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For the solution of ill-posed problems, arising in many fields of application,
several various regularization techniques have been developed. Ill-posed
operator equations

Az =2

are characterized by unbounded inverse operators A~!, if we use two
norms || ||, and || |,, which may be interpreted in a natural physicalk
sense.

If we want to determine an element & by measuring A%, in problems.
which are faced in reality there will, in general, occur a measurement.
error ¥ up to a level § (|lyll, < ), s0 that z = Az -y is the result of the.
measuring process.

Consequently, we have to accept the set

X, ={z| |[dz —2| < 4}

a$ a set of formal solutions, which are compatible with result 2 relative
to the given level 4. Different regularization techniques choose certain
elements of this set, by means of some other a priori information about.
@, in different ways. In some applications it is difficult to effect the re-
quirement d—0 and we cannot use the well-known theorems about the
convergence of the regularized elements to the unknown element 2 ([12],
[13]). In these cases it is important to determine best procedures of regu-
larization to a given level of measurement error and a given kind of
a priori information. The knowledge of a best procedure allows one to
characterize the usefuiness of the mathematical treatment in a concrete
situation of indirect measurement interpretation.

1. Criteria for regularizators

Inverse problems differ from one another by the amount of information
about the unknown object and the measurement accuracy. In some
cagses we are interested in a complete reconstruction of the function

[719]
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in other situations it is enough to find the values of some functionalg
1(z) on @. -

Thus we introduce different criteria for estimating the quality of
a regularization method. We shall study these criteria in simplest model
situations. )

If the unknown element @ belongs to a given set M and if |y| < 4,
a “pessimistic approach” consists in estimating regularization rules R
by the upper bound for the reconstruction error in the most unfortunate
gituation, i.e. by the quantity
1) max max |R(4do+vy)—a|,.

zeM lyll,<8
Another approach is based on the stochastic character of measurement
error, If E denotes the mathematical expectation, for a random measure-
ment error n we get an estimation by
(2) max E, |R(Ax +n) — o).
cell

Some distribution moments of 4 are here assumed to be known or should
be estimated parallelly with the unknown element,

In sitnations where the unknown function # may be interpreted
as a realization of a random function (element) £ we accept the mean
square error

(3) EE, IR(4&+7)— &Iz

a8 an estimation of the regularization error.

If we are interested only in some functionals on #, obviously we
must substitute |[r{4z+y)—1(z)] in place of the norm in {1)-(3). Here »
denotes a special regularization rule for the determination of the func-
tional 1.

2. Results for the criterion (3)

Under the condition that the first and second moments of the random
elements ¢ and 7 are given (for simplicity they are assumed to be uncor-
related) optimal regularization rules are known. These results are exten-
sions of well known results on optimal estimation rules for finite-dimen-
sional spaces X and Z to Hilbert spaces [6]. Let be £ and » random vectors
in R" resp. R™. Using the means T = E§, § = E»n (= 0 for simplicity)
and the covariance matrices B = cov§é and C = covy

B = cové = B, (£ —7)(6—7)7,

1
we have for any linear random functional (I, &) = 3 I, &
i=1

(4) E(l, 8 =@,2), E[Q,H-1,5* =71, Bl).
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These properties may be also taken for the definition of the mean and
the covarianceoperator of a random element ¢ in a Hilbert space [10].
Using a linear rule

(5) (¥, 2)+74

to determine the value of the functional (I, @), the estimation of type
(3) may be written in the form

(6) EE,((r, A&+n)+ro—(1, &)
= BB, (4% —1, E—2)+(r, ) +(4*r =1, ) +r,)?
= (A%r—1, B(A* —1))+(r, Or) +{(Ad*r =1, Z) +ro)2.
If ¢ has a bounded inverse, expression (6) is minimal for
(7a) r = (ABA*+-0)'4ABl
(7b) = 04 (404 +B~ 11

and a corresponding value 7,. Obviously, formula (5) with the optimal
and r, can be transformed by (7a) so as to evaluate (I, 2,) for any linear
functional I. Here

(8) gy = T+BA*(ABA*-+0) (2 —AF)

gives the best linear approximation of (I, &) for the criteria of type (3).

The existence of a bounded inverse of ¢ is a natural requirement
for a random vector ». In general, the covariance operator of a random
element in an infinite-dimensional Hilbert space is a nuclear cperator
([10]). Thus we cannot use formula (7). To overcome the difficulties
in this case, we can apply the concept of weakly random elements for
the measurement error % ([1], [2]), because among weakly random el-
ements there are elements with nonnuclear covariance operators. (The
“white noise” with the covariance operator ¢*I may be treated as a weakly
random element, too.)

Another way of approach is considered in [4]. In this paper an exten-
gion of the operator BA*(ABA™ +0)™! has been constructed to an operator
with a domain of probability measure 1 relative to the random element
Ab+n.

Although the Tikhonov regularization method was not founded
on stochastic ideas, for the case € = ¢®I the element 2, minimizes the
‘well known Tikhonov functional

|An—z|*+ o* (B~ (2 — %), ®—7F).

Let us mention the following important fact: For normally distrib-
uted random vectors & and 5 the vector @ is the best estimator for o
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in the sense of the criteria of type (3) (not only among linear estimators
of the type (6)). The same statement holds for Gaussian random elements
in Hilbert spaces.

This approach hag been used successfully in linearized models for
the reconstruction of vertical temperature profiles by satellite measure-
ment of radiation data. The comparison of the value (6) for optimal
r, r, with the a priori dispersion (I, Bl) in an objective manner charac-
terizes the usefulness of measured data.

In practice we usually have only statistical data as an approximation
of = and B. The influence of such data on the accuracy of stochastic regu-
larization was considered in [3]. For instance, we have not enough stat-
istical data today for the reconstruction of vertical profiles of the earth

structure.

3. Results on other criteria

The criterion of type (2) for linear functionals ! has been considered in [11]
in the special case of the set M = {z| (B~ (2 —%), s — %) < 1} with a given
element 7 and a given B. For this set (for simplicity let Z = 0) the cri-
terion of type (2) leads to an expression similar to (6):

max B, [(r, Az +75)— (1, #)]* = max (A*r —1, 2)2+(r, Or)

TeM zeM

= [|[B2 (4 r =12+ (r, Or).

COonsequently the structure of an optimal linear rule for that criterion
15 similar to the structure of formula (8). Optimal linear rules & for the
criterion (2) have to minimize the expression

(9) max E, ||B (42 +7)— 2|t = max ||(RA —I)z|?+trace RCR*.

zeM zeM

Under some special assumptions on M optimal linear rules B have been
considered in [3] for an equation (1), where 4 € [R"—>R™]. It seems to
be of interest that the structure of optimal regularizators which minimize
(6) or (9) differs from one another in the following sense: If we suppose
rank B =rank A = n < m, then the approximations (8) (for all possible
#z) belong to the whole space R"™, resp. to the whole set M. The optimal
rule B which minimizes (9) in some sense gives an approximation @,
which is similar to those constructed in [5], [7] and, in general, belongs
to a subspace of R™ of dimension less than =.

4. Cross-validation and regularization

Without knowing the d-level of the measurement accuracy a choice of
regularization parameter can be based on the cross-validation-technique
([81). To apply this approach, we decompose the system of #» equations
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into two disjoint subsystems, which we denote

Aw+y, =2,
.Aﬁ!]-—}—’l g = zH.
From the first subsystem we calculate a regularized approzimation
w, = (AT A;+al) Al 2,

for # (for simplicity we use the regularization by means of al|?). The
second subsystem is used to validate this approximation by means of
the defect A,x,—z,.

If we use different decompositions into subsystems {4, A]M}, ...
vory (A, A we denote the corresponding regularized approximations
by 2, ..., .

The cross-validation techmique recommends the choice of a par-
ameter a which minimizes the defect functional

k&
(11) 2, 14Pafd — 0.

=1
The total calculation expense for minimizing (11) ecan be reduced by
means of the factorization [9]

A =TSV

with an upper bidiagonal matrix § and orthogonal matrices U and V,
because we can evaluate the defect functional (11) without the knowledge
of the regularized approximation «(.

We denote by U, and U, the portions of the orthogonal matrix U
which correspond to A, and 4, (we omit ) for simplicity). For these
matrices the equations U,UT =0, U, UL = I are satisfied.

One can easily prove the relation

(12) &, = VIST(88T +al)™ (U 2+ U7 @),
where p denotes the solution of the linear system
(13) U, (88T +al) ' {U7 g + U2} = 0.

Using (12) and (13) the defect can be obviously transformed to
Ay, —2y = U, [SVVIS +al] (88T +al) ™ UT o+ U2} — 2,
= Uz{Ug'Q‘*‘Uf‘zl}—zz = @ %y
and consequently, for finding the defect only the solution g of the system
(13) is neceded.
Tnstead of a random decomposition of 4 into two submatrices 4,, 4,
we can use a complete family of systematic decompositions. For instance,

we can choose the ith equation of the system (10) as A, In this case
for all ¢ =1,...,n the systems (13) consist of one equation only.
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