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1. TIntroduction. On boundary layers for convection-diffusion equations
Consider the linear boundary value problem
(11) ZLu= —cdut+bVuteu =f VeeQcR", 0<e<],

where 4 is prescribed on I' = 9Q. The term bFu comes from convection
driven by a velocity field b, and it dominates over the diffusion term,
—edu (e > 0), when ¢ is small, (1.1) is then an example of a singularly
perturbed differential equation.

We assume that I' is smooth, b e[CY(D)]?, ¢ € L™(2), f e L*(N).
For notational simplicity we also assume that

(1.2) ¢c—3divib)>e¢, >0 Vxzel.

As we shall see, this condition implies coercivity (and the stability in
Lg-norm) of the solution % = u,, uniformly in e. More general cases than
implied by (1.2) can be dealt with by a proper transformation of variable
and are treated in [3].

Consider at first the reduced equalion,

(1.3) bVug+eu, =f Vael,

with proper initial conditions to be given below. This is a first order scalar
hyperbolic equation, and we assume that the given data are such that
1ts solution is smooth enough for the validity of the error estimates to
follow,

[165]
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The corresponding characteristic equations are, assuming |b| 0
Ve 9,

—Z%(s,t) = b{z(s,?), §>0,

2(0,8) =d(1), 0<i<1,

¢ a parameter, where the vectorial function d will be defined below. This
is a system of ordinary differential equations and from the assumptions
made it follows, ag is well known, that there cxists a differentiable solution
which is uniquely defined by d and ¢ Hence 2(s,?), s> 0, 0 <<,
defines o set of characieristic curves and, by unicity, there are no closed
arcs (see Figure 1).

We let # be the outward pointing normal to I' and let
I' ={xel; b-n<0),
I' ={xel; b-n>0},
I'y={xel; b-n=0)}.
I'_ is the inflow part and I", ib: the outflow part of the boundary I'. If
I' is piccewise smooth and b-n is continuous on I'_ and I',, then we

typically have a situation as in Figure 1.
By differentiation (the chain rule) we get

dag
ds

(#(s, 1)) = Vuy(=(s, t))—f_g = ity b

along the characteristic curves. Hence, along these, the partial differential
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equation is reduced to an ordinary differential equation. Ict
U = Ufs, ) = ulz(s, 1),
P =TF(s,t) =fle(s,1), ¢ Lixed, 0 <1,
Then
auv

(1.4) 'K-}—OU =F, §>0.

The proper initial condition is the following. Let d(t), 0 <t <1, be the
curve defining I'_, ie.,,

I'.={&=d@), 0<t<1}.
Then we choose
U(0,t) =ul(d())

ag the initial condition for the reduced equation, and the solution of
(1.4) is

U(syt) = [U(O’t)'l‘ f exp(g(r,t))f{z(r,t))dr]exp(—g(s,t)),

where
8

o(s,1) = [ efz(z, 1)) dr.
0
The remaining boundary conditions (on Iy I, ) are lost in the reduced
equation.

Hence, along this part of the boundary there may occur layers.
Usually, in practice, the layer along I'; is less severe than that along I',
and may hence be more easily resolved by a fine enough discretization.
(In some problems, the set I is even empty.) In this study we assume
that there is only a layer along I',.

Examere 1.1. Let u,+u, = f(z,¥), 0< 2, y<1. Here b =[1, 1],

so the characteristic curves may be represented by z = in Q'

=148
* :
I
) /9 /
/ 7

(similarly in Q).
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The solution with u(», y)|r = gle—y) I8

T

wiz,y) = gle—y)+ [ flr,y—o+v)dr, 0<2<1,0<y—a. »

0

One may prove the existence of an asymptotic expansion

oo

(X, &) = Ze"uk(az),

Je=0
where

(b-V+e)u, =f, U = on I'_,

(b-V+o)u, = dug—y, w,=0o0nl_, Ek=1,2,..

This is an analytical function of . The layer term %, representing the
layer of the solution u, of (1.1) may be written

i, = y—u(x, &) = e ""v(x, &),
where ¢ = 0 on I', but ¢ > 0 in 2 and o iz regular in ¢ (sec [12]).

ExAypPLE 1.2. Consider

—ett"' +bu' =0, b=b,>0, by 2 constant, 0 <2 <1 and
beC(0,1],
%(0) =a, w(l)=4.

1

Let ¢ = u’; then 2" = bz/e, ie., 2 = cexp{— f b(s)/ads} 80

—flblsds b(l)

=a+(ﬁ—a)e"' W(l—l—()(s)).

The reduced equation is %’ = 0 with %(0) = ¢ as the initial condition,
and the boundary layer appears at the right boundary point.
ExamprLe 1.3. Consider
—eu''4+azuw’ =0, —-1l<a<l,
w(~1) =a, u(l)=4.

It is easy to sce that if a < 0 we get a layer at @ = 0.
This is au example of the turning point problem with an interior layer.
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2. Finite difference approximations

In order to illustrate the behaviour of different finite difference approxi-

mations on (1.1) we consider at first the two-point boundary value problem
(2.1) ZLu = —en”’' +b(@)u Felv)y =f, O<z<l,
' #(0) =a, wu(l)=24.

If we apply central differences at all interior mesh points, we get a O(k?)
local truncation error for every fixed . However, in general the solution
is not smooth uniformly in e, so the discretization errors are 0(1), h—0,

unless h is so small that the so called local Peclét number

h max |b)
g  o<e<l

is not greater than 1. If A is too large, spurious oscillations appear.
From a practical point of view, when ¢ < 1, satisfying the Peclét
number condition would imply far too small step sizes. However, it has
also been observed that the spurious oscillations encountered above do
not occur if the solution is smooth on 0 < # < 1, i.e,, if it does not have
a layer behaviour. For a numerical test, see Figure 3. This is also the
case if for instance we have a Neuman boundary condition %' = 0 at
boundary layer points. This phenomena is most easily explained when
we consider finite element Galerkin approximations (Section 4). As we

3
1 N=4, EPS= 0.010
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Fig. 3. Numerical solutions of

—ew'' u = f(r,e), O<z <1,
w(0) =1, u(l) =0,

T
where u(x) = cos—Ea:
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shall see, the classical finite element methods (and hence the central
difference method) are stable, but when we have a layer term present
in the solution, the solution is not smooth enough in order to be approxi-
mated well by piccewise polynomials.

Difference schemes of positive type. In order to get difference schemes
for which spurious oscillations do not appear, one has constructed positive
schemes of different types, some of which will now be described. Let

(2.2) (Lpu); = 1@, by &)Uy -8 (05 by &)wy+E {2y By )0y,

We recapitulate: A difference operator is said to be of positive type
Hse>0,7r<0,t<0and sz —(r-+1).

For such schemes we have monotonicity, that is £, u > 0 and |ul,,
= 0=u42>0 (and a discrete maximum principle), and, as is well known,
discretization error estimates can be proved from the following lemma.

LEMMA 2.1. Assume that there ewists a function w (called barrier func-
tion) defined on £,08%0,, which satisfies L,w >0, w>=0 where &, is
a difference operator of positive type. Then any function v defined on 2,000,
satisfies

max1o
2,
'(2c3) l'vlnhuaﬂhg I'Dlaﬂh"l" M l'gh’vlﬂh‘
2;
Here |v]g, = ;nglv] ete. and $2,000, is the set of mesh points. If we let
h

Vv =U—uy, the discretizalion error, then Z,v = Z,u—f, the truncation
ervor, and the lemma provides an estimale of the maximal discretization
ervor.

The simplest difference approximation of positive type uniformly
in ¢ is called the upwind scheme:
Let

W' (@) = 8iu(2) = b [u(e+h) —2u(z) +u(z—h)],

and

b()[u(z+n)—wu(x)l/h, i b<O,

b(x)u! (z) ~
(z)u' (o) b(w)[u(x)—w(z—0)1/h, i b>0,

i.e., use central differences for the second order derivatives but “upwind”
{(forward and backward differences, respectively) for the first order de-
rivative,

Obviously, this gives a positive scheme but the local truncation
error is only O(h).
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Modified upwind schemes of O(h?) for tixed ¢ have appeared, e.g.,
in [13], (8] and [2].
If b(w;) > 0 they take the following (or a similar) form:
. w(w;) — (@,
(@) = =5, 830() b (0y,y) LD Loy = fm)

s — X5

where

17'-=E/[1+b(37i)wi_—;:’t_l‘]i ’i=1,2,...,N,

and similarly if b(z;) < 0.
In [1] and later in [9], the following scheme, referred to as II’in
scheme, was derived. Let z; = b{x,)%/(2¢). Then

Ty 1) — 4 (@;,)

.mi+1 ‘Ti—l

(L) = — b, 820 () +b(z;) =

+o(z)u(n) = f(2)
where
%, = ez cothz;, i=1,2, ..., N.
Since
>1, it b;>0,

cothz
<—1, i 5<o,

we easily see that this is a positive scheme. It shifts automatically, so
that it is always upwind, since

1, as z—> oo,
coth (2)

—1, as &——oo0.
It is also of second order, because, for fixed e,
—ez;c0th () Syu(e,) = —e[1+0(z;) Sjulz,)] = —e(L+0(R2) Siu(w,).
Hence, the truncation crror, (£,u); —Jf;, satisfies
(24) (@Zyu),—f; = —e(200th(z;) —1) 6w () —
—ediu(z;) 4 b; Sou () + c;u (2;) — (—ew' -+ bu' + ou);
= 0(h?), h—0,

for e fixed.

As follows from Lemma 2.1, the discretization error in the modified
upwind scheme and the I’in scheme is O(h?) for ¢ fixed. But these esti-
mates are not uniform in ¢! In fact, both schemes reduce to the upwind
scheme as e—>0.
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By a Taylor expansion, assuming that « e C*(0, 1), we get for the
modified upwind scheme

bh .
Lyu—f = —(ﬁ—s)u”——z—u + 0 (h?)

bh bh bh

= _(-2—)/(E+7)u',+0(h2) ~ —7%”+0(h2)

if ¢ € h. For the Il'in scheme we get the truncation error (see (2.4))
Fu—f = —e(zeothz —1)u" +0(h?),

and as

2 he—1< 02
¢ < zcoothz—1 <
241 P

0<z where 0<ec<?,

we lose an order of accuracy for small ¢ in both cases.

In addition, schemes of upwind type suffer from the undesirable
property of smearing out sharp fronts.

This is due to the fact that in these schemes the leading term in the
truncation error (( ~bh/2)fu,”) introduces an artificial viscosity of ~bh/2
in the upwind scheme and somewhat less in the other positive schemes.

By considering the regular term and the layer term separately one
may now derive error estimates for « = %, in (2.1); for details see [10].
For a one-dimensional problem without turning points, that is, where
bz) =b,>0, 0<w<1, one gets:

Modified wpwind scheme:

h® bo(1 — ;)
— ) —_— <h.
[ (@) — thp ] < [h—l—s +GXP( -—boh-{—s)]’ e h

Iz, =1-1h we get
12 bolh
h+e boh+¢

that is, close to the layer we have an error O(1), h—0. (As usual, C
indicates a constant, not necessarily the same at different occurrences.)

e (a0,) ~ 20y, ;| < C[ +exp(— )] ~0(exp(—1)), &<k,

IDin scheme:

h+¢

-In this case the boundary layer term does not “pollute” the error
away from the layer, since already at # = 1 — ) the second term is negli-
gible if ¢ € &. Hence the above pointwise error estimate is uniform in e.

h® h? b
lﬂ(w«:)—uh,iISC‘[ —I——:—exp(—T"(l—mi))], $=1,2, ..., b1 -1,
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Note however that in I’in’s scheme we have used the knowledge of the
asymptotic behaviour of the layer term in the construction of the differ-
ence scheme.

A gimple proof of the fact that, in most difference schemes of
positive type, one order of accuracy is lost for £ small enough was given
in [10]:

THEOREM 2.1. Assume that r, 8,1 in (2.2) are conlinuous functions
of by e for h> 0, e < 1, and suppose that, for any smooth function u(z), the
truncation error satisfies |t(®, b, €)] < Ch’, 8 > 1, where C does not depend
on z, b or . Then the difference operator &y in (2.2) is not of positive type
for &, b sufficiently smooth.

In [13] a scheme is presented where 7, s,¢ are not contihuous in
(e, h) and there is no loss of one order of accuracy. See also [4] for a
generalization of the results in [10].

A generalized Ilin scheme. Let
Zro = (—ev') — () +ev, O0<2<]
be the adjoint operator to % in (2.1), that is,

1 1
f Luvdy = f wP*vdr+boundary terms.
0 0

(Here s may be a function z. Without limitation, we may assume that
w(0) = u(1l) = 0.)

Let {z}2*! be a subdivision of [a, b} and let g; be the local Green's
function of #* and x;, that is,

Zrg;(0) =0, @e(m_g,n)U (@ r),
g:(x) =0, wela,s,_,]Ul#y,,, b,
e(@) (g (2, —) — gilw; +)] = 1.

Then

Ty4y Tyt

b
f.s’fugidm = f Lyg,de = f fg9,dz,
c -1 Ti—1
and by partial integration we get the difference scheme
Ti+1
(28) &1 0 (Bima) ey Ut Epr G (Bi1) i = f fg:da,
i1
t=1,2,...,,N.
Note that if we are able to evaluate g; and f fo,dz exactly, this scheme
gives the exact solution.
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For
Py = —ev'' +bw' =f, O<w<l,
#(0) =u(l) =0,

where ¢ is constant, &;—»;_; = I, ¢ = 1,2, ..., we get by letting b = b(z,)
be constant over (x;_,,#;.,] when evaluating g,

b; by
—s—h 1 1 e—'Th :ri_H
6 _— pr—
- by Uiy + Uy — b; b, Wit1 = f fg,dz,
—h ——h —h ——h
6° —e ° ea —0 ¢ ;1

¢ =1,2,..., N. This reduces to the Il'in scheme if we approximate
Fi41 411
f Jo.do = f; f g:da.
Zi—1 Ti—1
However, it is better to approximate f by a polynomial of at least first
degree and then evalnate the integral over the corresponding forms exactly
(cf. Figure 3). We call (2.5) the generalized Iin scheme. Finally, we
shortly comment on positive schemes for higher dimensional problems.
Assume then that the first component b, of b satisties b; > b, Va e 2,
where b, i§ a positive constant. Then it is easy to see that

wlw) = |501|%J—m?+3R(1m1]n+931)7

where R is the radins in a circle, with centre at the origin, which cir-

cumscribes £2, is a barrier function. In fact, w > 0 and for the upwind
scheme we get

ghw ; 2€+b0R

(similarly for the other positive schemes).

Hence for such problems, by use the barrier function of Lemma 2.1,
we get similar error estimates as for the two-point boundary value prob-
lemis. Since the accuracy of difference schemes is so low, we shall now
consider instead the Galerkin finite element methods, where we are able

to get any order of accuracy for (1.1) when & is fizxed and also for the
reduced problem.

3. Stability of variational formulation

We consider now a problem with more general boundary conditions than
(1.1), namely
= Vel 19

(3.1) ]
eVibnto(u—y,) =0, o220 Vaeel,,
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where I, = INTI; and I'NI'j =@, We assume that o e I®(I") and
that ¢ = 0 on I'y. For the purpose of analyzing the Galerkin finite element
method of this problem we introduce the norm

ol = (el + ol + § v:al}™, veHY(Q),
I'\Tq
where |vf, = {[ |Fo?d Q)" is the seminorm. We let
Q2

V={neH(Q); =y Veel}

and we let ¥V be the corresponding space of functions, satisfying homo-
geneous cssential boundary conditions, e.g.,

V = (e HY(Q); v = 0 Y e I').
At first we prove the stability of solutions of (1.1), (3.1). In these notes
we only prove it for the case
(3.2a) c—idiv(b)=¢, Vzel,
(3.2b) c+3b-n> o, Yeel ul,
where ¢, o, are positive constants. More general problems can often be

transformed to a problem where (3.2a, b) is satisfied, see for instance [3].
At first we note that by Green’s formula '

fquvd.Q = f—div(bv)ud!?-}-fbimvd]’
(7] n I

= [ —[bVou+ div(b)ur]dQ+ § bruvdl
I

2

YueHY (D), ve V.
In particular

[ div(bv)od@ = [ }div(b)o*dQ+ § hbivral.
I 2 e

Let (.,.) be the inner product in L, and let the bilinear form a,(.,.) be
defined by B

(3.3)  a,(u,1) = [ (eVulv—div(bo)u+cun)dR+ § (o+bi)uodl
2 I \

YuecHI(Q), veV,
where I, = I'\N(I',uI',). We have

(3.4) (Lu,0) = [ Lu0d2
2

= f(eVuV'v—div(bv)fu-}-mw)d!)—}—f[—sVuﬁv—f—bfm'v]dI’
; £

VueHI(D), ve V.



176 0. AXELSION

Hence the variational formulation of (1.1), (3.1) is:

TFind w, € V such that

(3.5) a1, ) = (f,0)+ foy,0dl VoeV.
T

In order to prove the coercivity of the bilinear form we let % e H!(Q)
satisfy the boundary conditions (3.1). For instance, w may be chosen as
the (weak) solution of A% =0 Vx e 2, satisfying these boundary con-

ditions. Then %,—% € V and by (3.3), (3.6),
(37)  ag(ty— 1y u,— ) = [ {e]V(w,—&)|*+ [0 — }div(D)] (w, — #)*} 42+
2

+ § (o+3b- A)(u,—@)1al.

Henee, by (3.22, b),

(3‘8) a‘a(ua"—ﬁ" Uy _'ﬁ') = [ ”’u’s_‘a“ia Vu’s_’&’ € ﬁ’
The boundedness of a,(.,.) follows by the C-B-S inequality, and
a trace inequality, see e.g. [11],

(3.92) | (4, 0)] < Cllully,, ol
or
(3.9b) 10, (6, )| < Clullyliol. Vo eH(R), ve V.

By (3.5) we have
8u(thyy U, — ) = (f, 0, —B)+ § oy, —&)2dT
Ty

and hence by (3.8), (3.6),
9”#5_&”?,5 ‘<- a’a(us'—a! un—ﬂ') = a’u(%a! ’bﬁ,—'{b) _as(’&’, ua_ﬁ)

= (f, u,— %)+ f oy (U, —U)a — a, (%, w, — %),
)

Hence, by the C-B-3 inequality and by (3.9b), we get
%ol ~alh, < CLIFI®+ llovallLer + 1]
or
(3'10) ”u’n”l,e g ”ue—"ﬁl[l,e + Hﬁ’nl,e ‘g O [”f” + ”0%”2132(1’) _{' ”a”1:|7 O < & é- 1 H

where 0 does not depend on & which proves the stability of the solution
in the norm {f-[,,.
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4. Galerkin discretization error estimate in I,-norm

Let ¥V, « V and V), < V be finite dimensional subspaces spanned by the
usual Lagrangian finite element basis functions and let «,, be the corre-
sponding Galerkin approximation of u,, that is,

(41) aultipy 0) = (fr0)+ § oyev,dl Vo, e V.
Ty

Then, by (3.5) and (4.1), we get

(4.2) AUy — 0y, 7)) =0 Vo, € T;,L.
Hence, by (3.8), (3.92) and (4.2), we havo
by — Uy 7 0 S By (g — 1y gy Ug— b z) = (U, — Ug gy Ug— sz — Vp)
< Oty =t plh oty — =il Vo, & Vi,
and so, in particular,

(4‘3) ”’M/, — ua,h”l,a < U 1nf ”ue - wh“l .
wisVp,

We consider now four different cases of smoothness of u,.

Case 1. Assume that #, is smooth uniformly in ¢ or, more precisely,
let u, e H**'(2)NV and |ju,ll, ., < 0, 0<e< 1, where C, does not depend
on e Then, as is well known,

inf lu, —wyll, = 1005, h—0,
wpeVp

uniformly in &, where % is the degree of the piecewise polynomial basis
functions. Hence, by (4.3) we have

”ua—'u’s,hlll,s = O(h’k))
and in particular '
[ e—uayd+ (’Lb,-—'l_l.,_h)"df}l/z = 0k, h-0.
2

P.l_UF._

Note that this error estimate, which is uniform in ¢, is not quasioptimal
(however, sce the Remark below).

Case 2. Assume now that u, has a layer (of width &) at I', (see
Figure 1). Then
e ll, = 0('5_1/2)7 e—>0,

and the bound in (4.3) is in general not even bounded uniformly in e,

12 — Banach Center t, XIII
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However, because of the stability bound (3.10), we have
“’u’s —I“a,h”‘l ‘é ”'u'aul,a —I""“e,hlll,a < 0(1), h-—->0
and this bound is independent on e.

Case 3. Assume that ou,/dn = 0 Ve el (i.e, o = 0 at I',). Then
du,/én (but not «,) may have a layer at I',, and so

inf (lu, — wyll, < int [wg —wy [l + llww, —%olly = inf (g —10,]l; +O0 ().
wpely, wpePp, wpelVy,

Here 4, is the solution of the reduced problem and is smooth up to the
boundary, i.e.,

1y € H (D).
Hence
inf [u,—w,l, = O(R)+0(?), h—>0.

wyely,

Case 4. Assume now
(i) b is parallell to » at I,
(i) ¢>0 Vael,,
(i) bVu,+eu, =f Veel,.
Then du, = 0 at I', and 9*u,/0n? may have a layer.
Let
Loy =f Veel

and let w, satisfy the boundary conditions at the inflow boundary I
Also let

Lothy = Au, Vaxel.
Then
Uy = Ug - Uy 4 U,
where #, is the layer term. |
Along the characteristic lines we then have

[ (ug— g — euy)2dQ = e0(e?), -0,
0

and

inf fhs, —wylly < inf |, — &, — eyl + it ], = O(RF)+0(e*), -0,
wely wpel’,

Hence, for small values of & the influence of the layer term is further
decreased.
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In particular, from the above we see that (for small values of &) the
central difference scheme, corresponding to certain piecewise linear basis
functions (k = 1), works well for the problem

ou
Lu=Ff wuw=y Veel_, —a—n—=0 Veel,, 0<e<l,
This explains why we do not get any spurious oscillations even for large
values of %, far certain boundary conditions, when we use the central
difference scheme (¢f. Section 2).

However, in general, the bound on |lu,l,,; depends on s In that

case we may use the following technique. ILet

(4, 0),, = [wvexp(—g.)aQ,
2
a, (1, v) = f[sVuV'v—cliv(bv)u+cuw]exp(—g,)dQ—I—
n
+ § (y +bh)uvexp(—g,)drl,
Iy

ete.
One can prove (see [3]) that it is possible to choose g, such that the
coercivity is valid for this weighted bilinear form and an error estimate

”“s—'wa,hul,s,gs < 0 lllf ”’u’s—whul,gg
wpely,

can be derived. In fact, in the limit case (¢ < %) the exponential weight
function is very close to the Heaviside step function. The effect of the
latter weight function is to weight away any influence on the solution
of the layer elements. In a one-dimensional problem with a layer at the
right boundary point, the step function is given in Figure 4. (For higher
dimensional problems we have a corresponding weight function along the
characteristic lines.)

R T A 11

il Lo
Ol h 1-2h1-h 1 x

TFig. 4

In particular, the boundary conditions on the outflow boundary I",
do not influence the solution.

It is easy to see that the use of the step-function is equivalent to
using the boundary condition Vu:#t =0 Va e I',, that is, the correspond-
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ing bilinear form is (if I, = I"_)

(44) @ (u,0) = f(eru Pv—div(bv)u--cw)d? VueV, ve IDf,

7]

and the wvariational formulation is
t (1, 0) = (f,0) VoeV.

The approximation of the boundary conditions at [", by Neuman boundary
conditions canses a layer in du/on (case 2) and hence an error O(e') in
the L,-norm.

As follows from what has been said, the method of exponential
weighting along the characteristic lines, however, is more general and
gives smaller errors uniformly in e. It is also applicable to some turning
point problems. For details, see [3].

Remark. The reduced equation (1.3) is a first order hyperbolic equa-
tion with the boundary conditions on I'_ as initial conditicn and, as is
well known, in gencral we do not get a quasioptimal rate of convergence
of the discretization error in L,-norm. In [4] it is shown however, that
for polynomial basis functions of odd degree one gets in fact a quasioptimal
error estimate for this problem, defined on a region which can be mapped
onto a union of rectangles.

5. Error estimates in maximum norm

Consider now the singularly perturbed problem (1.1) but with no cssential
boundary conditions. Instead, let

(5.1) eV nto(u—y) = Veel,

where 0 = —bin>20,>0 on I'_ and ¢ =0 on I}.

In the same way as in Section 4, we realize that away from the layer
the solution of this problem differs from that where « = v on I'_ at most
by O(e), cven in maximum norm. We have

(5.2) (&L.u,v)

=f[—edu—|—bl7u+cu]vd9
0

=f[eVul7v—diV(b®)u + cuv]d R |- f(—el?u-ﬁ—l-b-ﬁu)vdf
5 Ir

= (u, L)+ f[s (ﬂu——a’iv)+ b fwv]d]’
» on omn
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where &, is the adjoint operator,
Liv = —edv—div(bv) +ov.

Let #,€ V = H' (L) be the solution of (1.1) with the natural boundary
conditions (5.1). Its variational formulation is

(L., ) = (f,v) VoeV
or

(5.3)  a,(u,?) = f[sl7u,,Vv—div(bv)ua—!-cusv]d!)—l— f(cr—l—bﬁ)u,'udl"'
Ty

0

= (f,0)+ { opvdl' VueV.
xIr

We assume that (3.2a, b) is satisfied and since
a,(u,u) = [ {elVul+[c—3div(D)]u}+ § (c+3bR)WAT > gllul?,,
0 r

o =min(l,¢,0) VYueV,

a,(.,.) i3 coercive on ¥V xV.
The corresponding Galerkin solution u,; is defined by

a, (ue.h! IUIL) = (f? Ivh) + f O'y‘!?;‘dp Vvh € Vh?
I

and we have as before

(5.4) ay(U,— U5y 0) =0 Vo, eV,.

Let @,(x, ) be the Green function at @, satisfying
2L, (x,y) = 6(y) VyeQ,

oG,

(5.6) n

(¢, y) =0 VyeI\I,,

@, .
¢ on (@, y)+(c+bn),(x,y) =0 Vyel,,

where d,(+) is the Dirac delta function at . Then it follows from (5.3)
that

(2, ~ 1, ) (®) = [ L1G (2, Y) (. —,) () dy
= [ (PG, (@, y) V(2 — 26,0) (y) — div [0, (®, Y) ] (0, — we ) () +
2

-+ CGB (m! y) (w’a - u’:,h) (y)}dy
= a, (us —'ua,h! G,(iﬂ, )) .
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Hence from (5.4)
(Iu’s —us,h)(w) = @, (’u’s_lu'e,h’ Ga(m7 ') _’Oh) VID/L € V]L
or by (3.9a)

I(ue_“e,h)(w)l = Cllue_ua,h][l,s inf ”Gs (‘T“} ) _'vhul'
vV,

This means that in the discrete maximum norm of the error at nodal
points we may get a higher order of accuracy than is achieved by the
crror in the norm ||-|}; .. The extra order of accuracy we may get depends
on the smoothness of G, (x, ) and on the cheice of basis functions in v,

In general, @, (2, ) i3 not smooth, at least not at .

1Iowever, if V), containg the loeal Green functions af the nodal points
2 then we get even the exact value of the solution at these points (com-
pare the gencralized Iin scheme in Section 2). In general these fune-
tions are not known, but their singular behaviour may be known. Fur-
thermore, they are smooth away from the points ®. At y e I'_ we have

aa,
a layer in n (x,y), but thanks to the natural boundary condition

(.5) @, itself does not have a layer. Hence we may choose bagis functions
such that the singunlarity of @,(x, ) at a single nodal point & or at a sct;
of nodal points is exactly described.

Then

inf |G, (2, ) —o4l, = O(B*+&7), h—0,

el
and we gel superconvergence

(g — 1, 1) ()] = O(RF-+ &%), h—-0.

In a one-dimengional problem we do not have to extend the sct
V, of basis functions becausc if x € I', the Green functions are smooth
everywhere in the open interval between I'_, I', .

Hence at such a point we get superconvergence with the usval poly-
nomial basis functions. For small £, this can be applied in order to get
superconvergence at any point. We then introduce an artificial boundary
I" in Q through the point in question and let I act as I'" above.

6. Conclusions

We have shown that for regular solutions the classical Galerkin approxi-
mation is stable without any kind of upwinding. (Depending on the
velocity field b, however, we may have to make a transformation of
variable in order to have condition (1.2) satisfied.) For solutions with
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a layer term, one has to apply exponential weighting or exponential
upwinding only in the elements which contain a layer. We claim there-
fore that, with the method proposed in this paper, finite element methods
will, both in theory and practice, be as much a success for non-self-adjoint
problems, inclusive of singular perturbation problems, as for self-ad-
joint problems. In problems where the location of layers is not known
beforehand onc may loeate them roughly, for instance by a simple differ-
ence npwinding,.

The proposed method also provides a practical method for the sol-
ution of systems of first order hyperbolic problems with or without the
uso of artificial viscosity.
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