R,), is
continuous. It remains to show that B¢ e H*(R,), where B¢ = yK_ y¢. Now
x¢ =1 on some interval [0, ¢]. Let x, be the characteristic function of this

interval. Then y¢ = xo+(x$ —xo)- The function y¢—yx, vanishes on [0, £].
Therefore K, (x¢ —xo)e C* [0, o). Furthermore

€

1 1 1 jo _
Ko Xo(%) =;jlm(xe,.m_é)d¢ = —— arg(’“’ea,"’).

0
For fixed w this is continuous on [0, o0). The derivative

d 1 o ! o
T K pox)= -~ lm( ¢ ———)= — [m( ¢ )
dx n xe'®—-¢ X n xe'“ —¢
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is analytic in a neighbourhood of [0, x). Thus K_,7oeC*[0, ») and the
proof is complete. =

Remark 2.16. (1) The range of the indices s for which the operators in the
lemma are continuous cannot be extended in general. More information
concerning this question will [ollow [rom the results in § 4.

(i) The number K, yu(0) depends only on u(0) and w, as can be seen
from the following: Let u,, u,e H*(R,) (s > 1/2) with u,(0) = u,(0). Then
u,—u,e H*(R,) and thus K, y(u; —u,)e W3(R,). This means especially
K, 7(u, —u3)(0) =0, whence K, yu; = K, 7u;. In § 4 it follows by the cal-
culus of residues that

K., yu(0) = ‘-"%’—t u(0).

Having now the necessary information about the localized operators, we
are in a position to prove the global continuity of our system of integral
operators:

THeoreMm 2.17. (i) Let o/, be defined as in (1.20); then
oi HY () x AN () —» H(I,) x H(I"})
is continuous for se(—1/2, 3/2).
(1) Let Ay be defined as in (1.20); rhen
Ao HY (T ) x B 1(Fy) » H(Ty) x HA(T))
is continuous for se(—1/2, 3/2).
Proof. From definition (1.19) it is clear that the result concerning 4,

follows from that on ./, by interchanging I'y and I',. The prool lor ./,
proceeds as [ollows:
We use a partition of unity (., j=1,...,J; with the properties (2.8)
and decompose
g

(220) _C)/OU = Z XJ ":/OXI( U.
k=1
By Lemma 2.7 we have to show that for fixed J and each k=1, ..., J

the operator y; .o/ x, maps the Sobolev spaces on ' onto the correspond-
ing spaces on I/ continuously. For this purpose we show that (xj Lo U).
is contained on the proper Sobolev spaces in R, and the compatibility
conditions, as specified 1n Lemma 2.7, are satisfied. The continuity then
follows trivially.

We have to distinguish three cases:

() j—k| > 1;
(B) i —kl =1:
(y) j =k
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(x) Here supp x; nsupp z, = @. Now all integral operators in .o/, have
kernels k(z, {) which are C™ for - # {. This implies that x; -/, y, U belongs
to C” (I} and thus is contained in all Sobolev spaces.

(B) Here supp y;nsupp g, =:ScI*u "', Now outside S we have
Zi /o UeC™ (as in case (x)). From case (y) we will see that /51, U is
contained in appropriate Sobolev spaces on all of I'*u I'*! whence on a
neighbourhood of S. So y; /5, U is contained in the correct space.

(y) For the investigation of y, /oy, U we have to distinguish three
cases: “Dirichlet”, “Neumann”, and “mixed” corners.

(D) This means keD or T*uT**!' < I',. So supp x, = I, and thus

y [1+K22 —l/lzJ I'OO J
Lk Yol = Xk Ak =
korosk ¢ — K, Vi ¢ O Vit

reduces to the operator y, Vy, on I'"’*. By (2.15) this operator corresponds to

the (2 x 2)-matrix
11
[ 1 Xk e+ 2

For further reference, we denote this local correspondence by

2.21 ol e Y
( . ) .'.‘/0—'(1)) ! l l/;uk VO .

Similarly y, U = I 0 J=\ L(Z"wﬁJ. Therefore we have to show that y, Vy,:
¥ (X )+

H*~'(I'?) - H*(I'*) is continuous for se(—1/2, 3/2). By Lemma 2.12, this is
equivalent to

Vo
VO V“Jxk on R,.
0

W

Dy Vi, D™ Y (R < H "(R,) > HY (R, x H*(R,)

continuous for se(—1/2, 3/2). Note that for |s| < 1/2 H* = H"*.
D has the matrix representation

D~ 1 1
=1, i)

204 Vo+ V, 0 }
Xk

whence

(:)k

0 Vy—V,

(2.22) Dy, Vi D' = xk[
R 2%

Lemma 211 gives x 21+ Vo+V, ) [*(R,) —» H*"'(R,)cont. for se
e(—=3/2, 1/2) and 2, (Vo—V, ) 1 H*(R,) = A" 1 (R,)cont. for se(—3/2, 1/2).
This is just the desired result.
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(N) This means ke N or *uI**' = I',. We have supp 3, = I'; and
thus

1+K,, O
0 0

By (2.13) this corresponds to
1 K,
Ak K i ks
oy
1e.,

~ 1 K(U
(2.23) Ao = [K : k].

@i

X Aotk = Xt[ Jx,, reduces to  x, (1+K)yx, on 7K

We have U = [X" U] = [(Xk v)_], and so we have o show that
0 (Xk U)+

v (1+K)x: H(F% - H*(I'*) continuous for se(—1/2, 3/2),

or
Dy (1+K)zD™': H'(R,)x H*(R,) - H*(R,)x A*(R.,)
continuous for se( -3, 3).
oA 1+ K, 0
(2.24) Dy(1+K)x,D 1=Xk[ 0 g 1_Kwk:|Xk-

Lemma 2.11 gives the continuity of x(1+K,)x in H'(R,) and of
(1=K, ) 1 in A*(R,) as desired.

(M) Here we again have to distinguish two cases, namely
(M) r*er,, r'‘cr,
(M,) rrer, nI‘cr,.

We shall investigate only the first case (M,), because the second case results
from the first one by a single renumbering.
By our natural correspondence with (2 x 2)-matrices on I™’* we have

1+ Kz, — W, 2 Voo =K, | I+Ve —Ko, | |
Ak Ky, v, X = Xk V., 1+K,, ré _l—Vwk { Xk

A I+V, —K,

We have to show that

I+V, —-K
“[—f—; 1'“]"": A R < (RD > H (R (se(=4, D),

o)

is continuous. Due to Lemma 2.15, this is true. m
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Remark 2.18. The proof shows that for ke D the compatibility conditions
for oy U at ¢, are always satisfied, although ¥ need not be continuous. For
ke N, the compatibility conditions for </, U at 1, hold if and only if those for
v are satisfied.

2.3. Because the boundary value problem (P) is strongly elliptic, one
could expect that the equivalent system of integral equations (1.20) is also
strongly elliptic in some sense. For smooth curves it was shown in [58] that
this is the case in the sense of elliptic pseudodifferential operators on I". This
was then used to prove convergence for the Galerkin approximation
procedure.

In the case of a polygon I’ it turns out that the operator .o/, of (1.20) 1s
strogly elliptic in the space H'/?(I'y) x H~ Y/2(I',) of the “energy norm”, which
corresponds to the space of the variational formulation (1.9) of the problem
(P). In the space L*(I’;) x H ™ Y2(I'}), which belongs to the standard Galerkin
procedure with boundary clements, the operator .o/, however. is in sharp
contrast to the case of a smooth boundary, not even continuous. (The
operator K,, does not map L*(I';) continuously into H'*(I';).)

The way out this dilemma is to replace system (1.20) by an equivalent
system of integral equations which is obtained from (1.20) by some kind of
the Gauss elimenation procedure. The new operator .7 on the left-hand side
of this equation will then indeed be continuous on [*(I",)x H~'*(I';) and
strongly elliptic, i1.e, will satisfy a Garding inequality.

The modified system which we shall use for the Galerkin procedure is

1 0 .
obtained from (1.20) by multiplication from the left by [K 1J. This gives

21
(2.26) U = 8G

with

(2.27)

q/z[l**'Kzz — V2 ] %:[ -Ky; Vaz ]
, Ky Ky Vii—-Kyi V2| 1+K 1 ~K;, Ky, — V3 +Ky, Vs,

This new system is equivalent to the original one as soon as K, is

continuous, because [ ] will then be an isomorphism. This is the case,

21

1 0
eg., in H*(I'y)) x H*(I'y) (se —1/2, 3/2) by Theorem 2.17. Instead of [K 1]
21

1 0 . . :
one could also use [ ], where y,, e CF(I') is any function identical
Am B2

to | near t; for je M. This would mean that .o/, is modified only in a
neighbourhood of the “mixed” corners. If w; =n for all je M, then the
modification is not necessary, i.e., we can take .o/ = .o/,.
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THeorem 2.19. The operator
of 0 ATy x B=Y2(r) — () x HYA(I)

is continuous and satisfies a Garding inequality, i.e., there exists a 7 > 0 such
that for all U

(2.28) (AU, U)l,z(l'z) = )’”U”iz”-z,x,;—1/2(,»1,“k(U, U)
where
CAU, U, o, = 0+ Kp)v=Via o, U>L2(,»2,,(,_2(,-2,+
+ UKz K)o+ (Vi = Koy Vi), ¥ 124 < a- U2(ry)
and
||U||iz(' S x A 142, D = ”l’llizu.z) + “\1’”3* 112“,”.
k is a compact bilinear form on L2(I'})x B~ Y*(I,) with

(229)  k(U, U)=(TU, U> where T: H*(I'y) x B~ V2(I'y) —» H*(T"3) x

L2y
x HY2(I'}) is compact for 0 <s < 1/2.

Proof. From Theorem 2.17 we know the continuity properties of the
operators 1+ K,,: [2(,) = I*(I,);

(230) C:= Vll_Kll Vlz: H'llz(rl)—*H’”z(rl).

and V,,: H™Y3(I';) » L*(I',), where the latter is compact by the compact-
ness of the embedding HY?(I';) o L*(I,).
Thus for the continuity of </ we only have to show that

(2.31) K,, K,,: L*(I'))— HY*(I')) is continuous.
For this purpose we choose a partition of unity |x;} as in (2.8) and write

Ky Ky, = ZKZI X K22 xi-
Jok

For the individual terms in this sum we have several cases to consider:

If jeD then K,, %, = 0.

If je N then K,, x;: L*(I'y) - C®(I'y) continuously (cf. (a) in the proof
of Theorem 2.17.).

If jeM and |[k—j| > | then x;K,, xi: L*(I';) - C*(I'y)cont. and finally:

If k=jeM then x;K,, x, =0 (see (2.14)).

If k—j| =1 then also y; K, yi: I2(I,) > C*(I',), as can be seen by a
combination of the preceding two cases.

What we have actually shown is that even K,, K,,: L2(],) = C=(T,) is
continuous, so that K,, K,,: I*(I';)—» H'*(I'}) is compact.
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Also, V,,: H™Y*(I')) = 12(I',) is seen to be compact. Hence for the
proof of inequality (2.28) it is sufficient to show the two inequalities
(232) AL+ K200 0220, = 702, —ki (@, 0)

L2(1 )

with k, compact on L*(I,), and

(2.33) (Cy, l/’>,,1/2“-1,,(,;— 121 ) = r“l//“,Z;— 1/2(,-“—"2(1//7 ¥)

with k, compact on H™'*(I)).

Again, we use a partition of unity as in (2.8) to reduce the global
inequalities to local ones, i.e., inequalities (2.29), (2.30) for the individual terms
b oW (k=1,...,J) instead of v, . Lemma 2.20 below will justify this
reduction. ,

For inequality (2.32) we have two cases: ke N and ke M. For ke M we
have (Kj; v, xxv> =0, so

AU+ Ko xi vy 0,2 = i l’lliz-

For ke N we take the natural identification of x, v with a function on the
reference angle I'°, w = w, and use form (2.15) of K,,. We want to show
that the operator K, i1s a contraction:

(2.34) q = ||K,|l

in order to obtain

L2(R ) <1,
<(1 +K22) ka’ ka> = ”Xk l"||2+<K(u(Xk U)—a (Xk U)+ >+ <K(U(Zk U)+a (Xk U)_>
2z |lxx L‘Hz“q G o) < I NGk ©) 11+ G o) 1 G ) - 11

(KNG - 117+ 106 v) 4117 = ol?)
= (1= g) |l vl

For (2.34) we take ¢ € CJ (0, ) and use the Mellin transform (2.17) of K, ¢
together with Parseval’s equation (2.4)

1 sinh(t—w)A|? -
2 - _ co Ay 2 2 2
1Ko 92, =5 J anne NUICL L7 L T
Ind=—1/2
) sinh (1 —w) 4 . 1
with g:= sup M We have with £ =o+it, 1= —<
mi=-121 sinh 2
T—w

cosh? o (1 — ) —cos?

sinh(t—w)i|> cosh’e(n—w)—cos’ t(n—w) _ 2

Isinh mA}? cosh?on—cos? tn cosh?on

=0



202 M. COSTABEL AND E. STEPHAN

Now this is maximal for ¢ =0, and thus

(2.35) q = [sin- ‘ < 1.

This proves (2.34) and finally (2.32).
For (2.33) we again have two cases: ke D and ke M. For ke M we will
show

for all
) - d .
(2.37) ¢eCy(0, o) with c[)(—:):O:ad)(—z).

By Lemma 2.22 the set of such functions in dense in H~'?(R.), and so
(2.36) will hold for all ¢ H '2(R.), especially for y, ¢. The operator C
from (2.30) now has the from

C=(+Vy)—K, I+ V).
Now

(2.38) 0=‘—1‘%d3(—i)= j(—ir)e““gb(e-f)d:h:_,-

= —ij log x-¢(x)dx,
0

so that I¢p =0. Thus C¢d =(V,— K, V,)¢ and we can use the Mellin trans-
form and Parseval’s equation to obtain

i - . N
(2.39) (Ce. )= j C(A) p(A—D) Pp(4)dl

Ima=~-1/2

1 ~ -
= J C )1 (4— i) di,
T
Imi=0

where we have deformed the path of integration due to the analyticity and
rapid decay ol the integrand. Here from (2.14), (2.15) we get

A, sinhn—w)d coshwi 1 +]4|
(249) )= 2 sinh? 1A ~E (eR

By inserting (2.40) into (2.39) and using (2.6) we obtain (2.36) for some y > 0.
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For ke D we "again use the density arguments for Lemma 2.22, so that
we may assume that

Xk ;(d)_, ¢.), where ¢, satisfy (2.37).
Here the local form of C is

Ci ’l+VOVw
P, v,

1 1
and with the operator D = [1 1] we have by (2.22)

A 21 0 Vot V, 0
il 0 w
DCD [0 0]+[ ' VO_V].

«w

Therefore we get

<C¢! ¢>Hl/2(lw) xH~ 1/2(111))

L W+V, O
oMl )
07 Yo H12(pw) < g~ 12wy

L /fV,+V., 0
=_<[ o+ Ve JDqs, D¢>
2 0 Vo—V, HYZ(rey g~ 1/2(w)

1
=5 K+ Vo) (@-+¢.), ¢ +¢+>H1/zm+),g— 12yt

+ Vo=V ) (- =) ¢ —¢+>91/2(.+,XH* '/2(3.;)}’

where we have used (2.11) in Lemma 2.12. By the Mellin transformation we
have

(€ dyizgun-12qm=C | Ua@)ids G-+ (2—i)*+
Imi=0

+ (AP (A~i)— . (A—i)*]dA,
where pu; 5(4) = Vy(4)+ V, (1), hence

cosh ni+cosh(n—w)d 1 +]4}

A) = .
#4) 4 sinh 74 |A]2 (€ k),

.. cosh nd—cosh(n—w) 4 1 )
Ha(4) = A sinh 1A ~ i “ER

Therefore
144 - . _
(Co, d) ~ J —I;T'z—||¢+(l—i)+¢_(i—1)|2dl+

Imd=0

1 Iy Iy 2
' j - =, .

Imi= -1



204 M. COSTAREL AND E. STEPHAN

By Corollary 2.4, the first member on the right-hand side 1s

= 7ylle. +¢7”,2;— 2R,y

and by Lemma 2.2 the second integral is

2 _ _ 2
SN P TR N
by the local equivalence of norms. Thus finally
(Cyp> =7l + bl i2gn IO —Gl2 12
= THD(/)HFZ;—A/Z(R“XH—— Upy ™ ||‘/’||qu1/2(,(»,
by (2.12). =

Lemma 2.20. (i) Let |s| <3/2 and A: H *(I')— H*(I') be a bounded
operator with

(@) <A, SDpscrye-sipy = 11 1Bl g—a s+ ksl b @) for all e CE(S)) with S,
>0 and the

a compact subset of T7u ;) O (j=1,....J), where 7,

compact bilinear form k; depends only on §;.

(b) For ¢,, ¢, C* (I') with ¢, ¢, =0 the operator ¢, Ad, is compaci,
and for ¢, ye C*(I) with supp < IV for some j the operator Yy (Ad —pA) Y
is compact.

Then there exists a vy > 0 and a compact bilinear form k on H *(I') with

= 2 |ull +k(u, uy for all ue H (I).

\ 2
CAu, Uy iy 1= M0

N

(ii) The operators C: H™ M2(I') = H''2(I') and K: 12(I') — L2(') have the
property (b) above.

Proof. (i) Choose a partition of unity |z} as in (2.8) and define
S; = supp y;. We may assume that 7;:= ;€ C*. Now if ke H™*(I') then
xjueﬁ*"(Sj). Obviously, the inequality in (a) holds by continuity for all
de H""(Sj), whence for z;u. Thus for all j=1....,J:

(2.41) LA WD sy sy = 33112 Ul sy K5 Gy 25 0).

Let j# k. For |j—k|>1 the operator x; Az, 1s compact. and so
(A, iU usr -1 18 a compact bilinear form. So let |j — k| =1, for
simplicity k =j+1. Choose ye C3(I7"") with ¥ =1 on supp(x; 1)

Then the four operators

XjW(AZk‘_Zk A) Wiy, Xj(l — YN AL — T AV ks
de/(Aik_X-kA)(l—w)ikv . Xj(l — YN AL - A) (1 =) 7,
are all compact by assumption (b). (The equation (1 —y)y; z = 0 implies
the compactness of the last three operators.) By summation we find that
% Adx— 1 T Afx 18 compact. Similarly. y; 7, Aj—¥; i A%; Zx» and therefore
xi A — 7 T A¥; Xy, are compact operators.
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Thus we obtain
(242) {Apu, yjud> = g Apu, uy = (A7 u, Zicud+ki(u, u)
2= W “”?;-s(,.,Jrkj(Zj Tous 7o)+ k5 (u, w),

because supp 7; 7 < supp z; = S;. Adding (2.41) and (2.42), we obtain

a N 2 &~ = .
CAU U =y Z 7l =g+ 2 7 Tl -0 Hh ()
i - k=1

J

25 ) lgully -, Kk, u)
j=1

> Ml -y, e ),

because we have

J

. 2

”“HiI—s(” g -kZ, ’(Xju’ Ak u)’H—s(” S _Zk%(”AJ'uHH"-"(]')-{-”X“ MHIZ_‘,_S(”)
J.K= J-

J
=J- Z ||Xju||i[#s(”'
j=1

(i) Let ¢,, ¢,. ¢, and ¥ be as in assumption (b). Then for A = K or A4
= C the operator ¢, A¢, has a C*-kernel and is therefore compact, whereas
in y(A¢p—¢A)y the kernel is different from O only on the straight line
segment I, so that we can use the corresponding compactness result (which
is well known) for pseudodifferential operators on R. =

Remark 2.21. The form (2.29) of the compact perturbations is obvious
[rom the above constructions. Most of them are even of order — xc, and the
others (namely those of the form  (A¢p — pA) Y for A = C) are at least of order
—1.

LemMma 2.22.
d

M:= %uecg«(o, o) d(—i) =O=Tﬁ(—i)% is dense in H™'*(R.).
A

Proof. By (2.38) we have for ueC§ (0, =)

s &

dlﬁ(_i) = —J log xu(x)dx and 4(—i)= ju(x)dx.
0

0

Now neither log x nor ¢ with ¢ = | is contained in H'>(R,), and so the
linear functionals I: u— { log xu(x)dx and /,: v [ u(x)dx are unbounded
0 0
in the norm of A Y2(R,) on the dense subspace CZ(0, ). Therefore M,
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= {ueC¥ (0, oo)|lu =0} is dense in CF(0, o) and /, is unbounded on M, -
and thus M = {ue M| [, u =0} is dense in M,, whence in CZ (0, ) and so
in A"Y*(R,). =

Remark 2.23. This density was used in a similar context in [41], § XI,
6.4, in weighted I”-spaces.

THEOREM 2.24. The operator
o Hlll( )XH"IIZ(I")_’HUZ([’)XHIII(I-')

satisfies a Garding inequality, i.e., there is ay > 0 and a compact bilinear form
k on HY2(I'y))x B Y23(I',) with

(2.43) (o U, U),llz = y”U”HI/Z(rz)xH U2(ry) —k(U, U}
Jor all Ue H'*(Ty))x A~ Y2(I,), where (-, >, is a scalar producr belong-

ing to a norm which is equivalent to the norm i| I +1) |12 . in short:

H1/2(;4) Ly’

<<ﬂ0 U’ U>yllz -~ <(] +K22)U— Vlz ¢, U>"l/2({2)lef2(’2)+
+<_K21 l’+V11'I/, w>H”2(l‘1)hﬂ— 1/2("1).

Proof. By using Lemma 2.20, it is sufficient to prove only the localized
versions of (2.43).
If ke D then we have C —(D,V, and so we can use the corresponding
result of Theorem 2.19
1

For keN we have o= N [Kw :(‘"], and for ¢ =y v with
$.€C3(0, o) and §.(—i) =, (=) =0
(244)  {(1+K322) 9, PDyi2rw) . ptizgo
~{(D(1+K3,) ¢, D‘b)ml/zm“xm/z(.“]z
={(1+K, )9+ ), b, +¢_ >H1/2(.+,,H1/2(m+
+(=K)@-—¢.), ¢ —¢+>91/2(.+,x31/2(,+,-

Here we have used (2.24) and Lemma 2.12.
For the first member on the right-hand side we use the decomposition

Co dgtizaguz = o D22t s where by Lemma 2.3

1 R
(6 ¥Dip2 =5 j (rA coth md—1)d(A) Y (4)dA.

Imi=0
For {(1+K )(¢.+¢.), ¢++¢_>Lz(.+)x,~2(.+, we use Theorem 2.19, and
for (0+K )P+ +P-), ¢ +P_>,2 as well as for

<(l —Kw)(d)- '_¢+)s ¢— _¢+>Hllz(.+)xﬂl’2(.+)
~ | +AP1—RK, (D)l (D= (A2 di

Imi=0
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we use the fact (cf. (2.35)) that 1+ K_(4) ~ 1 —K_(4) ~ 1 (A€ R) in order to
obtain finally
1+ K228, 0D pir2 0, grizge, ~ U+K) (@ +02), ¢4+ >L2“‘+)2+
+ [ (rdcothmdi—1)|d, (A+d_ (D2di+

Imd=0

+ [ I+ ()= (A7 dA

Imdi=0
=7l +¢-“i2m+,+|¢+ +é_ 152+ ‘¢—||:71/2(R+,}' +k(9. ¢)

Let ke M,. The local form of &/, is given in (2.25):

A I+V, —-K,
Yo =mp| _j_y 1|

We choose again ¢ = (¢_, ¢,) as above and obtain (W = G, v = b.)
(245) (doxx U, uUd = <Vod-—K, ¢, ¢'—>H1/z(.+,xg—1/2m+,
+<_l/u)d’— +¢)+’ ¢+>H1I2(.+)XH1/2(.+)

~ [ [B@d-(A—d-K, (D). (D] (A-D)dA

Imi=0

+ [ oD~V Hd-(A=D+d, (D), (A) dA

Ima=0

+<— Vw¢— +¢+a ¢+>L2(n+)xLz(l+)'

The last term of (245) is = [|¢+||i2m+)—<Vw¢_, ¢, >Lz(l+)XL2(l+)'
Now (V, ¢o_, ¢+>L2(.+“L2m+) is a compact bilinear form on
A~ '2(R,)x H'*(R,).
In the second integral in (2.45) we replace o(4) = n4 coth ni—1 by the
/ sinh(n — w) A o
equivalent function &(4) = sinh (z w)ﬂ. Then we have K_,(4)=
cosh(n—w) 4
—&(4)-V,(4), whence the two integrals in (2.45) have the real part

f VoIb-(i-iN?di+ | &g, (DA 2y H-lIG-112p,, 112}

Imi=0 md=0

So for the whole right-hand side in (2.45) we have the desired estimation
from below by

YIS llg-1i20m,, 10+ 21r20m, ) HK(S: 6). @
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§ 3. The equivalence between the integral equations and
the boundary value problem

3.1. In 1.5 we derived the boundary integral equations under the
assumption that the given data (g,, g,) have some smoothness properties,

e.g.
gll,j€H3/2(rj) (rjcr|)§ gzl,jEHUZ(rj) (chfz)_

Here we want to show that the weak solution ueH'(Q) with
(g,. g,)e H'2(I'))x A Y2(I';) already satisfies the integral equations (1.20).
We will then show that every solution (v, y)e HY?(I',) x H™Y2(I';) of the
homogeneous integral equations defines a solution of (P) and thus of the
variational problem (1.8) and therefore vamshes. So [for the data
(91, g2)e HY* () x A~ Y2(I";) the three formulations of the mixed boundary
value problem are entirely equivalent.

LEmma 3.1. Let ueH'(Q) with Au=0. Then the boundary values
ulpe HY3(I') and ou/on|,.€ H™''2(I') satisfy the integral equation (1.18)

A,
(3.1) A+Ku, = v

énjy
Proof. We use the density of C*(Q) in H'(4, 2, Q) ([19]) together with
the continuity properties of
K: HY2 (N> HY2(I) and V- H™VA(I) > HYA(D),

which follow {rom Theorem 2.17.
We note first that for we C* () we have the integral equation

(3.2) (1+K)wl, = 2[W(aw)]l, + Viai:

i
with

[
Wh(z) = 7 Jh(x) log|z— x| dx.
Q

This follows from the representation formula (1.3) together with Lemma 1.3.
Note that W{4w) is everywhere continuous, because W is a continuous map

(3.3) W 12(Q) —» H (R?).

(It is a pseudodifferential operator of order —2; see [9], p. 36.) Now let
ue H'(Q) be given with du =0. Choose a sequence 'w,) < C*({)) with
w, —»u in H'(Q) and Aw, - Au =0 in [2(Q). Then w,|, — u|, in H'2(Q) and
éw,/én| — du/onl, in HY2(I') by Lemma 1.1. Inserting this into (3.2), we
obtain (3.1) in the limit. =
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Remark 3.2. 1t follows from the lemma stating that each ue H' (Q) which
satisfies (P), ie, du=01n Q, u|; =g,, cu/in|;, =g,, is a solution of the
system of integral equations (1.19).

For the proof of the injectivity of the integral operator .o/, of system
(1.20) we need the regularity result (Corollary 4.9) for the solution as well as
the following regularity for the potential defined by the solution of the
integral equations:

Lemma 3.3. Let ve HY2 (I'), ye H™V2*5(I") for some 0 <¢ < 1/2 and
define u in & by

1 (0 1
(3.4) u(z) = I _[ain log |z —{[v({) dS;—ZE JIOglz—CI Y ()ds;.

I r
Then ue H'**(Q) and Au = 0.

Proof. We consider Q as an intersection of half-planes with boundaries
which are straight lines containing the segments I'V. We can decompose the
potentials in (3.4) into a sum of contributions of the individual segments I'.
These contribution can be considered as potentials on the half-plane of
densities on the line which are the extensions by zero of the restrictions v) +
or | 1

In order to have the extension of v| ; by 0 in H'2*t we first have to
J

subtract ) v(t)  xu, where {y,} are cut-off functions as in (2.8). So we have
k=1
to consider two cases for v:

(2) ve HY**¢(R), and we have to show that

I [ ¢é
(3.3) Ug(2) = Eja—n: log |z —¢|v(&)dS

R
is in Hi+¢(R3) (R% = {zeC] Im z > 0}).
(B) v=yx in I'°, and we have to show that

1 0 1
(3.6) uy (2) =5~ ,[5;12 log |z —{ % () ds; = o Jx:‘ (£)do, (0)

re e

is in H'7°(Q,), where Q, is some neighbourhood of 0. For case (x) we have
¢/((x— &>+ y?) as the kernel of the integral operator (z = x+iy). The Fourier
transform of this convolution kernel is ¢’ &,/(&3 +¢&2) ([9]; (7.42)). This is a
rational symbol of order —1.

Therefore it has the transmission property ([9], 10.1). Thus by Lemma
10.1 and Lemma 8.1 of [9] for ve H*(R) with compact support and & compact
in R2 we have u,e H*'(Q) for all seR.

14 — Banach Center Publications 15
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For case () we show that u, is actually real analytic in a neigh-
bourhood of 0. We decompose the integral in (3.6) into two terms: since y,
=1 in a neighbourhood of the corner, we can write

| O IR . .
(37) i, (3) = .,_ J d”z(L)_‘__~ “ Zk(%)d(): (‘E)s
2n 2n
g 1oy
where I'? = ¢“[0, §) U (0, d).
The second integral in (3.7) is analytic near O, because the kernel is

analytic there. For the first integral we use the geometric interpretation of
the double layer potential. This gives

1 1 d—z
— 0 =— arg(f--.-v-f ,
2n 2n o' —z
which is analytic near 0. The functions | ;e H™'/?*(I”) can immediately be

extended by 0 on the straight line passing through I'". So we only have to
show that for Yy e H V?2"¢(R) with compact support

1
(3.8) u(2): = —Z—Jbgl:—ilw(é)dc’
n
R

is locally in H'**(R?). For this again we use Eskin’s results:
The Fourier transform of the kernel ol the operator in (3.8) is ¢/(&F +&3),
which is of degree —2, so that (8.18) of [9] gives the desired result. =
We are now able to generalize Satz | of [13] on the continuity of the
single layer potential (Lemma 1.3. (i)).

LEMMA 34. Let ye H '12*%(IN), ¢ > 0 und define

log|z—Cl¢(O)ds;  (zeQ).

1
u(z) = ——
n L%
I
Then u is continuous in R* and u|, = V.

Proof. By Lemma 3.3 and its proof we have ue H!'*(R)?, so that
ueC*(R?* and Yr-ul,: H V*5(I) - C%I) is continuous. For the dense
subset H™Y2*5(I") ~n L*(I') we have Gaier’s result u|, = Wy, which then holds

for all of H V2**(I'). u

3.2. For the prool of the injectivity of the operator ./, we need the
following property of I:

(V) If e H V() and Wy =0 then y = 0.

From the regularity results of § 4 (Corollary 4.9) applied to the equation
Wr = 0 it lollows that (V) holds if ¥ is injective in L'(I).
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By Gaier [13], Satz 10 and Satz 11, V is injective in L' (I') if and only if
39 cap(l) # 1,

where cap(l') is the capacity (or conformal radius) of I'. After these prepara-
tions we can reduce the question of the injectivity of ./, to that of V:

THeOREM 3.5. Let U = (v, Y)e HY2(I,) x H Y2(I')) be a solution of the
homogeneous integral equations (1.20)

.C/O U = 0
Let (V) be satisfied. Then v =0 and ¢ = 0.

Proof. I (v, ¥) is a solution of the homogeneous integral equations, then,
by Corollary 4.9, e HY?*¢(I';) and ye H V2 *¢(F))n I2(I',).
Let © and i be the extensions by 0 of v and y, respectively, on I'". Define
v in Q by (34):
1 [ %

¢ . | . .
(3.10) u(z) = = |FQ) = loglz—{lds. — . V() loglz—| ds,.
2n (7n; 2n
I 1l

Then, by Lemma 3.3, ue H! (4, 2, Q). Therefore, by Lemma 1.2, the represen-
tation formula

e . 1 [u() .
(3.11) u(:):-?-r—[Ju(g)ﬂ—n: IOgIZ—gldS;—ﬂj n log |z — (| ds;.

! I

-~

holds. Furthermore, & and ¢ satisfy the assumptions of Lemma 1.3 (i) and
Lemma 1.3 (ii) (or Lemma 3.4), respectively. Therefore we obtain from (3.10)

(3.12) W, = —5(K—10+31W.

If we insert the integral equation

0= .o/o[:;J o (1+K) T =W
into (3.12) we obtain
(3.13) ul, =7.

We insert this into (3.11), subtract (3.10), from (3.11), go to the boundary
with Lemma 3.4, and obtain V ( — &u/n|;) = 0. By assumption (V) this gives

(3.14) ou_ V.
on|p

Now (3.13) and (3.14) mean 1n particular that uly =0 and i‘u/anl,-2 =0, 1e,
u is a solution of the homogeneous mixed boundary value problem (P). Since
we know ue H' (), u is also a solution of the variational problem (1.8) with
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vanishing right-hand side. Therefore u =0 in £, and this implies by (3.13)
v=0and by 3.14) y =0. =

Remark 3.6. If cap(I') = 1, then condition (V) is violated [13]. It is
known (see [21]) that then integral equations (1.18) are not uniquely solvable.
The argument is as follows:

By [13] Yo =1 is a solution of W, = 0. Therefore

0 —Vi2 Vols Vaz Woly 0
3.15 < = 1 = 2= 4 )
(G.19) °[¢o|,,J [ Vi w,,J [_Vzn ~//o|,-zJ °[wo|,2J

On the other hand, the mixed boundary value problem

: u
Au =0 in , ulrl =0 an

= '//0|r2

I

has a solution in H!(Q) with v = uly, # 0. Then with ¢ = 23

the integral
on

) 1
equation

3.16 /[E]—/ﬂ[ 0]
16 o™ 7 v,

is satisfied. By substracting (3.15) from (3.16) we get

U
gy |7

Remark 3.7. If (V) is satisfied, then not only
ofor HYH () x H™ Y2 - HY2(I,) x HY2(T,)
is injective, but also
o/t HY2(F))x H V2(I)) - HY2(I',)) x HY*(I")),

as defined in (2.27), is injective.
We now use Gérding’s inequality to prove surjectivity:

THeoreM 3.8. The operators

(3.17) of s ATy x A Y2(I)) - I2(Fy) x HY2(T),
(3.18) o2 HUA(T) x A7V3(I) - HY2 (M) x HY(T ),
(3.19) for HYH() x A= VI ) = HY2 () x HYA(T)),

are bijective.
Proof. We know that ./ in (3.18) is injective. We show that .o/ in (3.17)
is injective:

Let (v, y)e L*(I"y) x A Y2(I';) be such that ,d[;]zﬂ Then in par-
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ticular (1+K,,)v = V,,¢. Since V,; e H'*(I';), we can use Corollary 4.5
and get ve H'/?(I',). Thus (v, ) is in the kernel of </ in (3.18) and therefore
v=0and ¥y =0.

The Garding inequality of Theorem 2.19 (2.28) means that ./ in (3.17)
differs by a compact perturbation from a positive definite (strongly coercive)
operator and hence is a Fredholm operator of index 0. It is injective, whence
surjective. Thus .o/ in (3.17) i1s bijective.

To show the surjectivity of .«/ in (3.18) (and equivalently of </, in (3.19)),
we assume that we are given (h,, h;)e H'/*(I',) x H'/*(I'}). Then we have by

. : h
(3.17) (v, Yye L2(I')) x H™''2(I'}) with .o/[:{,:, = {hz]’ and in particular
1

(1+K22)L‘ = 12w+hz€Hl/2(r2).

As above, we obtain ve H'?(I',), which proves the surjectivity of ./ in
(3.18). »

THEOREM 3.9. Let assumption (V) be satisfied, and let (y,, g,)e H''*(I"}) x
x H™Y2(I',) be given. Then problem (P) for ue H'(Q), the variational formu-
lation (1.8) under the same hypothesis, and the integral equations (1.20) for
(v, W)e HY2(Iy,) x A~ Y2(I')) each have exactly one solution, and they are
equivalent, ie., v =u|;,, Yy = dufin|,. or, conversely, u in Q is given by (3.10)
where

v on I,, W on Iy,

g, on I,

y=

and =
g on I, lﬁ %
Proof. We know the uniqueness of the solution of ail three problems,
and, by Lemma 3.1, every solution of (P) gives a solution of the integral
equations. This solution is unique, and this in turn proves that the solution

of the integral equations defines a solution of problem (P). The equivalence
of (P) and (1.8) for uc H' () was discussed above. =

§ 4. Regularity of the solutions of the integral equations

4.1. In this section we proceed along the lines of Kondratiev [31] and
use the Mellin transform together with the Cauchy integral theorem for
analytic functions in order to obtain an expansion of the solution U of
system (1.20) of integral equations in terms of singularity functions similar to
the one (Theorem 1.4) which is known for the solution of the variational
formulation of the boundary value problem.

As a by-product we get the regularity results which were used in § 3 for
the proof ot the bijectivity of the integral operators. The regularity of the
solution U of equation (1.20)

(’/0U=%oG



214 M. COSTABEL AND E. STEPHAN

is a local property. Therefore we use a partition of unity to reduce the
problem to a local one on the reference angle I'”, where the three cases (D),
(N), and (M) have to be distinguished. Thus we first have to investigate
operators on R,. For this purpose we use the following lemma, which
displays the connection between an expansion in terms of singularity func-
tions and meromorphic Mellin transforms. It goes back to Kondratiev [31]
and has been used in diflerent forms, e.g., by Mazja and Plamenevskii [39].

Lemma 4.1. Suppose that
n I

(4.1) S =(Y Y cux™log'x) x(x)+fo(x) (xeR,)

k=11=0

where foe CF (0, ), yeCZ [0, oc) with supp(l—y) = (0, x), a; <a, < ...
< a,. Then

(i) The Mellin transform f (1) exists and is analytic for Im / < o, and it
has a meromor phic extension on C with poles at A = ia, (k =1, ..., n) of order
L+1.

(i) In the strip (AeC| Im Ae(ay, 2;.,)], [ is the Mellin transform of f;
defined by

. Lo
(4.2) [0=f=Y ¥ cyyx*log'x.

k=11=0

(iii) If we define

(43) /29(f):= Res 212

Za
Res gy D

then we have

~ l d lk+r . .l
(4.4) D= (d—A) L7 (2 G20/ " = o
k .

] - ]
2mi (A—4o)

Imi=h; ImA=hy

where Ao =i, L+r 20,0, <h, <a, <hy <a,y; ny(f') =0 L,+r<0O
or if [ is regual at iy;
(4.5) P )= =i ey OIS, k=1,...,n).

(iv) Let

i

46 [P =F0—(T ¥ cux™og'x)x(x) (=0,....n).

k=11=0
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Then if ay > —1 we have an estimate
I

(4.7) ) < Z Z el N gsem, ). (K = kis > a0 +3).

j=11=0
Proof. (1) follows from properties of the Mellin transform which were

described in Examples 2.1 at the beginning of § 2. As mentioned there, for
Y (x) = x*log' x- y(x) we have

N ————-;HP where $eZ.

This means especially that f(z) is rapidly decreasing for Im i fixed and
|Re A| = . Therefore the inverse Mellin transform

1 : PN
(4.8) f(,,,(x):=—2; J eMf(A)dh  (x=e""eR,)

Imi=h

exists for h¢ a,, ..., 2,!, and the path of integration may be shifted if we
take into account the residues of ¢'*f(J).

Thus we get f, = f for h <a; and

Sp O —fap(x)=—i Y Res!f(A)e'"}  (hy < hy).
||TIJ.E”Il.h2)

Therefore, f, does not depend on h in each interval he(ay, a;.,), and if
we denote f, in this case by f*, then we can use the well-known formula
(4.4) for yo*(¢"*f (1)) to obtain by the Leibniz formula

(4.9) ) =S (x) = —i lRf_?S WA (A) = —iyg*(e™ f (A))
:lak
! d e it +1
= ([ )'(di) [ (A)(A—iay) Ni-ie,
= —i Z —(——z)’ym" (f)x*-log' x
’k
=—Y cxx*log'x.
(=0

In order to obtain (4.5) and also (4.2), and thus (ii) and (iii), we have to show
that

(4.10) C:,=C“ fOI' Osls.[k, 1 Skgn-

This is done by induction on k. We indicate only the first step: By the
definition of f, we have

H)=fF(x) = f1(x)—f (x)— (fl*(x) —f(x))

!
Z (ct—c;)x ! log' x.
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Now we know from (4.1) and (4.2) that

Iy n I

Ji(x) = fo(x)+ Z ey x Mog x)(x ()~ 1)+ ¥ ¥ cux™(log!x) (%)

k=21=0
=0(x*) as x-—-0 for every a <a,.

From the decay properties of f in the strip Im Ae(a,, ®,) and the definition
of fi* we know that

f¥x)=0(x") as x—-0 for every ae(a,, a,).
h
Therefore Y (¢t —cy)x 'log'x = O(x*) as x — 0 for some « > a,. This gives
I=0
¢ =cy for 0<I< I and thus f; = f;*. It remains to show estimate (4.7).
From (4.5) follows that (4.7) for r <0 is trivial. We use the integral

representation (4.4) of y*(f), the Parseval formula (24) and the Cauchy-
Schwarz inequality to obtain

51— 1/2e (o - 1, o);
53— 1/2e (o, try)-

@1 < (“ﬁ—l”w-:)] +||fk|l,;,.:)2) for

Now we define
I
J
pj(X) = Z Cﬂ xa'i log'x
=0
and note that

e WS (R NEH(R,) Tor s <a;+1/2;

(4.12) (1-x)p;e W3 (R.) for s>a;+1/2.

NS
(By what we have shown above, (1 —y) p; is the analytic continuation of —¥p,
-k
to Im i >a;) Now by definitions (4.2) and (4.6) f, = 2—(1—x) ) p;.
i=1

Therefore
k ‘_]

JllO
l

< C{llﬁollﬂs(.+)+ Z lzolcj,l Voofor s> a4+ 1/2.
j=11=

Also by (4.12) and (4.6)

l
(4.14) e, < g, +C 3 I

i=k+11=0

for s <a,,+1/2 and k' > k. Inserting (4.13) and (4.14) into (4.11), we get
estimate (4.7). =
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Remark 4.2. We note two special cases of (4.5), namely:
“)’i;k(f) = —ice (1=0),
}’a—kl(.f)'—'cu (I=1).

The first one is important, e.g., il a, =0 and I, =0, i.e,, f is continuous at 0,
and then '

(4.15)

(4.16) vo(f) = —icro = —if (0),
ortfa, =0, 0,=1(,=0=1), 1€, f 1is diffcrentiéble at 0, and then
(4.17) Yo(f) = —icao = —if"(0).

whereas the second one occurs if f = ¢ x log x +f, with smooth f,, and then
Yoa(f)=c
Later on we shall need a certain converse to Lemma 4.1, which also

goes back to Kondratiev [31] and can be proved in a similar way to Lemma
4.1.

Lemma 4.3. Let [ be meromorphic in a strip Im Aec(ag, a,, ;) and have
poles at Im A =ia, of order [ +1(k=1,...,n00 <a; <...<a,,,). Assume
that, for Im i = const, f(4) is rapidly decreasing as |Re 4| - co. Define Sy by
(4.8). Then for he(ay, @) and he(a,, a,.,) we have

Jw=Wi(R.) for s—1/2e(aq, ay);
JmeWS(Ry) for s'—1/2e(a,, 2,y;) and

n ‘k
Jin@) =Y ¥ cyx™log' x +fu, (x).

k=11I(=0

Formula (4.5) holds in this case also.

4.2. Now we apply this to the operators K, V,, and V, on R,, the
Mellin transforms of which were given in Lemma 2.13. We assume that f
has an expansion (4.1). Then K_(1)-f(1), Vo(2) f(A—i), and V, (4) f(4i—i) are
meromorphic in the whole plane. We compute the residue (only for K, and
V,, because V, =V, |,-0):

1) Ao =i, a,¢ Z. Then K, and V, are regular at 1, and we get

Iptr

T _ 1 _‘i_ T LI e
(4.18) % (K,f) = mgo(—_*lk+r_m)! (d/l Ko (WDlaziay ¥m= 1, ()3

'k+’ 'k+f—m
i(ay + 1 d - ia ~
@19) 3 N = L o T (—dl) Vo Mla=iay e 1y Tme 1, (-
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A special case of (4.18) 1s (K, is regular at 0)
(4.20)
70K, ) = K, (073()) = ’*;yo(f) if / has a pole of order 1 in 0.
s

2) yo = in, 2€ Z, f regular at i,.

r l d r—1 . . . .
@21) (R, f) = (—) [R o ()= i) ia* 5% 1 ()
j=0 ( —])‘

o d\y= . . .
(422) 5" 0V S) = 2 -7-;;((11) Ve (A =it = )lr<ias 17 35% 1 ().

@23) 3R,/

h+r+d 1 d Ltr+l-m
= 5 (h+r+|—m)!(22) [R o (DG =i s i, "1, ()
: N
4.24) V15
trtl Igtr+l-m

1

N ZD (lk+r+ 1 —m)? (;iz) [Vw(&)(;“_,ak_')]l,t iy +1 Y::" Ik(f‘).

Special cases of (4.23), (4.24) are

-

R d .
(4.25) y‘()(wa)zﬂ[Kw(A)() 1] | PR ?o(f)+[Ka>(/)(/_‘“)]lA :',l (f)

w—Tn T o
= ——— €0S @ Yo (f)+— sin wyy{f)
n n
if f has a pole of first order at i

(4260 ., (K f) =— sm wy(f) if f has a pole of first order at i;

@20 Y, (v, f) - cos wyd(f) if f has a pole of first order at 0.

43. Now we can investigate the regularity of the solution U of the
integral equations (1.20} .«/o U = .4, G. By the reduction to one of the three
local forms (D), (N), (M), we get equations

(4.28) oSOU = APG+H (xe'D,N, M)

on I'®, which correspond to (2 x 2)-systems on R, . The function H in (4.28)
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comes from the localization and is thus C*. We will proceed as follows:

We assume that Ge C*®, and thus G = [g_ ], where g, has an expan-
g+

o~
sion (4.1) with a, =k =0,1,..., and |, =0. Then #P G+ H will be mero-

morphic. Therefore also .r,m’ = .ﬁ/‘o""\(;+ﬁ is meromorphic and
consequently also U. Thus U has an expansion (4.1), where the regularity of
the smooth remainder term can be deduced from Lemma 4.3. Also from the
Parseval formula {2.4) and the equation

U= /9! [m+ﬁ]
it will be clear that the expansion coefficients of U as well as the smooth
remainder depend continuously on G in some appropriate W; norm. By the
local equivalence of norms, this leads finally to an a priori estimate for U on
I' of the same type which was given in (1.11) for the solution of the
variational problem. By continuity, this holds not only for Ge C* but for G
in the corresponding Sobolev spaces.

[n the use of Lemma 4.3, we always start with the regularity of the weak
solution, i.¢., in some strip Im /2 e(0, ¢), and then shift the path of integration
for the inverse Mellin transform up to Im 4 < 2, which corresponds to
Sobolev indices se(1/2, 5/2). We will thus investigate the poles of the Mellin
transforms in the strip Im A¢e(0, 2).

The Mellin transforms of the operators were calculated in Lemma 2.13,
but [rom this for ¢ e C* {0, x) we can only deduce

N " -
K, (A=K, (1) ¢p(2) for Imie(—1,0).

For the strip Im 2¢(0, 1), where we want to start, we have to use Lemma 4.3
together with (4.20) and (4.16), which gives

m—1T .
(4.29) Kot (x) = 7‘“¢(0)+13m¢(x) with

=T LA .
K,d(1) =K, (4)¢d(4) Tor Im re(0, 1) (e C™ [0, o).
Now we compute the poles of U in the strip Im Ae(0, 2) for the three
local cases. The dependence on the given data G will be investigated, and
several special cases will have to be distinguished. From the computations it

will become clear how this procedure can be generalized to regions of higher
regularity, 1e., to Im 4> 2.

(D) Here the local forms of the operators are

4.30 LVOVw*_II %11 K,
(4.30) Ao = vV, L ATk |
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We assume GeC§ ('), 1e,

(4.31) G=[Z*], with ¢,eC3[0, ), ¢.(0)=g_(0),

and ¢, (0)= —¢g_-(0) iIf o =m.

For U = [Z—] we can assume an expansion (4.1)
(4.32) '
n k
Yo =(Y X ai Xl ogh )y () +yS(x) (O <oay <ay<...<a,)
k=11=0

where % e H*(R,) for all s < 3/2. First we look at the poles of .;0\(;: By
(4.29) we have

g_(0) +9§5g+(0)

. 1 o
(433) 4,6 = o + #o G = [J%g,, (0)+ #oG  with
g+(0) +———g_(0)
n
[ —sinh(w—m) 4
< - — sinh mA
BoG(A) = Ao(L) G(A) = sinh(w— 1) 4 ] X
sinh nA
g_ (4
x[‘f (q)] (Im 1&(0, 1).
g+ (4)
In Im Ze(0, 2) there is only one pole at i, =i of order 2 with residues
. . . sinw|g, (O)]
434 L (#,G6)=—|", for w#m.
( ) 7-1(%0 G) T [g_(O)

This follows from (4.26) and (4.17). In equation (4.28) there appears a
function

(4.35) H=|:Z JECS’(F“’), h,eC3 [0, );  h,(0)=h_(0);

+

if w=mn: K, (0)=h_(0).

H thus has a first order pole at A, =i, so that y,(4,G+H) is not
determined by G alone.

10
(4.36) If w=mn then ;}’30=[

01], so BoG+He(C™,
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For w # n, (4.34) means that
(4.37)

.‘%0 G(X) = [

g’y (0) | sin w
n

‘x log x-x(x)+ Hy(x) with HyaeC®(I®).
g-(0)

__-Now we calculate the coefficients in (4.32) from the requirement that
/o U also has only a pole at 4 =i with the residues given by (4.34) or (4.36).
We have

438) 7, U(A) =AU (A—i)

B 1 cosh ni cosh(m—a) 4 || ¢ _ (A—i):l
~ A sinh nd | cosh(t—w) 4 cosh nd W, (A—0) |

11 -
We use the operator D = [1 IJ to diagonalize o/, and define

(4.39) D[t_J:= [ie] and have

- 1
Do)D" =
VoY) X sinh nz[

cosh ndi+cosh(n—w)i 0O
0 cosh ni—cosh(n—w)i |

cf. (2.22). From
sinh(2n —w) A sinh wl

44 K =
(440 det ~o(4) A7 sinh? and
P A sinh n/ cosh nd —cosh(m—w) 4
T, —
sinh(2n —w) A sinh wAi | —cosh(r—w) A cosh n/

we see that U can have poles only at (4, —i) with det .o/, (4o) = O of order at
most 2 and at ., = 0 of order at most one. This gives (15 = ia; Im 44€(0, 2))

1
(441) (@) sinh((2Qn-w)-ia) =0 <= a = 27[:0, 1=1,2,3;
(442) (B) sinh(w-iax) =0 <o = k_n, k=1,2,3.

w

Of course, it i1s not for all w that all the six cases can appear. (x) and (p)
together can appear only in the following cases:

2 3
w=—;, or=5, =2, k=1 and
(4.43)
dn 3 =1, k=2
w———’ 1:—’ = . =
3 2
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- 00

In these cases cos nax = 0 = cos(n—w)a, so that .o/y(iz) = [0 OJ' and
444 d 70 Gl nl~11/3

. e IV = —— 5
(449) dr 0T iy [ 13 —1
Therefore from the conditions

‘)’ig(-f‘}o U) = }‘l.f 1 (-570 U) =0
N

it follows by (4.22) and the regularity of -/, U at i = that

ifla—1)

ya=U(U) = 0; whereas

(4.45)
=

J is an arbitrary 2-dimensional vector.
Cq

This means that the contribution of this pole is of the form

C_ ~
X
C,

When only (2) is [ulfilled, we have cos nax # 0 and
(4.46) cos{mn—w)x = (— 1) cos na.

Therefore

Dc/y(im)D™ ! =
/oliz) “axsinmx| 0 i—(=1)

and this implies i "V (},) = 0 for | even and 1" Y (if,) = 0 for | odd, or

~ cos nx [H—(—l)’ 0 J

; - 1 In
447 =) = ¢ if =
( ) Yo ( ) [(—1)’+1J Gy 1 o 2T[-'-(U
Similarly in case (B) one obtains cos(n—w)a = (—1)*cos na, whence
i(a — % 1 1 kT[
(448) 7(; l)(U)z[(_l)k+lchﬂ lf a:—(—;.

. L 1 - :
In both cases this gives a contribution c,[ + l]-x" !, which runs through

a 1-dimensional space if G and H vary. ___

At the point 4, =i by (4.34) (w # 1) ./, U must have a pole of second
order. From the form of /5" in (4.40) and sin(2n— @) # 0 # sin @ it follows
that U has a first order pole at A =0 with residues (4.27).

(4.49)

- 1 coswm|™' ., -~ i 1 —coswl||[g,(0)
wWQ(0) =i (el U) = .
yo(U) = in [cos w 1 J Vil U) sin w [cos ) 1 ][g’_ (0)
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This shows that the smoth parts of . will in general have diflerent
limits at 0, i.c, will not be contained in H*~ ' (') but rather in H*"!'(R,) x
x H*"'(R,).

For w = n one has

4.50 “ 1 cosh n4 1 _
(4300 /ola) = A sinh mi 1  coshrmail
1 _ v.,_{t_g coshns —1
o W=y nﬂ,[ —1 coshni |

By (4.36), one has to require that .c//O\U should have a first order pole at 4,
=i with residue

o~ 1
4.51) - Yol U)y=C qF
P C 1 -~ -~ . R . .
Thus ./, U(4) = ;——[ 1J+ Uq(4), where U, is regular at 4 = i. This gives
L —i| —
- CA —cosh nA+1 NN

. L— i) = Ao (A Ug(4).

(452 U= stnh ml-().—i)[—cosh n/i—lJ+ 7o (A1Uo(4)

Since cosh n/+1 has a double zero at 4 = i, the first term in (4.52) is regular
at 2 =1i. The second one can be written as

' -1 -1} - -
; _— : Uo(D)+U,(4) with U, regular at 4 =i.
sinhni] -1 —1

Therefore we obtain

" - 1 - .
U().—i)=)il_[1J+Uz(}{) with U, regular at 4 =i or

- 1
(4.53) y3(0) = c[l].
This means that, in contrast to the case @ # &, the smooth part of U is
continuous at the “corner point”. There are no poles of case (x) or (P) for w
=g, and so U will be contained in H*(I'®) for all s < 3/2.
(N) Here the local forms of the operators are

asa A1 K, AN
(4.54) fo = Kk, 1 | v, w1

For G we now assume

g-

(455 G= [
g+

J with ¢.eC§[0, ), and g, (0)=¢g_(0) if w = r.
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For H we again have He CF(I'"), ie., (4.33). The pole of 49/0\6 at A =1 has
residues (by (4.27))

(4.56)

. i 1 cosw| , A 1 1 coswlig-(0)
‘_ — — G = —— N
7-1(#0 ) T |:cos o 1 :l%( ) yid [cos o 1 :,[g+ (O)J

For w # =, this means that .4, G contains terms x log x. For @ = n, there is
only a first order pole (note g_(0) =g, (0)) with residue

| if 1 -1 - ; L
(4.57) vb(.ﬁ;\G)=;[_1 IJ[?'g(G)_"??(U)]=C'[—1J’

which means that 4, G (which is continuous at 0 by theorem 2.17) also has a
L

continuous dertvative at 0. For U = [
v,

] we can assume an expansion (4.1)

n L

458) v, () =(Y ¥ cix™log'x)x(x)+%(x) (0<a <...<a,)

k=11=0
where v% e H5(R,) for all s <5/2. From (4.29) follows

w—T -

1

‘— 0 o
459 U= " ‘[" ()},O/OU with
w—T i v, (0)

n
S - - .
Ao U(4) = .o/p(4)- U(4) for Im Ae(0, ap) (ap = min {ay, 1}).
As /o U has to be continuous and .</, U(0) =0, it follows that
(4.60) v, (0)=v_(0), 1e, U is continuous.

In Im 2€(0, 1)u(l, 2) poles c.>f U can only appear where det .o/,(4) = 0. We
have

sinh(2n —w) A sinh i

det (7:}0(1{) = . 2 _ - *

4.61) sinh” A

@ L sinh A sinh 1A sinh(n—w) A
oo (4) = sinh(2nr —w) 4 sinh wi | sinh(r—w) A sinh ©d '

Therefore poles occur in the same cases («) and (B) as for (D) ((4.41), {(4.42)).
In case (4.43), i.e, il (o) and (B) are simultaneously satisfied we now obtain for
U a second order pole, where the residues have to statisfy

=0T o n [ 1 (=D
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in order that m should be regular at Ay = ia. This implies that in this
case U contains a term

(4.63) [( 3 11)a+ 1:I(c, +¢,log x)x¥2 - x(x)

if 20 G (3i/2)+ H(3i/2) is arbitrary. As follows later on from the equivalence
- theorem, for the actual problem it is not the case that even all poles from
case () are absent. This means especially that terms of the form (4.63) will
not appear in the actual solution of system (1.20). '

When only (%) is fulfilled, we have

(4.64) sinft—w)x =(—1)'*"sin na,
- -1 (=t : :

and thus ./,(ia) = (- ])l+1 1 , which gives

4.65 2(0) = B ‘-c

( - ) Yo - (_1)1_ T

whereas in case (P) sin(m—w)x = (— 1)*sin nx and thus
. —1 (=1
S TR J

whence .

) N 1

(4.66) 70 L) = l:(- l)k:l-('a.

For Jo =i, w # T, .ﬁo\b must have a second order pole with residues
(4.56). From (4.61) it follows that U has a first order pole there, and the
residues satisfy (4.26)

I 1 cosw|[g-@®] . - - o (Kt i o
—_ = (A U)=|". P = — 8in w vy (V).
n[cosw 1 :”:‘H(O)J V-rlAoU) [y'_l(K,,,u) n 2 Yo%)

This means that
1 coswllg_(0)
cosw | g. ()|

This equality shows that it makes no sense to assume that G is
continuous, i.e., ¢, (0) =g_(0), because in this case the smooth part of U
would have to satisfy a compatibility condition of the form

i

(4.67) 7o(0) =

sin w

(4.68) v’ (0) = v (0),

15 — Banach Center Publications 15
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R 10 .
which makes no sense. For w =n we have .o/,(1) = o1l whence U

= /o U has to have a first order pole at i, =i with residue (4.57)
. 1
(4.69) vo(0) = c-[_ 1],

which means that the smooth part of U is continuously differentiable at 0.

Of course, for w = &, there appear no poles of the form (a) or (B), and
thus U itsell is contained in H*(I'*) for all s < 5/2.

Remark 4.4. In both case (x) and case () we have |a| > 1/2 for the poles
of U(4) at A = ia. Therefore in the strip |Im 4| < 1/2 there is only the pole at
A =0, which is completely described by (4.59). This means that we can start
at Im A= ~1/2, which corresponds to I?, and then shift the path of
integration up to Im 4 < ap > 0, and we only obtain an extra “singular” term
from A = 0, which, however, is constant near 0 by (4.56), (4.57). By using the
density of C&(I'”) in H*(I'*) and Parseval’s equation (2.4), we obtain.

CoroLLARY 4.5. Let vel*(I') and s€[0,1]. If (1+K)v=h with
he H*(I'), then ve H*(I).

Proof. For s # 1/2 the result follows from the previous discussion. Then
the result for s = 1/2 follows by interpolation. =

(M) We describe only the case (M,), which means that I"_ corresponds

to I’y and I', corresponds to I';. Thus we assume G=[i1] with
42

A e
g1.2€ CZ [0, ). We write G(A):[‘f‘( ) ]
d2(A—1)
For H we assume again (4.35)

The local forms of the operators are now

2 lo‘+’ Vo —K, 1|
°l=tofTl-v, 1 |

(4.70)
2 iro —F+r 1 —Vw—
°7lo 1) | -Ks Vof

For U = [.'::, we can assume expansions (4.32) for ¢ and (4.58) for v. Then

U4 = [W 1(7);1—) i)]. From

Bo() =

1 / sinh ntd —cosh(n—w) 4
A sinh nA| A sinh(n—w)4 cosh ni
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we see that Q/OE has a second order pole at A =i with residues (compare
(4.26), (4.27))

(4.71) /- 1 (@ G) =i[ 0 cos w][vh(ﬁd]

n| -sinw -1 [{75(g2)

1 0 coswl||g:(0)
T nl-sinw -1 [{g,0)]
This implies that we have to distinguish several cases:

w¢inf2, n,3n/2): 2B,G contains a term [cl]x log xx(x), ¢, , being
C2
arbitrary,

11
w="n H,G contains a term —;[l]gz(O)xlog xx(x), which is

smooth only if

(4.72) g:(0)=0;
w .—_g: #,G contains a term —Tl[?](g'l (0)+g,(0)), which is smooth
for
(4.73) 91(0) = —g,(0);
n . 110 D .
w = #0G contains a term - [1](9’1 (0)—g,(0), which is smooth
for
(4.74) 91(0) = ¢2(0).
We have
(4.75)
det 7o (4) = smh(Zz ; :I:j. :}.osh wl’
T ) = sinh nd [ Asinhnd -4 sinh(n—w)ﬂ.].
sinh (2r —w) A cosh wi | cosh(n—w) 4 cosh A

For A =i, w¢{n/2, n, 3n/2), /5 (A) vanishes at A = i; therefore U has
there a first order pole whose residues satisfy

I 0 coswl][ei(®] . 1] -1 —sino|[¥*©)
E[—sinm —1][g,(m]"’"‘-('@)‘n[cosw 0 ][u”(m]’

where y* and v* denote the smooth parts of Y and v, respectively: that is, §*



228 M. COSTABEL AND E. STEPHAN

and v* do not contain, respectively, the x™* ' log' x and the x™log' x -terms
for x, < 1. Therefore

O] 1 [—-sine —17][g7(0)
(4.76) [v"'(O)J  cos m[ 1 sin m] (_qz(O)J'~
This is also valid for w = n, where it gives
4.77) ¥ (0) = g4, (0),

which is a natural continuity property. There is no such condition on v
Note that if G 1s arbitrary, (4.77) is no restriction on U.

For w = 1/2, /5" is regular at A =i, but it does not vanish. Therefore
C has a second order pole with residues

021 0 0410
0 2| -1 =1]{g,(®
U L[gio] 2 1
1 =1]{g:(0 ] =

—1
: ) 2|1 L
Therefore, U will contain a term - . (97 (0)+¢,(0)log x-x(x), which is
mf:

. - e ~
(478) L (U= /o (D), (A U) =

2

b8

J-(g‘l (0)+g,(0)).

absent if (4.73) is satisfied. In this case, U has a first order pole at 4 = i, and
the residues satisfy

__l_ 0 0 g’l(o) o //‘\ g /\' —l __1 _l '1,-’\(0)
O-K[—l —1][9'2(0)]'1—1(./906)—}_1(,0/00)_“[ 0 O]Lﬂ(()):"

This gives the necessary condition

(4.79) *1(0) = —y*(0).

. 211
Similarly, for w=3n/2, we¢ obtain a term - | (97 (0)—
R m|x
—g,(0)log x-x(x), which disappears if (4.74) is satisfied. In this case we get
(4.80) eM(0) = ¢*(0).

Except at A, = i, therc are poles at 4o with det .</o(4o) = 0. This gives first
the case (%) of (4.41), and secondly

2k 1
(4.81) (y) cosh iz =0 < 2 =T£’ k=1,2,3.
w

Cases (%) and (y) can simultaneously occur in several instance, namely for
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2n 5

(:)——g-, 1=1 (I=2, k=1,
L 955, 1=§ (=1, k=2
w=--2-7£[-, a=% (=3, k=1,
w:-(;[, 1:27' (I=2 k=2,
w= -'—2—'3, a=; I=1,k=3

In all these cases, U contains terms of the form
' + . l -
(4.82) x’“-[ (172708 X J-z(.\:),
cax+ogxlog x
which run through a 2-dimensional space determined by the residue
conditions:
ia vl 7 (i ~a (7]
= 721 (Ao U) = ofglia) 727 (U);

(4.83) d -
0 = i (Ao U) = O/o“a)a-l(U)—H/o(m) o (U).

We will not calculate the details, because in the actual solution of the
boundary value problem the poles of case (%) and thus the double poles
are absent. If only (%) is satisfied, wc have cos(mn—w)x =(—1)'cos na;
sin(n—w)a =(—1)!'*'sin na; therefore

Ao H(4) = b —w)] /9(4),  where /3(4) is regular at i = ix

i) isinma| —asinmx (—1)'""'sin na
Aix) = —— :
0 cos wx | (~ 1) cos na COs A

This gives

o - —a sin ma |
¥ (0) = c[ | J
cos(n—w)a
which produces the term

485) c[—a sin - x* !

cos(n—w)a- x* J'X(X) (¢ is some constant)



230 M. COSTABEL AND E. STEPHAN

in the expansion of U. If only case (y) is satisfied, we have

cos(m—w)a =(—1**'sin ma; sin(n—w)a =(— 1)*cos na,

whence
- | -
el 7 Ry | .
oo (4) “osh o2 o{4) with
(4.86) . . )
o i) = sin ma —asinnx  (—1)*cos na
o sin(2n—w)|(—1)**'sin na  cos na '
This gives

which produces the term

—ax*1! —ax* !
(4:87) [(— fp+! x,]x(x) = C[Sin wa- x‘:, x(x)
(c some constant) in the expansion of U.

Remark 4.6. If we compare the local expansions of U at the various
corners which we have just studied with the expansion which is known for
the solution of the boundary value problem (as described in (1.12), (1.13)),
then, taking into account that v =u|;, and y = (du/dn)|;, we see that the
poles of cases (B) and (y) yield just the singular functions of the latter
problem. The singular functions from poles of case () would correspond to
solutions of an exterior Dirichlet problem. This is natural, because the
operator .o/, alone does not “know” that we want to solve a mixed interior
problem. The disappearance of these singular functions for the actual sol-
ution results from the fact that the right-hand side of the integral equations
is of the form #,G and there is no global smooth perturbation H of this
term such as occurred in the case of the localized problems (4.28).

Thus if we want to describe the mapping properties of the operator .o/,
we have to use the singular functions of case () in order to obtain the
bijectivity of ./,, but if we only want to describe the regularity ot the
solution U of /o U = %,G, we do not need them.

44. Let us now sum up our calculations: Define

l
T for jeDUN and w; # r;
wj

1}1 = -
20-1=n n 3In
——— je M and w;¢<-, —»;

2 o, or jeM an wﬁ{z 2}

l

ap = x forallj=1,...,J.
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Then we define, in terms of local coordinates which are given by the natural
identification

roiylurtt «r'i =10, w)u [0, «),

for je D and w; # n:

1 - 1 a0
(4.88) uﬂ:[(—l)““].xﬂ‘ 1, uﬁ‘:[(—l)kﬂ].xu 1;

for je N and w; # n:

| .
ujk = _(_ l)k}-x Jks

1 0
(4.89) uf = (—-1)"“J.xa'jh if there is no le N such that a} =a;;

1

0
( I)H,J'xaﬂ‘]og x if ap = ay for some [;

0
u_,-,‘

for je M and w;¢ {r/2, 3n/2}:
(490) (i) jeM,,ie, I"cTI, and I'*' cI,:

aj—1
| X 4

(— 1) x4
0
B 0 . 0 xp—1
— o, sin oy xS
0 _ ik Jk f 0 .
ujk = ° ao ] lr C!_,-k #* Gf.j, for all 1,
L cos(n—w)aj, x*
[ a,+b,log x o_, .
uy = 2 O (OB xeT L f ) = aj; for some I,
| C X +dj x log x

where ay, ..., d; are determined from (4.82), (4.83).

(491) (i) jeM,, ie, "I, and I"*! =T,: as for jeM, but the two
components of each vector are interchanged.

For the angles which are excluded at each corner we define no
0 (1]
a_,-,, a_,-,,, ujk, or ujk‘
Finally, for every j=1, ..., J we define

x log x 0
(492) b =[ N ] h = [x o8 x].

By A we denote the set of all exceptional exponents, i.e.,

(4.93) A={ayl jefl, ..., )}, ke NI n(0, 2),
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and similarly
(4.94) A® = 13| jell, ..., J!, ke N}~ (0, 2).

Now we can define the spaces 7% #° and .Z* in which, respectively, the
functions G, #,G, and U will be contained.

Let {x j=1,..., J} be a collection of cut-oll functions with properties
(2.8). The space #* is defined for all se[1/2, 5/2).

(495) ge 1*: <= (i) gl,, e H'(I"}):
(i) gl e A Ty dor  se[1/2,3/2);
(i) g ;e P (M) lor I'= Ty, se[3/2,5/2]:
(iv) x;9¢ H Y Iy for  jeN,se[3/2,5/2]. m; = %

(V) 1j9 = IZ_JWith g- —g. jeM,, w; =3n/2,
i g-+g. s— 1 jeMy, m; =nf2,
e A" "(R.)for !’
g-+y', jeM,, w; =n/2,
g.—4g'. jeM,, w; = 2r/2,

and se[3/2, §/2].

The space #* is defined for all se[1/2, 5/2)\3/2; (and for s = 3/2 if all
angles are of the type excluded in (4.88), (4.89), (4.90)):
J
=1

(496) he #*: <> h=hy+ Y ¢l y; with ¢} constants,

o J

i defined in (4.92),
(i) hol; e HY(I")  and  hol,, € HY(I,);
(i) al} ¢ = for s <3/2:

(iiiy ¢f =0 for jeDuUN and
w; =7 and for je M and w;e {n/2, 3n/2};
(iv) ¢f =¢; for  jeM and w; =n.

The space .#* is defined for all s with s—1/2e(0, 2)\(4 U A°):

J
497 ued: o u=u+ Y L Y cpupt Y cpup g
i=1 e <s-12 a® <s-172
ik
(i) where ug satisfies exactly the same conditions as the elements of .2
if I’y and I';, are interchanged.

(i) cp=0=cp il uy, uj, are not defined.
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The space #° is defined for all s with s—1/2¢(0, 2)\4:

J
(4.98) ueZ* < u=uo+(y. Y  cpup)y;, where

i=1 1jk<.\-1/2
(1) ug i1s as in 2%,
(1) ¢; =0 if u, is not defined.
Jjk jk

The norms in the spaces .4°, #*. and .2* are defined in the natural way,
namely they are required to be equivalent to the smallest norms for which all
the conditions that are to be satisfied in the individual case of s and I are
defined by continuous mappings.

We give two examples:

(499 gl =gl 12+ T Nl 3,
AR

if se[3/2, 5/2) (even se(1/2, 5/2)) and no w; = n for je N

and no w;e /2, Ir/2] for je M;

J
(4.100)  [luli®, = H“oh-IH,Z;s-1(,-1)+||“o|r2‘|i,s”2,+ YooY el
=1 aj<s- 112
i se[1/2, 3/21\A.
Remark 47. For s, <s, the spaces 1'%, #'?
embedded in 47!, ¥, ¥, respectively.

S .
. Z°? are continuously

4.5. With these definitions we deduce frem our calculations in § 4.3
THeorReM 4.8. (i) For sc[1/2, 5/2)\!3/2) the operator #Ay: A° = H* is
continuous.

(ii) For se[1/2, 5/2\(13/2) WA A% the operator cfy: F*— W s
COntinuous. :

(iti) If Ue V2 = HYX(I'))x A Y*(T"}) is a solution of .of,U = H and
He 7 then Ue & if s is such that % and #° are defined.

(i) There is an a-priori-estimate for the solution of ./,oU = #,G:

(4.101) 1UH ;. < CUGH s+ U1, 12).

CoroLLArYy 49. If U = [;Je HY () x H™'Y2(r,) is a solution of the
homogeneous equation
(4.102) AU =0,

then ve HY**5(I,) and ye H™'1***(I')Yn IP(T"y) for some £ >0 and p > 1.
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Proof. If (4.102) is satisfied then Ue #* for all s < 5/2. This means by the
definition of #* that

J
0,0
u=ugt Y 1Y Citptd i) X
R 5
J 1 a_,k ajk
where the smooth part u, satisfies at least

vo:=ugly, € H'(l'y) and Yo =uplp, e H*" (') for 5<3/2.
The singular parts u;,, uj have the local form x* or x*log x for v and x*~!
or x* 'log x for y with a > 0. Therefore
Pl e AL and  ul, e A7) AT

with some 0 <& < a' and ! < p < 1/(1—a) (for 2 < 1). It remains to show

that v(t;) =0 for je M.
For this purpose we define

~ v on I,
). = LZ r
y {0 on I, e

Similarly

. ‘l’ on rl H—1/2+£
'F“{o on I,° (-

The homogeneous integral equations (4.102) can then be written as (1 + K)v

= V. By Theorem 2.17, Vi e H'/2**(I'), and so we can apply Corollary 4.5

to obtain re H'?*¢(I'), which means ve H'2**(I';). =

Remark 4.10. For the inhomogeneous equation (1.20) we obtain as in the
preceding proof

v on [,
. b= H¥ (I
(4.103) v {91 on I, e H*(I')
i we assume that G =[g1Je 2°. Especially for s > 1/2 we find that the
91

solution v is a continuous extension of the given data g, from I'; to I.

4.6. Having proved Corollary 4.9, which was used in § 3, we may now
use the result of that section, in particular the bijectivity of o/y: ZV? - #'/2
(Theorem 3.8) and the equivalence of the integral equations (1.20) with the
weak (variational) formulation (1.8) of the mixed boundary value problem
(Theorem 3.9). With the help of this equivalence we are going to show that in
the expansion (4.97) of the solution U of (1.20) the singular functions uj’,‘
which belong to solutions of the exterior Dirichlet problem do not appear:

Fix soe[1/2, 5/2] such that s,—1/2¢ A. Choose the right-hand side
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G= [gl]e &™; this means that there is a function e C*(R?) such that g,
g2
=gir, and g, =(dg/on)i,. It turns out that then all the compatibility

conditions of the definition of Z* are satisfied (for any r). It is clear that .7'®
is dense in 2" for all te[1/2, 5/2]. Therefore, if we show that in the
expansion (4.97) of the solution U of .o/, U = #,G the coefficients cj, are
zero, then this will also be true for any right-hand side in 27, because by the
a-priori estimate (4.101) we know that these coefficients depend continuously
on G in the 7°° norm.

Now from the equivalence theorem (Theorem 3.9) we know that

U= [;] with v =u|, and ¥ =% , where u is the weak solution of the
nlp,

boundary value problem with data G. For this u we have Grisvard's
expansion (1.10} for any s > 1/2. Since a real proof of this expansion seems
to exist only for ue H*(), k integer, we use it for k = 3, which corresponds
to s=5/2. If we compare (1.10) with (497), we conclude that

(Y  chup)y has to result from the traces of the singular functions
a8 <sg-172

jk =0
(1.13) (which do not appear in (4.97) due to (4.73), (4.74)) and of a function in
H?(Q). Obviously this is only possible if all ¢j, with aj < so—1/2 are zero.
Summing up, we have shown

THeorem 4.11. Let se[1/2, 5/2)\({3/2} u A). Then

(i) ofo: F* — ¥ is bijective;

(1) <fg: T — B X° < ¥ is bijective;

For the solution of .«/oU = #,G we have the a-priori estimate

(4.104) N+ < Cll.cto Ull < C'[IGll .

Remark 4.12. The above regularity results are of course true not only
for the solution of (1.20), o/o U = 4, G, but also for the solution of (2.26),
/U = #G, because these two systems have the same solutions in /2.

§ 5. The Galerkin method for the integral equations

Now we use the results of the proceding sections in order to obtain
asymptotic error estimates of optimal order (in the energy norm) for the
-Galerkin approximation of the solution of the integral equations (2.26). In
virtue of the equivalence theorem therefore we approximate by the boundary
clement method the solution of the mixed boundary value problem (P). For
the stability of the Galerkin operator we need Garding’s inequality in L2(I,)
x H~12(I)); this corresponds to the I2(I')-scalar product, which is used for
the standard Galerkin equations. However, if we considered the original
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system of integral equations (1.20) we would be forced to formulate the
Galerkin equations with the scalar product in HY*(I'}) x I*(T',).

For higher convergence estimates we perform the Fix method, which
was successfully used for the boundary element method in the case of a
smooth curve in [58]. Here obviously we have to augment the space of the
test and trial function with special singular terms, corresponding not only to
the change of boundary conditions but also to the corners. Thus the error
analysis for the boundary element method is performed for a lot of problems
which were onginally studied by the 2—D hnite clement procedure ([5],

[12]).

5.1. The one-dimensional finite element spaces used have the following
convergence property (5.1) and inversec property (5.2) which are both well
known flor regular finite element functions ([2], [5], [44]):

For any Ue #" there exist a UeSP** with r>r and p=+ and a
constant ¢ > 0. independent of h and U, such that for ¢ < min !k, r|
(5.1) WU =Tl g < ch UL,

For g <r, ¢ >0, k > r there exists a constant M > 0, ind¢pendent of h, such
that for all UeSp"*
(5.2) 1O, < MR 10,
with e =0 if An[g—1/2, r—1/2] = @ where ¥ = max |p, r!.
The augmented Sobolev spaces :#" are defined in (4.98). Note that #" is

only defined for r—1/2¢ 4. where the set A of exceptional cxponents is

defined in (4.93). Therefore, if we write [+ ,, we always mean that the
condition r—1/2¢ A is included. The augmented finite elements spaces Sp**

will be defined in Definition 5.6. For the moment it is enough to know that
(53) Spkc s (s<k)y and 22 =HYY(I)xH YX(I)).

This is sufficient to derive asymptotic error estimates in these norms for the
Galerkin solution corresponding to the following problem: Find
U,eSi* < % such that for all VeSp"*

(5.4) (AU VD gy = (AU VD oy,

where Ue#*. Later on U will be the solution of the system of integral
equations (2.26), so that (54) can also be written as

(5'5) <'t/Uh3 v) = <;£G’ V)_r/tZ(,)

-~

where G are the given boundary data of problem (P).

24

THEOREM 5.1. Let t 2 1/2, 0 < h < hy. Then the Galerkin operator
G, U=U, H"2(Iy)xH YY) —»H"(I'y))x B~ Y3(I))
corresponding to (5.4) is uniformly bounded independent of h.
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Proof. By a result of Hildebrandt and Wienholtz ([22]; Lemma 5.2) the
convergence of the Galerkin equations follows if a Girding inequality holds.
But unfortunately we have a Girding inequality only for the wrong norms,
namely [*(I',) x H V2(I',). This difficulty will be overcome by using an idea
of Nitsche (5.13) for one part of the (2 x 2)-matrix G . In addition a Garding
inequality in H'/2(I",} x A~ *3(I',) will be used for another part of G, (5.11).
We start with the operator
-‘-/13=) 1+K;, — W, ’,

(5.6) 0 c

which in virtue of the proof of Theorem 2.19, differs from ./ only by a
compact perturbation. We reduce -/, by a compact perturbation to an
operator

(57) e [Dz - V12:l.

By Lemma 5.2 below, the result on the umform boundedness of G_, follows

from that on G, which is defined analogously. The operators D,, D, in
(5.7) have the following meaning: By (2.33) for C a G4rding inequality holds.
Therefore C = D, + T,, where T,: H Y*(I';) > HY*(I'}) is compact and D,
is positive definite, i.c., there exists a 7 > 0 such that for all ye HV2(I'))

(5.8) (Dyy, ¢>H1/z(, DA~ 120 ) > /”lprr 121y
Similarly, from (2.32) we deduce
(5.9) I+K22:D2+Tz
where D, satisfies the estimate
- RTITE
(5.10) ‘D, v, L>Lz‘,2, L1 ) Z 5 ”l‘”,‘z” 2

and T, is now compact not only as an operator in L*(I';) but also in
H'2(I,).
Our next step is to show that

(5.11) D,: HY*(I,) = HY*(I'y) is bijective.

From the continuity propertics of 1 + K,, and 7, in connection with
(5.9) we know that D, is continuous in H'2([",). From (5.10) it follows that
D, 1s injective. Since by Theorem 2.24 the opcrator |+ K,, satisfies also a
Garding inequality in HY2(I,), it is a Fredholm operator of index O in
H'2(I',). Therefore D, is also of index O and thus bijective in H'3(I,).
Using a technique of Nitsche [45], we show that operator Gp, is unilormly
bounded not only in [*(I";) but even in H'*(I';). Here G| is defined by
Gp,: t—v,e SP* through the equations

all w e Qprk
(5.12) Dy vy, w>,‘2“2‘ = <”D2u,_w>,‘2”2) for all weSH"*
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First it follows from (5.10) that G,, is uniformly bounded in L*(I',).

Hence together with the convergence property (5.1) and the inverse assump-
tion (5.2) with ¢ =0, r = 1/2 we have for v =U),,

(5‘13) “GD2 v— U”HIIZ(rz) S ”GDZ D_VIIHIIZ([2'+ ”v—v”Hl/Z(rz)
-1/2 R

< ME™ V211G, (0= V), +C ol

< Mh™ 12 |IGp |l llo— vl

S {(eM||Gp,|l 2 + )l

HUZ(I‘Z)

+cllol)

L2(ry) H1/2(4)

HY2(ry)
Hence

(514) “GDZ UIIHI’Z(I'zl < E”U“HUZU‘Z) for any veHllz(FZ)v
where ¢ is independent of h and v.

Note that, for ¢ =0, r = 1/2, #%,, = L*(I'}), 2"|;, = H'*(I";). Now we
return to system (5.7). The corresponding Galerkin equations are

A R B

for all (v, §)e SP** = HY2(I;)) x A~ Y3(I',) and define G.,,: [:’JH[U"J. For

Ui
the choice =0 we have G,: [g]»—»[:":l Therefore (5.15) reduces to
Xn
(516) (Dz Wy — VlZXIn V>L2(r2) = <D2 v, v>L2(I'2);
(517) <D1 Xns ¢>3112(rl)xﬂ‘1/2(r1) =0.

By (5.8) we know that the Galerkin operator Gp exists and is uniformly

bounded in H~Y/3(I",). This implies that (5.17) yields y, = 0. Therefore (5.16)
reduces to (5.12), which means that w, = G,,v. For the choice v =0, (5.15)
gives

(5.18) (Dyup—Vi2 ¥, "),_z(rz, = (~Wav, V>Lz(r2,;
(5'19) <Dl w'l’ ¢>H1I2(rl) <0~ 1/2(1'1) = <Dl \1” ¢>"l/2(rl) Ny A 1/2“‘1)'

Now (5.19) means that ¥, =Gp , and (5.18) can be written as
(D, uy, iz = (D, (D3 Vy2 (y— ), V>L2(r2)’ which means that

u, = Gp, D;' Via(—¥) = Gp, D;! V1:[(Gp, — D]

Now, collecting the results, we write

v 0
(5.20) G, [;] =G, [ 0]+ Ga, [ w]

_ [an Gp, D3’ Vlz(Gpl_l)][U:l
0 GD] ll’
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We have seen that Gp, and G, are uniformly bounded in HY*(I';) and
H~Y2(r,), respectively. This implies also that

Gp, D' V12(Gp, —1): AY2(ry) - H'(Ty)
is uniformly bounded due to the continuity of D;'V,,: H '*(I))
- HY3(I',). =

Lemma 5.2 (Hildebrand and Wienholtz [22]). Let H be a Hilbert spaces
with a dual H' (not necessarily indentified with H) and A, D: H—- H’
isomorphisms with T=A—D: H—~ H' compact. Let |S,},.0 be a family of
subspaces of H such that the equations

(5.21) (Dw,, ¥> = (Dw,v)> for all ve§,
define an operator Gh: wrs w,eS, with the property
(5.22) IGhw—w|| -0 as h—0 for all weH.

Then for small h the equations
(5.23) {Auy, v> = {Au, v) for all ve§,
define an operator G%: u—u,cS, such that

IGXl < C  with C independent of h.

Proof. From (5.22) and the compactness of T follows |{|[4~ ' T(1 - Gh)||
— 0 (h - 0). Therefore for small h G4 :=GL[1—-A"' T(1—G%)] ! exists and
IGAll is uniformly bounded. From equations (5.21) and (5.23) it is easily
verified that G = G. =

Remark 5.3. The assumptions on D and S, are [ulfilled if D is positive
definite, i.e., there exists a y > 0 with |(Dw, w)| = y||w||?> for all we H, and
there exists a uniformly bounded family {P,} of operators P,: H — S, with
|Pyu—ul| =0 (h—>0) for all ueH.

With the uniform boundedness ot the Galerkin operator G, in Z'/?
(Theorem 5.1) and the regularity results (Theorem 4.11) on the exact solution
of .«#U = #G we are now able to derive higher convergence rates for the
Galerkin approximation, corresponding to (54) for smoother right-hand
sides. This is a standard technique (see [52]), which uses convergence (5.1)
and stability properties (5.2) of the finite element spaces.

THEOREM 54. Let 1/2 <r <5 < 5/2 be such that r—1/2, s—1/2¢ A, where
A is the set of exceptional exponents defined in (4.93). Let Ue #'? be the
exact solution of the system of integral equations (2.26) with Ge 4* and let
U,eSE™* = &" be the Galerkin solution of (5.5). Then for r <k, s<p,s<t
£>0, and 0 < h < hy we have

(5.24) IU=U,, < k™" 5 |UIl,, < ¢ K[l

s
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where the constants ¢, ¢ > 0 are independent of U, G and h, and ¢ =0 for
{0, p=41nA =0 or r=1/2

Proof. Choosing UeSp*™* which satisfies the convergence property
(5.1) and using the uniform boundedness of G, in #'/2, the projection
property G_,U = U and the inverse property (5.2) of the finite element
function Gd(U—U)eSi,”"‘ < Z'. we can estimate the error:

(5.25) ||U--Ul,,=IlU-G,U+ 00|, <IU=Ul . +G,(O-U)l,.
LYY AHMIE TG (O = Ul
TR TNUN o+ MAG iy 2777210 = Ul g2
<t U,

With the help of the a-priori esumate (4.104) we thus obtain (5.24). Note that
for r =1/2 we do not need the inverse property. m

Remurk 5.5. The convergence rate in (5.24) is optimal for r = 4. which
means that the error is estimated in the energy norm. We obtain L7*-
estimates for the error of the trace v if r > 4 and for the normal derivate ¥ if
r > 3 in (5.24). Due to the definition of the norm in #" (compare (4.100)). the
error estimates for the coefficients ¢;, of the singular parts of the solution are

obtained from (5.24) for r > x;, + 3. Thus the error for these coefficients is of

c—gr— 12 ~¢ ) . Lo+ .
order K **'*7° \which is a loss of order i"*"* compared with the energy

norm estimate. Estimate (5.24) is for r =13} of the same order as the
corresponding energy norm estimate for the Galerkin approximations of the
solution of the variational problem which are constructed by means of 2D
finite eclement spaces augmented by the singular terms of expansion (1.10) (cf
[5], p. 274).

Next we define the augmented finite element spaces Si'* used and show
that they satisfy Lthe assumed properties (5.1) and (5.2). The parameters i
S$P* have (roughly) the following meaning

(i) 0 < h < hy is the mesh size of the partition of I';

(ii) t describes the degree of the piecewise polynomials which constitut
the regular part of S[*;

(iii) k describes conformity, i.e., SPok < %

(iv) p gives the number of singular terms u; included in Sf

More precisely, we have the following definition:

Wtk

DEFINITION 5.6

J
(5.26) ue S < u=u,+ Z Z Cix W X;

ji=1 Ay -p 1/2
where c;. € R is arbitrary, and u, x; are as in the definition of 27 (4.98); ai

Uoly, = Vo, Uoly, = Yo
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with v, belonging to a S}*-system on I', (Definition; see [5]; p. 83) and
ol 4€ 83~ " (¥ = max(1, t—1)) for each j with IV < I',. Furthermore
and v, have to satisfy the following conformity conditions, which ensure that
uge Z*:

(i) no condition for k < 3/2;

(ii) for k = 3/2: Y, continuous at t; for je N and w; = .

(iii) Yo (t) = tvo(t;) with + for je M,, w; = n/2 or jeM,, w; = 3n/2
and with — for je M,, w; =n/2 or je M,, w; = 3n/2.

Note that v,eSh* implies that v, is a piecewise polynomial of degree
t—1 and voe H¥(I',); similarly gl ;e H* ' (I).

The Galerkin procedure (5.5) reads more explicitly: Find U,:=
(vy. Yp)e SP** such that

(5.27) 1+ Ky)va—Via ¥, D> r2ppxi2irp T
+ <Kz Kzz 00— (Vi1 — K3y Via) s, !/7>H1/2(,-1,,,;—1/2”-1,
={(—Ky294,+ V2293, l7>,_z(,-2),Lz(,-2,+
+ 1+ K1 — K3 Ky3) g1 — (Va1 — K3y V23) 62, J>H112(r,)xﬂ‘1/2(r,)
for all (%, §)e Sp".
With the trial functions

N
* = vy + Z Chlip s Vo = Z Vit on I,
(5.28) JenoM e
Y= '/”5"‘ Z cj-',, Ui X Vo = Z O 14y on I,
jeDuM I=N+1

(where y; are basis functions of regular finite element functions) the Galerkin
method (5.27) means: Find real numbers y,, J,, ¢} such that (5.27) holds for
the regular test functions

(5.29) 17’.—2;1, (1=0,...,N), lF,.=l,u, (!l=N+1,...,N)
and for the singular test functions

Unless je M and (7, §) = uy the system (5.27) can be written as equa-
tions on I'; and I',, alone. By this choice of test functions (5.28) and trial
functions (5.29), (5.30), the system turns out to be a quadratic system of linear
algebraic equations which is uniquely solvable. The coefficients of this
stiffness matrix can be computed with quadrature formulas (Gauss, Newton,
Cotes, etc.) (see [25], [33]) since the scalar products in (5.27) are L*-scalar
products.

LEMMA S.7. The finite element spaces SE™* have properties (5.1), (5.2).

16 — Banach Center Publications 15



242 M. COSTABEL AND E. STEPHAN

Proof. For proving (5.1) we choose ¢, = ¢ for ay <r—3 and ¢;, = 0 for
ay€(r—3%, p—3), where ¢, are the coefficients in (5.26) and c; those in
(4.98). Thus it remains to estimate the smooth parts, i.e., |[tig— |l s which
reduces to an ordinary Sobolev norm where we can apply the convergence
property of a S}*-system.

Thus we even get the estimate

(531)  U=Dllq = llto—oll ,q < chluoll, < ch =4[V,

The inverse property (5.2) for ¢<r<k and An[g-},r—-3]=0
(r' = max(r’, p) follows immediately from the definition of norms and the
inverse property of our S;*-systems (cf. [5], Theorem 4.1.3).

J
(532 HOI% =lmoltl+ X X leal? < M2R¥7 7 |ug|)? +

ji=1 @jp<r- 1/2

J
+2 X e < MPHTOON,.
i=1 xjp <q— 1/2
Here we have used the fact that wyeS{"* is a piecewise polynomial.
In what follows we use two estimates fot the approximation of the
singular functions u;, by piecewise polynomials i;e Sy"* namely.
(i) To any singular function ¢;;u;y; there exists a ;e Sy*"* and cons-
tants ¢, independent of h such that for all ¢ >0

- apg+lj2-gq—-¢
(5.33) ”cjl Uj Zj—“ﬂ”ﬂ <ch # |¢j:|

for all g < min {k, a;+1/2—¢}. This follows directly from the convergence
property (5.1) applied to the regular finite elements i; and the function

iUy Xy € 270 (for all € > 0), considered as a “smooth” function.

(ii) For any set of singular functions [c;u; x| [ =1, ..., L} at the corner
t;and any ¢ <a;+1/2 (I =1, ..., L) there exists a constant y independent of
h such that

+1/2—¢

L
(534) || X ciuun;— Wyl ,q = vh' lejipl for all lp=1,..., L
1=1

and for all regular w;e Syt (k > g).

This is analogous to Lemma 1.5 of [58]. The proof is given in Lemma 5.9.
For An[qg—1/2,+r—1/2]1 # @ we distinguish two cases, from which
then the general case follows by induction.
1) An[q—1/2,r—1/2] = @ (p arbitrary).
For UeSf'* we use expansion (5.26) to define for g<t<r

J
(5.35) 0 =+ ) > CitUs Xj-

j=lapett—1/2.p~1/2)
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Now for every aye(r—1/2, p—1/2) we take i, as in (5.33). Then we have,
with the inverse property for regular finite elements,

J
(536)  ull,, = (w2 +Y Y leu?)”

i=1 aj<r- 1/2

J
<o+ ¥ ) iay| ,r +
j=1 aﬂe(r— 1/2,p—1/2)
J J
+ ) ) lejupxy—=dpll o+ 3 Y leal
iV ajper=1/2.p- 1/2) Fiep<ran

J
= ||“0+ z Z ﬁjl”gr'*'

j=lapea—1/2,p-1/2)

J J
+ 2 ) leje g x; — il . + > Y el
j=lajelq—1/2,p-1/2) J=lay<q-1/2
-
<SME"luo+ Y 2 ] o+

Jj=lajelg- 1/2,p—-1/2)

J J
+3 y T e+ Y Y eyl

j=laﬂe(q-1/2.p— 1/2) j=laﬂ<q—l/2

For the first term on the right-hand side we estimate further

J J
(5.37) ”“o+ Z Z ’ aj'”!q < ““q"_,,-q"' Z Z lieq uﬂxj—ﬁ;all,q

j=ldﬂe(q—1/2.p—l/2) j=laﬂ>q—1/2

J
a+1/2—-g-¢
g ”uq"_fq"' Z E Ce h it |cjl|'
j=laﬂ>q— 1/2

Inserting (5.37) in (5.36), we get

yt1/2—-r—¢

J
(538) lull,, < ME "llugll o +2¢. Y, Y K7 leal +

j=1 ayj>q- 1/2

+i Y el

j=1 aj<q- 1/2

Now we use (5.34) for w; = —il,-%;, where j; is a cut-off function which is
1 on the support of x;. Thus Zc,,u,, xj+uof; = ¥;u, and therefore for Xjrg
[

>q—1/2

-142 —1]2+q

. Tl tq , —aj
(539 eyl <vh T° IZyugll o <vch " lagli -
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We insert this into (5.38) and obtain
(5.40)

J J
“u“_,r < M {hq—r+2c.8 '}” Z Z hq-r—F} ”uq”]q+ Z Z lcjll

J'=11jl>‘l_l/2 j=laﬁ<q—1/2
<M AT,

2) There 1s one ac An[g—1/2, r—1] (p arbitrary). Then we have the
following changes against with respect to the previous case:

J
(2) There is an additional term ) Y lc;| which in view of (5.39) can
j=1 ajj=a
be estimated by '
Ch™*7 2% 4 luli o < ch® ™" lugll -

() Instead of (5.37) we have

J

J
(541)  |juo+ X 2 Ul e X X Nepuin il o+

j=l:l:ﬂe(r‘1/2.p— 1/2) j=1¢jl=a

7
+”“q||,q+ Z Z ”cjl“ﬂXj—ﬁﬂ”,qo
J=1 ®j>r- 1/2

Here the first term on the right-hand side is estimated, in view of (5.39), by
(5.42) lle;iuz Xj”,q = ¢ leul € ¢, Ch™*" l,2+q”uq"_.’q'
This gives, compared with (5.40), an extra term

MC, B~ h™2 =12 )] o < M W72 V2 )| .

Here the exponent is smaller than n (5.36), and so this term dominates all
the others, and we obtain finally

(5.43) llull,,, < Mgh?™" =712 lu]| .

This holds for all ¢ <a+1/2, and therefore we can improve it in the
following way:

Choose te(q, a+1/2)\ A arbitrarily. Then apply case (1) to 7 and g
instead of r and g (note that A n[g—1/2, t—1/2] = @) and case (2) to r
and 7 instead of r and ¢. This gives

(544l < MIT O ], € MORBT T e )
- —r-@+1i2-0-
_Mr.rhq e ‘ f;”“”_,qv'
Now 1t is arbitrarily close to a2+ 1/2, whence (5.44) can be written as

(5.45) il g < M ull .
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The case where are several singular exponents between g—1/2 and r—1/2 1s
easily reduced to the previous case by induction.

Remark 58. This proof is a generalization of the proof of Lemma 3.1 in
[58], where a corresponding result was proved for the case of a smooth
curve and mixed boundary conditions yielding the singular exponent x = 1/2.

LeMMA 59. For the regular finire element spaces Sy* and the singular
functions u; we have the inverse estimate (5.34)

L

| 2 einui Xi—will ,q 2 ",'halo
I=1

forallly=1,..., L, and all W;eSy"* if k>qand ay+1/2>q(=1,..., L)

Proof. It is sufficient to show that for every seR, a, ..., x, >s—1/2,
a; # 2, for j#k, we have

+1/2—-q
1€t

L o . 1,0+ 1/2—-sI
(5.46) 1T cox™ 3= py XNl sy = 7 1)
i=1

for every function p;e H*(I'”) which is polynomial on [0, h]. If we have to
estimate | ‘||, then we use the fact that F-lgs = 1Ml s In order to show
(5.46), we assume first that there is a positive definite bilinear form (-, -),,
with the properties

(5.47) ||¢”,2,,s(rj, ZcC '(¢|(o.h1a ¢|[o,h])s.h for all ¢¢€ H ()
and
(5.48) (O, XY, = BT s Tor all x> =172,

0 < h < hy, where Vajaps > 0 are constants not depending on h. We define
‘ N N .
(549) F(Cl, ceey CN; h).=(z C,xal, Z C,x’s‘,,.
=1 =1

For fixed ¢;, the minimum F},(c;: h) of this quadratic form is attained for

cF M a
—=2(X", chxk)s',,=0 (j:l.,...,N).
dc; k=1

This can be written as a (N —1) x(N—1) system of equations

s I x; - 4
Z ck(x J’ X k) = —Cl(x "s X ‘)
k=l

or by (5.48) as

(5'50) Z Cy (h) ) hak o -yaj.a,;,s = =G ‘yaj.a,.s -

k#l1
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Thus the unique solution of this system is of the form
(5.51) c (=hY""c;y, (for all k=1,..., N if we set y, =1),
where y,; do not depend on h and c,. Inserting (5.51) in (5.49), we find
Fhin(cis B = Fcy (B), ...y Cro ooy cp(R); B) = K575 Fluin(1; 1)

and therefore '
(552) Flcy, ..o s )= yp™ 2 e?  with y=F. (1;1)>0.
By (5.47) we can deduce (5.46) from (5.52) if we put

N

Y ox=-pix) for xe[0,h].

I=L+1

It remains to define (-, *),, and to verify (5.47), (5.48). For se N, we define
h

d s 2
@ dhai= |35 o] s,
so that °
(5.53) 101120,5, > 100120,y > (&1 Dl

Similarly, for s =m+0a, meN,, oe€(0, 1), we define with the Besov norm
instead of the I*-norm:

h h
= Y pog=(2Y
(® Phni= f J |( dx) 69 ( dy) ¢ )
00

and (5.53) again holds because of the continuity of the restriction H*®(IY)
— H*{0, h).

In both cases, (548) i1s ecasily derived by a change of integration
variables.

For s < 1/2 we can define

(@, Phop:= ”¢I[0,h]”|zpa(.+)‘

Then (5.47) follows from the local equivalence of norms (Lemma 2.6). By
Parseval's equation (Lemma 2.2) we obtain by the Mellin transform
h

2
|x—y| 129 dxdy,

a+id

ii—lxmd=_-
[t = it

0

(Im A < a):

aj+I'l hat—iI

(Y, x4, = C- J (1+14%y

Imd=s—-1/2

_ s (1+141%y da
¢ f (A—ia) (T+ioy)”

" ImAd=s- 1/2
For s < 1/2 this is finite, which proves (5.48) for this case. m

(A— i) (X +ia) d
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As a final result we want to present an error estimate for a Galerkin
procedure with a different scalar product, namely that of HY?(I';)} x I*(I';)
instead of L2(I) as in (5.5). This result is easily obtained by the methods used
above but based on the Garding inequality of Theorem 2.24 instead of
Theorem 2.19.

TueoREM 5.10: Let G% be the Galerkin operator defined by G, :
U U} where UreSP'* is the solution of :

<'d0 Uh*’ v>vll/2 = <c1/0 U, V>’_|/2 for all VESﬁ"‘k,
Here (-, -5 12 is defined in (243). Then
G" o1 HY(I'y) x A V3T ) > HYA(Iy) x A V3(Ty)

is uniformly bounded independent of O < h < hy. Furthermore, if U is the
exact solution of .o/qU = 4G, there is an estimate like (5.24)

WU —URl . < ch* "Gl .

Finally we demonstrate our error estimate (5.24) by an example of a
mixed boundary value problem on a L-shaped region which was numerically
treated by different methods in [27]. Here the daia satisfy the compatibillity
conditions (4.95) (v). Therefore Ge 2 for all s < 5/2 and thus the solution U
of our system of integral equations (1.20) belongs to any Z°, s < 5/2. Hence,
by (4.98) and the definition of the singular functions, U contains two of them,

namely at (0, 0):
x4/3 x2j3
“”=[MMJ; “‘=[ﬂﬂMJ'

yﬂ

Qu .
an =0

Aus0

g -0

Now if we take as trial functions y; (cf. Definition 5.6) for v piecewise
quadratics, and trial functions v, for y as piecewise linear polynomials, and
furthermore u,, u,, above, we have the error estimate (5.24), which holds for
any r < 5/2 with r # {3, $+4, $+3). For r > 3 the trial functions have to
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satisfy additional compatibility conditions, too (see definition 35.6) (iii)). Thus
by (5.24) we have

(5.54) U= UM, < ch*2 "5 |IGll, 512
and for the coefficients of the singular functions u,,, u,,
ey =il = O(h**79, e —clal = OR3P0,

We define the solution u in € as in Theorem 3.9 and the approximate
solution u" correspondingly. By Lemma 3.3 and the Sobolev embedding
theorem we have the pointwise estimate {choosing r = 1/2+¢ in (5.54))

e — | <clU=UM 1240 = O(h* 7).

LT
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