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The free abelian group with basis indexed by the isomorphism classes of finite
p-groups may be endowed with a product by counting filtrations of finite
p-groups: we obtain what is called the Hall algebra #°(Z)) of the ring Z, of
p-adic integers. It is a commutative and associative ring with identity element
and plays an important role in algebra and combinatorics. It was first studied
by Steinitz [S], and later by Ph. Hall [H]; a good account is the book by L. G.
Macdonald [M].

The basic concept may be generalized to fairly arbitrary rings. Under
a mild finiteness condition on the ring R, one may define a similar product on
the free abelian group with basis indexed by the set # of isomorphism classes
of finite R-modules (where finite means to have finitely many elements, not just
finite length), and one obtains an associative ring ' (R) with identity element,
the integral Hall algebra of R. In contrast to the case R = Z,, the Hall algebras
in general need not be commutative; in fact, our main concern will be the
corresponding Lie algebras.

The investigations presented here will deal with the special case of
R a representation-directed algebra over a finite field k. As in the classical case
H(Z,), the structure constants turn out to be evaluations of integral
polynomials which we call Hall polynomials. In order to obtain a generic Hall
algebra .# (R, Z[T]), we take the free Z[ T]-module with basis indexed by #,
and use the Hall polynomials as structure constants. Of particular interest
seems to be the specialization #(R), of # (R, Z[T]) for T = 1. Note that the
additive group of .3#'(R), is again the free abelian group on 4%, but the product
is defined by evaluating the Hall polynomials at 1. We denote by K (R-mod) the
free abelian group with basis indexed by the set of isomorphism classes of
indecomposable finite modules [Gr]. By definition, K (R-mod) is a subgroup of
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# (R),, and it turns out that K(R-mod) is even a Lie subalgebra. Actually,
H# (R), ®Q is just the universal enveloping algebra of K(R-mod)®Q, and the
Z-form H#(R), of #(R),®Q is quite analoguous to the Kostant Z-form for
a semisimple complex Lie algebra.

The stimulus for these investigations was the following: Let A be
a finite-dimensional hereditary algebra over some base field k. In case kis
algebraically closed, Gabriel [Ga] showed that the isomorphism classes of
indecomposable A-modules correspond bijectively to the positive roots of the
corresponding semisimple complex Lie algebra g, and this result was extended
to arbitrary base fields in a joint paper [DR] with Dlab. In particular, the
C-dimenston of K(4-mod)® ,C coincides with the C-dimension of n, , where
g =n_@®h®n, is a triangular decomposition of g. It is natural to ask whether
it is possible to use the representation theory for A in order to define a Lie
product on K(A4A-mod) so that K(4-mod)® ,C and n, are isomorphic Lie
algebras. A partial answer to this question is given in this paper: we show that
K(A-mod), or, more generally, K(R-mod) for any representation-directed
algebra R, carries in a natural way the structure of a Lie algebra. In
a subsequent publication [R2], it will be shown that this Lie structure is the
one we want to have: we will show that K(4-mod) is the Chevalley Z-form of
n,.

The results of this paper and an outline of the calculations of [R2] have
been presented at the Antwerp conference and the Ottawa-Moosonee work-
shop in 1987, and at the Banach Center in Warsaw in 1988. The author is
grateful to these institutions for providing the possibility of discussing these
investigations; in particular, he has learnt from R. Dipper, B. Pareigis and L.
Scott that there is a strong relationship to recent advances on Hopf algebras
and quantum groups [D]; a detailed account on this relationship will be given
in [R3], see also [R4].

For unexplained notions concerning the representation theory of algebras
we refer to [R1], for those concerning Lie theory, we refer to [Hu].

1. The integral Hall aigebra of a finitary ring

Given a finite set M, we denote its cardinality by |M]|.

Rings will always be assumed to be associative. We will not insist on a ring
R to have an identity element; however, we will assume that there exists a set of
idempotents ¢,e R (i€ ) such that R = @, ;;¢;Re;. For a (left) R-module M,
we will assume that RM = M, or, equivalently, that M = @, e, M. Of course,
in case R has an identity element 1, we may take as such a set of idempotents
the one-element set {1}, so in this case R-modules are just unital left
R-modules. (There are several reasons for dealing with the more general case of
rings which do not necessarily have an identity element: First of all, we
incorporate the so-called “rings with several objects™ any small additive
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category ¥ gives rise to a ring R, = @,,%(a, b), where a, b run through all
objects of ¢, with multiplication given by the composition in € and extended
by zero; the R,-modules just correspond to the additive functors from € into
the category of abelian groups. Even if we are only interested in rings with
identity it may be necessary to invoke other rings which lack an identity
element; typical examples are given in the covering theory for finite-dimen-
sional algebras. Finally, given a family R, (i I) of rings, we may form the direct
sum @ R, with componentwise operations and this again will be a ring even if
I 1s infinite.)

Let R be a ring. The category of all R-modules will be denoted by R-Mod,
and R-mod is the category of R-modules of finite length. If the R-modules M,
M’ are isomorphic, we write M = M’, and we denote the isomorphism class of
M by [M]. We are mainly interested in modules with only finitely many
elements and call them finite R-modules. The full subcategory of R-Mod given
by the finite R-modules will be denoted by R-fin. Thus, if R is finite,
R-fin = R-mod.

Of course, finite modules are of finite length, thus we can apply the
theorems of Krull-Schmidt and Jordan-Hélder. Given any R-module M of
finite length, and any simple R-module S, we denote by (dim M) the
Jordan—Holder multiplicity of S in M (i.e. the number of composition factors in
a composition series of M which are isomorphic to §), and we call the function
dim M the dimension vector of M. We denote by K(R) the set of functions from
the set of isomorphism classes of simple R-modules to Z which have finite
support. With respect to componentwise addition, K(R) is an abelian group,
and for any R-module M of finite length, dim M may be considered as an
element of K(R).

LEMMA 1. Let R be a ring. The following properties are equivalent:

() Extg(M,, M,) is finite for all finite R-modules M,, M,.

(i) Extk(S,, S,) is finite for all simple finite R-modules S,, S,.

(i11) The number of isomorphism classes of finite R-modules with fixed
dimension vector is finite.

(iv) The number of isomorphism classes of finite R-modules of length 2 with
fixed dimension vector is finite.

Proof. (i)=>(ii1). By induction, we assume that the number of isomorphism
classes of finite R-modules of length n with fixed dimension vector is finite. Let
M be a finite R-module of length n+ 1, with dimension vector d = dim M. Let
S be simple with dg #0, and let d' =d—dimS. Let M’ be a module with
dimension vector d'. Clearly, both S and M’ are finite R-modules, thus
Extp(M', S) is finite. Thus, the number of isomorphism classes of modules
M with a submodule U = § such that M/U = M’ is finite. Since there are only
finitely many choices for the isomorphism classes of S and M’, it follows that
there are only finitely many isomorphism classes of such modules M.
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(iv)=(un). Let §,, S, be simple finite R-modules, and let 08§, Lm
% S, =0 be an exact sequence. There are only finitely many isomorphism
classes of modules M with dim M =dim S, +dim S,, say f{M ], ..., [M,], and
up to equivalence in Ext}(S,, S,), we may assume M = M, for some | < i<t
Since Homg(S,, M;) and Homg(M,, S,) are finite for all i, there are only
finitely many elements in Exti(S,, S,).

(i) =(i). We use induction on the length of M, and M, and the long exact
Hom sequences.

In case the equivalent conditions (i}-(iv) are satisfied, R will be said to be
finitary. The rings considered throughout this paper will be assumed to be
finitary.

ExaMpLES. (a) Any finitely yenerated ring is finitary. (In particular, all
finite rings are finitary.) For, assume the ring R is generated by r, ..., F,. An
R-module is an abelian group with prescribed endomorphisms given by scalar
multiplication by r,, ..., r,. But the number of isomorphism classes of abelian
groups of fixed finite order is finite, and given such an abelian group, the
number of endomorphisms is finite, thus the number of isomorphism classes of
R-modules with a fixed number of elements is finite. [On the other hand, the
polynomial ring R = k[ X, X,, ...] in countably many variables over a finite
field k is not finitary: let S be the one-dimensional R-module annihilated by all
X;. Clearly, Extg(S, S) is infinite-dimensional over k, thus S is finite, whereas
Extk(S, S) is not finite.]

(b} If R is finitary, and R — R’ is an epimorphism of rings, then R’ is finitary.
For, the canonical functor 11 R'-Mod - R-Mod is fully faithful. Given finite
R’-modules M, M,, then (M), 1(M,) are finite R-modules, and : yields an
injective map from the set of isomorphism classes of R’-modules with
dimension vector dim M, +dim M, into the set of isomorphism classes of
R-modules with dimension vector dim (M )+dim 1(M,).

(c) A ring R may be called a discrete valuation domain provided it has no
nonzero zero divisors, and there exists a nonzero maximal ideal I such that the
only nonzero one-sided ideals are the powers of I. If R is a discrete valuation
domain with maximal ideal I, then up to isomorphism, R/I' is the only
indecomposable R-module of length ¢, for te N . It follows that the isomor-
phism classes of the R-modules of finite length n correspond bijectively to the
partitions of n (cf. [M], Section I1.1). It follows that R is always finitary. Of
course, the only interesting case for considering finite R-modules is the case
where R/I is finite, since otherwise the only finite R-module is the zero module.

Let R be any ring, and N, ..., N,and M finite R-modules. Let F}
the number of filtrations

M=U,2U,2...2U,=0
of M such that U,_,/U; = N,, for | <i <t (Note thatin case N, ..., N, are
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in addition simple, we just count the number of composition series with
prescribed composition factors.) '

Assume that R is a finitary ring. Let J#(R) be the free abelian group with
basis (g )a. indexed by the set of isomorphism classes of finite R-modules.
Instead of upyy we will also write u,,. We define on 5 (R) a multiplication by
the following rule:

M .
v gUngg = ) Fiowva s
M}
note that on the right, we deal with a finite sum, since FY,», # 0 only for those

modules M which satisfy dim M = dim N, +dim N,, and R is assumed to be
finitary.

ProPoOSITION 1. #(R) is an associative ring with 1.

Proof. The identity element is uo;, the associativity of this multiplication
follows from t.he fact that the coefficient of uyy in either uy, (un,uy,) or
(un, tn,)uy, is just F¥ v v,

We call #'(R) the integral Hull algebra of R. The special case of R = Z (or
of a discrete valuation domain with fimite residue field) was considered by
Hall [H] in 1959 when he introduced his “algebra of partition”. The
denomination Hall algebra, in this special case, seems to be due to I. G.
Macdonald [M] and is widely accepted. However, the reader should be aware
that already in 1900, Steinitz [S] considered the Hall algebra #(Z).

In contrast to R = Z, or R a discrete valuation domain, the Hall algebras
in general are not commutative. For example, let R = [ ¥], the ring of
upper-triangular 2 x 2 matrices over the finite field k. Then there are two
nonisomorphic simple R-modules S,, S,, and a nonsplit exact sequence
0-S,->P—S, >0, whereas Ext}(S,, S,) = 0. It follows that in #(R), we
have

Ug, Us, = Us, @5, +Up,
but

s, g, = Us, @s,-

ProrosiTioN 2. The rings # (R°®) and #(R)°® are isomorphic.

Prozf. The functor D := Hom,(—, Q/Z) is a duality from R-fin to R°®-fin.
It follows that Fpy, py, = FX,.x,. for arbitrary finite R-modules, thus we obtain
an isomorphism of rings ' (R)°® — #(R°?) by sending upy to upar-

ProposITION 3. If R; (icl) is a family of rings, # (@ .y R;) and @ oy #(R))
are isomorphic. For any ring R, let R,= R®,Z,, where Z, are the p-adic
numbers. Then #(R) and H# (@ ,epR,), with P the set of prime numbers, are
isomorphic.



438 C. M. RINGEL

Proof. Clearly,
(® R)-fin = J_L Rfin and R-fin = 1L R fin.

ief iel peP

2. The Hall polynomials for a representation-directed algebra

Let k be a field, and R a finite-dimensional k-algebra. We denote by I'j the
Auslander—Reiten quiver of R, it is a proper valued translation quiver. Recall
that a valued translation quiver I’ = (I'y, I',, 7, d, d') is given by a translation
quiver (I'y, I'y, 7) (without loops or multiple arrows) and functions d, d':
I'; > N, such that for any arrow y — z with z nonprojective, we have d,, , = d,, ,
and d;,,=d,, (here, d,; =d(y—2z) and d,, = d'(y—z)). Let I' be a proper
valued translation quiver. A function e: I'y — N, with e(x)dy, = d,,e(y) for any
arrow x—y 1s called a symmetrization. In case I' is connected, all symme-
trizations of I' are rational multiples of each other (but there may not exist
any), so if there are symmetrizations for I', then we denote by e, the unique
minimal one.

Assume that R is connected and representation-finite. The vertices
x€(lg), are the isomorphism classes of indecomposable R-modules, and
we choose for any vertex x a representative M(x) = M(R, x) in x. Note
that for x, ye(I'g)y, the numbers d,,, d;, are defined as the length
of rad(M(x), M(y))/rad®(M(x), M(y)) as an End M(y)-module and as an
End M(x)-module, respectively. It follows that the function dim, End M(—):
(I'g)o -+ N, is a symmetrization for I'g. The integer r with re, = dim, End M(—)
will be called the symmetrization index of the k-algebra R.

Remark. Observe that the symmetrization index of R depends on the base
field k. Of course, in case the center of R is a field k', we may assume k = k". On
the other hand, we note the following. Even if we assume that there exists
a field K with End X = K for any indecomposable R-module X, we may have
k' = K. A typical example is obtained as follows: Consider the tensor algebra of

the species
K\
K/ K
\ /
K

where all arrows but one are endowed with the canonical bimodule (K, and
where the remaining one is endowed with M = K, with canonical operation of
K on the left, but with the action on the right being twisted by an
automorphism g of K. Let R be the factor algebra of this tensor algebra
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modulo the square of the radical. Then R is representation-finite, even
representation-directed, we have End X = K for any indecomposable R-mod-
ule and the center of R is the field of invariants of ¢. (In R-mod, we recover the
K-K-bimodule K@ M as follows: Let Q be the unique indecomposable injective
R-module of length 3, and P the unique indecomposable projective R-module
of length 3. Then Hom(Q, P) = K@&M.)

A finite valued translation quiver I" will be said to be an Auslander—Reiten
quiver provided there exists a field k and a k-algebra R such that ' = I'y. In
this case, given a function a: I'y— N,, we denote by M(a) = M(R, a) the
R-module @, a(x)M(x). Let us denote by # the set of all functions a:
I'g—>N,. We may consider # as the set of isomorphism classes of R-modules
of finite length, for any k-algebra R with I'p =T.

Recall that the k-algebra R is said to be representation-directed provided
R is representation-finite, and the indecomposable R-modules X, ..., X, can
be ordered in such a way that Hom(X;, X;) =0 for i > j. Of course, R is
representation-directed if and only if R is representation-finite and I'p 1s
directed. Note that for any directed Auslander—Reiten quiver I" and any finite
field k, there exists a k-algebra R with I'p = I' and arbitrary symmetrization
index (construct R inductively using appropriate one-point extensions).

THEOREM 1. Let I be a directed Auslander—Reiten quiver, and a, b, ce A.
There exists a polynomial @b, Z[T] with the following property: if k is a field,
and R a k-algebra with I'y =TI and symmetrization index r, then

FM{FR:?))M(R.H) = q)ga(lklr)

The polynomials ¢Z, will be called the Hall polynomials for I" (or for R).
The proof will be done in several steps. The first assertions which we need
are well-known. For the convenience of the reader, we include the proofs.

(1) Let x,zel,. There is h(x,z)eNy with dim, Homg(M(x), M(z))
= rh(x, z).

Proof. For x = z, let h(x, x) = e/(x). In general, we use induction on the
number of predecessors of z. Note that the sink map for z is of the form
Dy dy M(y) > M(2). Let x # z. If z is projective, then the induced map for
Homg(M(x),—) is bijective, therefore let h(x, z) = } .. d;.h(x, y). If z is not
projective, we apply Homg(M(x), —) to the Auslander-Reiten sequence ending
with M(z), thus, take h(x, z) = —h(x, 12)+ ) .- d)-h(x, V).

(1Y Let a,be®. There is h(a, b)e N, with dim, Homg(M/(a), M (b))
=rh(a, b).

Proof.
Homg(M(a), M(h)) = @ a(x)b(y)Homg(M(x), M(y)).

x,y
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For a, he &, define y,, = TH*® e Z[T]; thus we can reformulate (1) as
follows:

(1”) [Homg(M(a), M(B)| = yu(lkI").

Recall that K(R) denotes the Grothendieck group of R. The set of
projective vertices of I will be denoted by #. The simple R-modules will be
indexed by the elements of 2, say, let S(p) be the top of M(p), for pe Z. In this
way, we identify K(R) with the set Z” of integer-valued functions on #. Given
an R-module M, its dimension vector dim M is an eclement in K(R)=Z".

(2) For ae 4 the element dim M(R, a) in Z” is independent of R.

Proof. Let pe.#. Then

_ |

~ dim, Endg(M(p))
1

= o) rh(p, a).

We consider Z? as a partially ordered set, using the componentwise
ordering. Given a: I'y—>N,, let ¥(a) be the set of all ¢: I'y— N, with

dim M (c) < dim M(a). Note that #(a) is a finite set.
For xel'y, and neN,, define «,,€Z[T] as follows:

(dim M(R, a)), dim, Homgz(M (p), M (a))

n

Apx = l—[ (y:x_y't; 1);

for a: I'y—- Ny, let 2,€eZ[T] be given by the formula

o0, = [T ougen [T 787

xelg x.yelg
x*y

Note that x, is a monic polynomial.
(3) [Autg M(a)l = o, (|kI').

Proof. Since M(a) = @ ,c;,a(x)M(x), the automorphisms can be written
as matrices indexed by I'yx [y, with entries f,,, where f,, is an arbitrary
element of Homg(a(x)M(x), a(y)M(y)), for x # y, and an invertible element of
Endg(a(x) M(x)), for x = y. By (1), we have |Homg (M (x), M(»))| = 7., (kI"), thus
|[Homg(a(x) M (x), a(y) M(»))| = y&2*¥(|k['). On the other hand, Endg(M(x)) is
a division ring, since R is representation-directed. But finite division rings are
fields, and the number of elements of Auty(a(x)M(x)) = Gl(a(x), EndR(M(x)))
i1s well known to be

n

l—[ (dﬂ - di),

with d = [Endg(M(x))] = 7.k}, thus |Autg(a(e)M(x))] = tuy(kI)-
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(4) Given a, he 4, there are polynomials a2, n2e Z[T] such that ab(|k|"} is
the number of submodules of M(b) isomorphic to M(a), and #5(lkI") is the
number of submodules UJ of M(bh) with M(b)/U isomorphic to M (a).

Proof. 1f dimM(a) & dimM(b), let o) =5 =0. Now, let dim M(q)
< dim M (b), and use induction on dim M (b). Of course, for dim M (b) = 0O, thus
a=b=0, let ¢"=n" =1 Assume now that b # 0, and use induction on
dim M (a). Define 1, £& as follows:

o= b= D, MOl 8= TVpa— D, NeAOC.

ce.¥(a) ceS (a)
Note that the right-hand sides only involve terms which are already defined.
We claim that n2x a?(|k|") is the number of maps M(a)— M (b) with image
isomorphic to M(c¢). Given a submodule U of M(a), with M(a)/U isomorphic
to M(c), we choose a fixed epimorphism g¢,: M(a)— M(c) with kernel U.
Sim:larly, if ¥ is a submodule of M(bh) isomorphic to M(c), we fix some
monomorphism h,: M(c}—> M(b) with image V. The maps M (a)—> M (b) with
kernel U and image V correspond bijectively to the automorphisms of M(c),
where a bijection is given as follows: given an automorphism f of M(c),
associate to it the composition

M (a) ™ M(c) !> M ()™~ M (b).

Clearly, a map M(a)— M(h) 1s a monomorphism if and only if its image is not
isomorphic to any M(c). with dim M(c) < dim M(b). Thus, p2(k|") is the
number of monomorphisms M (a) -~ M(b). Similarly, £3(|k|") is the number of
epimorphisms M({b)-»> M (a).

We claim that both polynomials pl, &% are divisible by %,. We need the
following lemma.

LEMMA. Let @, W e Z[T], and assume W is monic. Then  divides ¢ if and
only if the integer (q) divides the integer ¢(q) for infinitely many qeZ.

Proof. Since y is monic, we divide ¢ by y with remainder, say ¢ =y + ¢,
with n, 0€eZ[T], and the degree of ¢ smaller than the degree of . The
inequality of degrees shows that |g(x)| < [¢(x)| for all large x. Choose ge Z
large, with ¢(q)l@(q). Then ¢(@)¥(q)™" = @(@)¥(9)™' —n(q) is an integer, and

lo(@w(q)~!| < 1, thus g(q) = 0. But there are infinitely many such g, therefore
o =0.

We return to the proof of (4). As above, given a submodule V of M(b)
isomorphic to M(a), we fix a monomorphism h,: M(b)— M(a) with image V.
Then any monomorphism M(a)— M(b) can be written uniquely as the
composition of an automorphism of M(a) followed by some h,. Thus
o, (|kl") "' b(|k|") is equal to the number of submodules of M(b) isomorphic to
M(a), in particular, it is an integer. Since there is a realization I’ = I, with an



442 C. M. RINGEL

arbitrary finite field k and arbitrary r, we see that a,(q) divides ui(g) for any
prime power g, thus o, divides u8. Let o ! u2 = o%; then o%(|k|") is the number of
submodules of M(b) isomorphic to M(a).

Similarly, we see that o, divides &}, and that 4} = a; &} counts the number
of submodules of M(b) with factor module isomorphic to M(a).

With these preparations we are going to give the proof of the theorem. Of
course, if dim M(b) # dim M (a)+dim M (c), let ¢% = 0. Thus it remains to
consider the case when dim M (b) = dim M (a)+dim M (c).

A map ae % will be called homogeneous provided a(x) # O for at most one
xeTl,. We are going to define ¢?, by induction on dim M(c). For dim M (c) = 0,
thus ¢ =0, let ¢% =1, and @2 =0 for a # b. Now assume c # 0.

First, consider the case where ¢ is not homogenous. Choose x minimal in
I’y with ¢(x) # 0. Here, we consider I as a partially ordered set, with x < y if
and only if there is a path from x to y. Let ¢, ¢’ € # be defined by ¢'(x) = ¢(x),
c(y)=90, for y# x, and ¢" =c—c. We define

b __ b d
Pea = Z Ped Peras
d

where the sum is taken over all de# such that dim M(d) = dim M(c")
+dim M (a); of course, this is a finite sum. Observe that the terms on the
right are all already defined., since M(c) = M(c"h@M (¢}, with both M(¢),
M(c¢") nonzero, thus dim M(¢') < dim M(c), and dim M(¢") < dim M(c). Let
us evaluate ¢f, at |k|":

(p':a(lkr) = Z ‘P?’d(|k|r)€0cd"a(|kr) = ZFJ;{!}?’))MM) Fmg')’)M(a)
d d

= Fitehmema = 2 Fiemen Fatioma,
where e runs through all maps with dim M(e) = dim M(c") +dim M{(c"}). Note
that Ext!(M(c¢"), M(c”)) = 0 by the choice of x, therefore F3{)p . # 0 only for
e=c+c" (=¢), and FY@ e =1 since Hom(M(c"}, M(c')} = 0. It follows
that there is only one nontrivial summand in ) ,, and this summand is
Fﬁ:?))M(a]'

Second, consider the case of ¢ being homogeneous. Note that if also de &
is homogeneous, and dim M (c) = dim M (d), then ¢ =d. For, let x # yel;
then it is well known that dim M (x) and dim M (y) are not proportional. It
follows that the polynomials ¢%, with d # ¢ are already defined, and we define

e?

(Pga = 0’2— Z (Pza'
d#c¢
Clearly, the right side evaluated at |k|” gives the number of submodules U
of M(b) which are isomorphic to M(a) such that M(b)/U is not isomorphic to
any M(d) with d # c. But this means that we count the number of submodules
U of M(b) isomorphic to M(a) such that M(b)/U is isomorphic to M(c).
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3. Hall polynomials evaluated at 1

By abuse of language, we denote the characteristic function for xe I, just by x.
Thus, we consider I, as a subset of % and the elements in #\TI', will be said to
be decomposable. As usual, §,, is the Kronecker symbol (with é,, = 1 in case
a=>b, and §,, = 0 otherwise).

THEOREM 2. Let I' be a directed Auslander—Reiten quiver. Let x, veI', and
let ae# be decomposable. Then ¢% (1) = d,,.-(1+0,.). Consequently,

pzx(1) = (1)

Proof. Let us first observe that (T—1)" divides «, if and only if
n< Y er,a(y). In particular, (T—1)* does not divide a,.

We can assume a # 0, and we write a = a, +a, with nonzero functions a;:
I'o—N,. Let R be a k-algebra with I'y =" and symmetrization index r.
Let .#, be the set of R-module monomorphisms f ={f,, f;]: M(x)
— M(a,)®Ma,), where both f;: M(x)— M (a;) are nonzero and Cok f = M (z).

(1) |‘/ﬂR| = ax(lklr)(FMEQ:Z;M(R.X)_aa,x-FZ(I +6xz))

For the prdof of (1), let .#; denote the set of R-module monomorphisms
fi M(x)— M(a,)®M/a,) with cokernel isomorphic to M(z); thus, clearly

| g | = a;(|k|')'Fﬁ$Z§=M(R.x)-

We have .#, < .#’%, so consider an element fe #R\.4# 5. Write f=[f,, f,]
with f;: M(x)—> M(a), thus f, =0 or f, =0. Assume f, =0. Then Cok f
=~ (Cok f,)®M(a,), but Cok f = M(z) is indecomposable, and M (a,) # 0, thus
Cokf, =0 and M(a,) = M(z). It follows that f, is an isomorphism, thus
X =a,,and z = a,. Similarly, if f; =0, then x = a,, and z = a,. In particular,
if a# x+z then .#, =.#%. and we obtain (I).

Thus, consider now the case ¢ = x+z, say X =d,, 2 =u,. Il x #z,
then .#%\.#y is the set of maps [ f,, 0], where f; is an automorphism of M(x),
thus | #p \ M| = a, (|k]). If x = z, then any automorphism g of M(x) gives rise
to the two elements [g, 0] and [0,g] in #x \.#,, thus |#p \Ag| = 20, (k]).
This finishes the proof of (1).

) (kF—1)% divides |4,

Let K be the field with [k|” elements. Let yeI',,. Since r < dim, End M (y),
and End M (y) is a field, we see that K embeds into End M (y). Consequently, we
can embed K into End M(q,), for i =1, 2. Let K* = K\{0}. We claim that
K* x K* operates on .4y from the right, via [ f;, f51:[9:, 9.] = [f19:> 15921,
where f;: M(x) > M(a,), and g,€ K < End M(qa;). Of course f; # 0 implies g; # 0,
thus we only have to verify that [ f, g,, f,9,] is a monomorphism with cokernel
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isomorphic to M(z). But this is clear due to the following commutative
diagram:

0— M(x)D M(a,)®M(a,)S M(z) -0

[ le I
0 M(x) %> M(a,)®M(a,) > M(z) > 0

where

A=L[fi. 1., B=1L[f9:. /:9.].

h gith g, 0
C B 1:!’ D =[ 2 1]’ E =[ l '
[hz (73] 1hz 0 g,

This is a free operation: Namely, assume f, = f, ¢, with f; # 0 and
g, € K*. Then f;(1—g,)=0. But for g, # 1 also 1—g, belongs to K*, and
therefore is invertible, thus f; = 0, a contradiction. Similarly, f, = f,g, with
/> # 0 and g, € K* implies g, = 1. It follows that all orbits of the operation of
K* x K* on .#y consist of (|k|"— 1)* elements; this completes the proof of (2).

(3) (T_ 1)2 divides a,\-((pgx_(sa.x+z(l +5rz))

According to the general lemma .in the previous section, this i1s an
immediate.consequence of (1) and (2), using various k-algebras R with I'p =TI

Since (T—1)*> does not divide «,, it follows that T—1 divides
Psx—04x+:(1 +90,;). This means that the evaluation of ¢%, at 1 yields
Oax+2(1+05), and therefore ¢f. (1) = @%(1).
- We recall the following: given a directed quiver, we denote by =< the
partial ordering of its vertices: we have x < y if and only if there exists a path
from x to y.

THEOREM 3. Ler I’ be a directed Auslander—Reiten quiver. Let ac#. Let
zel'y and assume a(y) =0 for all y <z. Then ¢% =0 for all b # a+z. Also,
0% (1) = a(2)+ 1, therefore @iy aun: = (2)!.

Proof. Let R be a k-algebra with I'y = I' and symmetrization index r.
Since Extp(M(z), M(a)) =0, we see that F}{t, . #0 only for bh=a+z,
and that FY¥¢47, is the number of direct summands of M(a+z) which
are isomorphic to M(a). Write M(a+z) = M'®(a(z)+1)M(z), with M’
= M(a—a(z)z). Any epimorphism f: M(a+z)— M(z) vanishes on M’, since
a(y) =0 for y < z, thus the kernel of f is a direct summand of M(a+z) and
isomorphic to M(a). [t follows that

P =t = e = TP T 1) = ) vk,
where we use the notations from the proof of Theorem 1. In particular,
¥..(1) =1 implies that ¢2;?(1) = a(z)+ 1. By induction, we conclude that
Q4z)z.a—a=(1) = a(z)!. This completes the proof.
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4. The generic Hall algebra and its degeneration

Let R be a representation-directed algebra with Auslander--Reiten quiver
I' = I'g. The existence of the Hall polynomials allows us to define a generic
Hall algebra .#(R, Z[T]) as follows. Let J# (R, Z[T]) be the free Z[ T]-module
with basis (u,), 4. and we define a multiplication

L SR
i, = @l
b

the sum on the right is finite, since @2, =0 unless dim M(b) # dim M (a)
+dim M(c), and there are only finitely many b with a given dim M(b).

PROPOSITION 4. # (R, Z[TY)) is an associative ring with 1; it only depends
on the valued translation quiver I ;.

Proof. The index set of our free Z[T]-basis as well as the multiplication
constants ¢?, only depend on I', thus #° (R, Z[T]) only depends on I'. For the
associativity, we have to see that

Z(Pgb (p:a = Z‘P&Q’?‘m fOI' all a, b’ ¢, u, v, w,
|3 u

this follows from the corresponding equalities which we obtain as evaluations
at numbers of the form |k|°, where § is a k-algebra with I'¢=T and
symmetrization index s. The element u, is the identity of J# (R, Z[T]), since
®oa = 1 = ¢go.

The ring # (R, Z[T]) will be called the generic Hall algebra for R,
or for I'y.

Finally, we will consider the degeneration which we obtain from
H' (R, Z[T]) by specializing T to 1. Thus, we consider the free Z-module
A (R), with basis (u,).c» with multiplication

uu, =) @l(1)uy.
)

The free Z-module with basis (u,),.r, Will be denoted by K(R-mod). By our
convention, K(R-mod) is a subgroup of #(R),.

PROPOSITION 5. #(R), is an associative ring with 1; it only depends on I' .
The subgroup K(R-mod) is a Lie subalgebra of #(R),, and #(R),®,Q is the
universal enveloping algebra of K(R-mod)® ,Q.

Proof. Since #(R), 1s obtained from # (R, Z[T]) by factoring out the
ideal generated by (T—1}u,, the first assertion is immediate. According to
Theorem 2, the subgroup K(R-mod) is closed under the Lie product of s (R),,
thus it is a Lie subalgebra. The last assertion will follow from the next
proposition and the theorem of Poincaré--Birkhoff-Witt.



446 C. M. RINGEL

PROPOSITION 6. Let x4, ..., x, be the vertices of ', ordered in such a way
that x, < x; implies i < j. Let ac®. Then, in A (R);®Q, we have
W= u;(lxx) u;("xn)
“alx,)! alx,)!

Proof. We have to show that
udeY L ute = a(x)!.. . a(x) u,

in ' (R),. We use induction on i, where a(x,_;} = 0 for all j < i. If i = 0, then
a = 0, and we deal with the identity element. If | < < n, and a(x,-;) =0 for
all j<i, let b=a—a(x,-;)x,-;- Then

a(x,) alxn) _ palxn-i),,a(xn-i+1) a(xn)
W Vo U™ = U U Y U

— ui(nx_ni- .-)ug(lxn) . ui("xn)
= b(x)!...b(x, ) udn-dy,

= a(xn—i+ 1)' ce- a(x")!u"(xnfi)ub'

Xn-i

We apply Theorem 3 for z = x,_;. Since @§;.» =0 for c # b+a(z)z, the
product u®u, is a multiple of wy,.z. =u,, and the coefficient is

a
@hta3): = a(z)!. Thus we see that

a{xn -

Uiy = alx, ) 'u,.

This finishes the proof.

We return to the proof of Proposition 5. Since #(R),®Q 1is an
assocuutive algebra with Lie subalgebra K(R-mod)®Q, there is a unique ring
homomorphism f from the universal enveloping algebra U of K(R-mod)®@Q
to #(R),®Q such that the diagram

KIR-mod)®Qe—— .y
\ lf
\

Z(RLI®Q

commutes. According to Proposition 6, the elements u, are in the image of f,
thus f is surjective. Also, the images under f of the PBW-basis of U (formed
with respect to the ordering u, . ..., u,, ) are linearly independent over Q, thus
f is injective. This completes the proof of Proposition 5.

Remark. The reader will observe the similarity of our description of the
clements u, in Proposition 6 with some of the defining elements of the Kostant
Z-form of the universal enveloping algebra of a semisimple complex Lie
algebra g. In fact, let h be a Cartan subalgebra of g, and g =n_®h®n, the
corresponding triangular decomposition. Let R be a finite-dimensional heredi-



HALL ALGFEBRAS 447

tary algebra of the same type as g. We will show in [R2] that the Lie algebra
K(R-mod) can be identified with the Chevalley Z-form of n, and that in this
way #(R), becomes the Kostant Z-form of U(n,).
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