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0. Introduction

Iterative algebras have been introduced by J. Tiuryn in [5] as models of
Elgot’s iterative algebraic theories [3]. They are proposed as semantic
domains for programming languages when programs are syntactically describ-
ed by systems of equations. One of the main problem is the construction of
[ree iterative algebras providing a possibility to reduce semantical questions
to syntactical ones.

The aim of the paper is the construction of free iterative non-determin-’
istic algebras.

1. Preliminary definitions and results

A signarure X is a countable family 2 =(Z,| ne N) of disjoint sets X, whose
elements are called n-ary operators symbols. N denotes the set of natural
numbers 0, 1, 2, ... As usual, a Z-algebra A consists of a set A (carrier of A)
and a family (64 oeX) of operations such that ¢4: A" > A4 for each
gelX,, neN. (Notice that X is also used for the union over all X, for
simplicity.) A X-homomorphism [rom a 2-algebra 4 into another X-algebra B
is a mapping h [rom A into B subject to the following condition

h(c4(a,, ..., a,) = o®(h{ay), ..., h(a,))

for all 62, neN, and all a,, ..., a,€ A.

The class of all 2-algebras will be denoted by Alg,. Given a subclass .«
of Alg; and a set X, a 2-algebra F of .« together with a mapping f/ X —= F
is called .&/-free over X if the following property holds. Every mapping h
from X into an arbitrary XZ-algebra 4 of &/ admits a unique extension to a
2-homomorphism A* from F into 4 depicted by the lollowing commutative
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diagram

3 h*
Fe—— A

\/ (for all h)

X

Although /-f[ree X-algebras are only uniquely determined up to iso-
morphism we will speak of the .o/-free X-algebra over X and, if it exists, it
will be denoted by F ,(X). In the case . equals Alg,, the «/-free Z-algebras
are also called absolutely free. Let L be a signature and X be a disjoint set.
The set of all Z-terms over X is the least set of expressions Ty(X) such that

(1) Xul, = TX)
2 ifeel, and ¢, ..., t,e Tg(X) for n =1, then at,...t,e Ty(X).
Ts(X) can be made into a X-algebra by setting

a”x’(tl, s ty) =0ty .. 8,

for all 6eZ,, t,, ..., t,e Ty(X) and n = 1. The constants are the elements of
Zo. It is well known that this so-called X-term algebra T;(X) is the absolutely
free Z-algebra over X. Therefore, every X-term r of T3(X) can be interpreted
in any X-algebra A provided a mapping h from X into A is given. Observe
that each ¢ of Ty(X) contains only a finite number of variables from X, say
Xgy +vvy Xu—1- If H(x;)=a; for i =0,...,n—1, then we set

t'(ag, ..., Gy 1) = B* (1)

and 4 can be regarded as an n-ary (derived) operation.

To avoid cumbersome notation with the variables occurring in X-terms
we use the following representation of natural numbers by finite sets: O for
@, 1 for {@}, 2 for @, {@}} and so on, or in other terms

0=0 and n={0,1,...,n—-1} for n>xl.

Instead of Ty({xq, ..., X,-1}) we agree to write simply Ty(n).
Now we are going to introduce systems of L-equations. A system § of n
Z-equations with m parameters xg, ..., Xn—; IS given by
Z,-=t,-, IIO, ],...,n_l,
where t;e Ts({Xq, ..., Xm—1> Zgs -+, Zn—1}). Since S is fully determined by

to, ..., I,—1, wWe shall also write S = (tg, ..., t,_;) which means
SeTy(m+n)" withm>20and n>1.

A set S of systems of X-equations is a subset of ) {Ty(m+n)" m > 0 and
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n>= 1!, For a given set & of systems of Z-equations, &,, denotes the subset of
all systems of X-equations with m paramelers.

Let 4 be a ZX-algebra. Every system S =(fg,...,!,.;) of Ty(m+n)"
induces a mapping

SA: A™ A"

by

S*(ag, .-, Gmen-1) = {t6(a0s - Amsn 1) th1(ags - am+rg—l))
for all ag, ..., dpsp_ €A

We say that Se Ty(m+n)" is uniquely solvable in A if, for all

a=(aOs---sam—l) Of Am’
there exists uniquely 5 =(sq, ..., 5,_;) of A" such that
§=354(a,3).
If § has a unique solution in A, then it will be denoted by |S4|.
Note |S4]: A™ — A" [or Se Ty(m+n)".
DerinITION. Let © be a set of systems of X-equations. A X-algebra A is

called C-iterative if each S of & is uniquely solvable in A. =

The class of all S-iterative X-algebras is denoted by &-Alg,. Consider a
set S of systems of X-equations and assume that a given subclass .o/ of S-Alg;
has free X-algebras. Let F_(m) be the .«/-free Z-algebra over m. By definition,
every mapping h from m into any X-algebra A4 of .o/ admits a unique
extension to a X-homomorphism h*: F_(m) — A.

For any SeT;(m+n)" belonging to © we conclude that the diagram

th "

F (m)" e »e A"
Is] Is*|
F imY ' -6 A"

A"
commutes, i.e., (h*)™ |84 = |S|-(h*) for all h. Thereby, |S| denotes the unique
solution of S in F_(m). |S| is called the symbolic solution.

DeriniTioN. Let S be a set of systems of 2Z-equations and let .</ be a
subclass of S-Alg,. Two systems §; and §, of & with the same number of
parameters are called .o/-equivalent, in symbols S; ~ ,S,, if |S{| = |53| for all
Aof o =

THEOREM 1. Let € be a set of systems of X-equations and let <7 be a
subclass of S-Alg;. Assume that </ has ./-free Z-algebras, then

Sl ‘”dsz lﬁr |S1| = |Sz|
for §,,8, of &,, meN.
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Proof. By definition, §; ~ S, implies |S,| = |S,|. Therefore, it remains to
prove the opposite implication. But this follows easily from our considera-
tions above. m

Theorem 1 shows the importance of the existence of free X-algebras. We
know [rom universal algebra that the existence of free X-algebras is guaran-
teed for classes which are closed under subalgebras and products. This
closure properties are fulfilled for any class of X-algebras which are defined
by identities and implications. Such classes are called quasivarieties.

THeoreM 2 [4]. For any quasivariety . of Z-algebras and any set S of

systems of X-equations, the class of all S-iterative X-algebras in ./ has free
Z-algebras. w '
- The proof of this theorem is quite simple but shows an interesting
algebraic fact. A class of X-algebras is transformed into a quasivariety by
enlargement the signature Z. For each § of &, n new m-ary operator symbols
are adjoined to X,, provided S has n X-equations with m parameters. Let
Z () be the resulting signature. Evidently, every S-iterative X-algebra can be
regarded as a X (&)-algebra and, moreover, every X-homomorphism can be
regarded as a X (&)-homomorphism. Then the class of all G-iterative X-
algebras in .« defines a quasivariety of X'(&)-algebras since the requirements
of the existence and uniqueness of solutions are described by identities and
implications. Hence free X' (&)-algebras exist. But this are the free S-iterative
Z-algebras in </

2. Nondeterministic X-algebras

To deal with nondeterministic computations we need two distinguished
operator symbols: a binary operator symbol + describing nondeterministic
choice and a nullary operator symbol O describing abort. Let Z be a
signature not containing + and 0. By £ we denote the new signature
obtained from Z by adjoining + and 0,ie, 2, =X, |0}, Z, =X, |+ and
2, =2, otherwise.
DEeFINITION. A X-algebra A is called nondeterministic if

(1) (A4, +,0) is a commutative monoid,

(2) for every aeX,, n>= 1, the associated operation o4 is n-fold linear, i,
A —
¢*@a,....,0,...,a,)=0,
A — A A
al(a,, ..., a+a,...,a,)=a(ay, ..., 6, ...,a)+o%a,, ..., a;, ..., a,). =

The class of all nondeterministic Z-algebras is denoted by Alg¥. Let A4
be a X-algebra. Define

N (A) = ip| p: A~ N and supp(p) is finite},
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where supp(p) = lacA| p(a) # 0! is the support of p. The elements of
N (A)> are said to be polynomials over A with coefficients in N. As usual, we
write \

p=>) (p,a)a with(p, a) = p(a) for aeA.
acA
N (A) can be made into a X-algebra by setting
(1) 0 is defined by (0, a) =0 for all ae A,

(2) pi+p2 =2 ((p1, +(p, a))a,

acA

3 oy,.-pd=X( Y (p1,9...(p,, a)a

acAd LI a"eA
a=¢r‘(al.....a

for any ceX,, n2 1.

For simplicity the operations in N (4) are denoted by the operation
symbols.
Without proof we state

Lemma 1. If A is a Z-algebra, then N (A is a nondeterministic Z-
algebra. =

This leads immediately to
THeEOREM 3. N (Ty(X)) is the free nondeterministic X-algebra over X.

Proof. Let A be an arbitrary nondeterministic £-algebra. Since 4 can be
considered as a X-algebra, every mapping h from X into 4 admits a unique
extension to a X-homomorphism h* from Ty(X) into A. Define a mapping

h*: N (Ty(X)> = A
by
h*(p)= ) (p,)h*(t) for all p of N(Ty(X)).
teTy(X)
It may easily be shown that h* is the unique extension of h to a X-
homomorphism. =

Consider as an example a system S of two Z-equations with one
parameter x given by

20 =9(f(z0)+x,f(z1), 21 =f(9(z0, [ (z0)+20)),

using infix notation for + and parantheses for better readability. X contains
the unary operation symbol f and the binary operation symbol g. Since we
are only interested to solve S in any nondeterministic Z-algebra, S may be
transformed according to the requirements that f and g are interpreted as
linear mappings as follows:

29 = g(f(zo),f(zl))+g(x,f(21)), Z) =f(g(201f(zl)))+f(g(20s Zo))-
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More formally, to any system S € T5(m+ n)" of Z-equations we find a system
S eN (Ty(m+n)>" such that § and § are equivalent modulo the class of all
nondeterministic X-algebras. § will be called a polynomial system of Z-
equations.

3. Formal power series over Ty(X)’

Formal power series over Ty(X) with coefficients in a field were first studied
by Berstel and Reutenauer in [2]. Here, we are going to introduce them by a
metric completion of the set N (T;(X)> of all polynomials,

Lemma 2. N{T5(X)) is a metric space with respect to the distance
function

fp=r,

, 0
d(P’ P) = 2—min{6(l)l (p1)=(p".0) ,f p #+ P',

where 6(t) is the depth of te Ty(X). It is recursively defined by

0 ifteX cX,,
o) =4, . _
+max {6(t)} i=1,....,n1 ift=oat...1,. m

The metric completion of N (Ty(X))> is the set N {((Ty(X)>> of all
mappings p from T,(X) into N called formal power series over T;(X) with
coefficients in N. We also write

p= 2 (p, 0t
teTy(X)
for the mapping p: Ty {(X) =N, where (p, t) = p(t) for t € To(X).
Extending the operations for polynomials to power series in a straight-
forward manner, we get
LEMMA 3. N ((T5(X)>) can be made into a nondeterministic Z-algebra. m
Notice that, for 6€X,, n=1, and p,, ..., p,€N (Ts(X)>>,

U(P],---, pn)=Z( E (pl’ll)""'(Pm tu))t

1 0geeeady
i1=0ty..d,

is well-defined.

Since N ((Ty(X)>) belongs to Algy and N (Ty(X)) is the free non-
deterministic Z-algebra over X, each polynomial p of N (Ty(X))> with n
variables induces a derived n-ary operation p on N {({(Ty(X))>.

By an easy calculation we may prove '

Lemma 4. Let peN (Ty(X)). If supp(p) " X = Q, then p is a contractive
mapping. a
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Furthermore, N {({Ty(X))) is a complete metric space. If a polynomial
system of X-equations induces a contractive mapping, then it has a unique
solution by the Banach Fixpoint Theorem. This forces the following

DeriNITION. A polynomial system S = (pg, ..., P.—.)} of Z-equations
zl'zph i=0,...,n-_‘],

is called proper if the support of each p, does not contain the unknowns, that
is
supp(p) M {zos v Zpoy} =@ for i=0,...n—1. =

As a conclusion of Lemma 4 we get

TheoREM 4. If S is the set of all proper polynomial systems of Z-equations
with parameters in X, then N ({Ty(X))) is a C-iterative nondeterministic X-
algebra. =

4. Regular formal power series over Ty(X)

We intend to construct free nondeterministic Z-algebras by means of regular
formal power series over Ty(X) in the next section. In order to introduce
them here some preparations are necessary.

Any commutative monoid (A4, +, 0) can be regarded as a semimodule
over N if scalar product na is defined to be the n-fold sum of a for all ne N
and ae A. In analogy to modules tensor product & of semimodules may be
defined. By definition, the elements a®b of the tensor product A®B of two
semimodules satisfy the following conditions

(f) (@a+ad)®b =a®b+a ®b,
(2) a®b+b)=aRb+a®b’,
(3) na®b = a®@nb = n(a®b)

for all a,a’eA, b,b’eB and neN. By A®" we denote the n-fold tensor
product of A. Notice that any n-fold linear mapping from A" into 4 can be
considered as a linear mapping from A®" into A.

Next, any geZ,, n> 1, a so-called derivation ¢~ ' is associated as a
linear mapping from N ((Ty(X))>> into the n-fold tensor product
N ({Ty(X)>)>®" by setting

o 'p= ) (pot,..t),... @1,

1 n

Evidently, ¢ ! is linear, i€, ¢ 1(0) =0 and o~ ' (p+p)=0a"'(p)+a *(p).
We extend 67! to subsets 4 of N ((T3(X)>) by

o '(4) = {7 (p) peA}.
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Without proof we state the following lemmata.
LEMMA 5. For each p of N ({(Ty(X))) the equality

p= 2 (p.0+ ) 2 ole™'(p).

teXw X n2}oel,

holds. m
LEmMMA 6. Let py, ..., p,€N ((Tg(X))). For each ceX,, n2 1, we get

6 Ho(prs - PD)=P1®...®p,.

A subsemimodule A of N ({Ty(X))) is called stable whenever o~ ! (4 i~
included in the n-fold tensor product of A for any oeZ2,, n2> 1.

DeriINiTION. A formal power series p of N {(T3(X))) is called regular if p
belongs to a finitely generated stable subsemimodule of N {({Ty(X))>. =

LEmma 7. Let peN ({(Ty(X)>>. If p is regular, then there is a proper
polynomial system S of X-equations such that p is the first component of the
solution of S.

Proof. Let peN {{(Ty(X)>) be regular. By definition, there exists a
finitely generated stable subsemimodule A of N ({(Ty(X)>) such that peA.
Let p,, ..., p._; be the generators of A. Without loss of generality we can
put p to this set of generators and assume {pg, py, ..., Po—1} 18 @ set of
generators for A, where p, = p. To describe the generators of the k-fold
tensor product of 4 in a convenient way we introduce the following notation.
Let w be a word of length k over the alphabet !0, 1, ..., n—1}, that is,

wen'. Il w=i,...i,, then we put w=p, ®... ®p, . Clearly,
A®="% r,w r,eN.
wenk
Take oeX,. Since A is stable
o '(p)ecA® for i=0,1,...,n-1.
Hence
(%) ¢ '(p)= ) rio)w for i=0,1,..,n-1.

wenk
Now define a polynomial system of X-equations as follows
z= 3 (p,Dt+Y Y Y r(e,ow, i=0,...,n-1.
teXulg k21aely we

Obviously, this system is proper and has as unique solution (pg, ..., Pa-1)
since, by Lemma 5,

pp= Y unt+) Y ole™'(p), i=0,...,n-1,

teXulp kz1loel

and because of (x) we conclude that (p, ..., p,—) 1S a solution.
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Therefore, p = p, is the first component which proves the statement. =

To prove the opposite implication, that each first component of the
solution of a given proper polynomial system S of Z-equations is regular, we
have to transform § into a certain normal form due to

LemMMA 8 [2]. Let peN ({Ty(X)>>. If p is the first companent of the-
solution of some_proper polynomial system of L-equations, then p is also the
first component of the solution of a proper polynomial system

z=p, i=0,1,...,n—1,

with supp(p) = (X U Xo) U XZ(Z*), where Z = {24, 2y, ..., Z,_y} and Z(Z*)
= U Z(Z" with (2% = {az;...2,| 2, ..., 2, €Z}. =

ll’
k=1
LEMMA 9. Let peN ((Ty(X))>. If p is the first component of the
solution of a proper polynomial system of X-equations, then p is regular.
Proof. Let S be a proper polynomial system of X-equations as described
in Lemma 8. Assume (py, .., p,—1) is the unique solution of S. Let A4 be the
subsemimodule generated by the components py, ..., p,_,- To prove that the
first component p, is regular it remains to show that A is stable. Because of
the special required form of § we derive

o '(p)= ) (p,oW)w, i=0,...,n-1,
wenk
for any oeX,, k > 1, where w =p;,®...®p;, for w=i;...i,. Since o !is
linear, o " '(p) belongs to A®* for all p of A. Hence A is stable. =

Lemma 7 and Lemma 9 show that the set of all regular formal power
series over T;(X), denoted by Nt ((Ty(X))>>, coincides with the set of all
first components of solutions of proper polynomial systems of Z-equations.
The latter set is denoted by N™ ((Ty(X))>). Its elements are called rational
formal power series over Ty(X).

THeEOREM 5. N8 ({T3(X)>) = N* ({Tx(X))>. =

5. Free iterative nondeterministic Z-algebras

Throughout this section, & denotes the set of all proper polynomial systems
of Z-equations whose parameters belong to a fixed set X. Instead of &
iterative we shall simply speak of iterative nondeterministic Z-algebras. As
already mentioned, the free iterative nondeterministic Z-algebras will be
constructed by means of regular formal power series. For that purpose we
have first to show that they form an iterative nondeterministic X-algebra.

Lemma 10. N8 {(Ty(X))) forms an iterative subalgebra of N ({Ty(X)>)
containing N {Ty(X)>.
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Proof. Clearly, every polynomial p of N (Ty(X)) is regular since, by
Theorem 5, p is (the first component of) the unique solution of the trivial
proper polynomial system z = p. Therefore, all constants associated to cle-
ments of X, belong to N8 ({T(X)>). To show that N ({T,(X)>) forms a
subalgebra it remains to prove that N ((Ty(X)>) is closed under all n-ary
operations for n > 1. Let p;, and p, be regular. By Theorem 5, there are
proper polynomial systems S, and S, such that p; is the first component of
the solution of §;, i = 1, 2. Now, one may easily define a proper polynomial
system S such that p, + p, is the first component of the solution of S. Hence,
the sum of two regular formal power series is always regular. Let o X,
21.If py, ..., p, €N ((Ts(X)>), then there are proper polynormal systems
Sy, ... S, such that p; is the first component of the solution of §;, i
=1,...,n. Put all these systems together with a new first equation z,
=0z,0...2,0, Where z; o are the unknowns of the first equation ol each §;.
Obviously, the new system has as first component of its solution
6(pys ... po)- Thus, N {(T,(X))> is closed under all operations. By defini-
tion, N {(Ts(X)>) is iterative. m

[terative nondeterministic Z-algebras can be thought of as models of
iterative matrix theories. In analogy to [1] we will prove that all regular
formal power series over Ty(X) form the free iterative nondeterministic 2-
algebra over X. The main idea is based on the fact that, by Theorem 5, every
regular formal power series p is the first component of the solution of some
proper polynomial system § of Z-equations. Then p can be mapped onto the
first component of the solution of $ in any iterative nondeterministic Z-
algebra A provided X is interpreted in 4. In order to show that this mapping
is well-defined we have to make clear that, for any two proper polynomial
systems of Z-equations whose first component of their solutions are equal,
the first component of the solutions in 4 are also equal. Let S and S’ be two
proper polynomial systems of X-equations. From Lemma 9 we know that the
components of their solutions generate stable subsemimodules in
N8 ({Ts(X)>>. Without loss of generality we may assume that they generate
the same stable subsemimodule. But, then all components of one solution are
linear combinations of the other ones. The same holds true in any iterative
nondeterministic I-algebra, which implies the above required property.

THEOREM 6. N ({Ty(X)>)> is the free iterative nondeterministic
Z-algebra over X.

Proof. We have to show that every mapping h from X into an arbitrary
iterative nondeterministic Z-algebra 4 admits a unique extension to a X-
homomorphism h*: N® ((Ty(X))) — A. Define h* by sending any regular
formal power series p to the first component of the solution of S in A
provided p is the first component. of the solution of § in N ({(T;(X)>>.
Evidently, h* extends h. To show that h* is a X-homomorphism may be done
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by constructing appropriate systems of X-equations similarly to the proof of
Lemma 9. Moreover, h* is unique since it extends also the X-homomorphism
h* from N (T,(X)> into A defined in Theorem 3. Assume g is another X-
homomorphism from N ((T;(X)>) into 4 extending h. Then, g restricted
to N<{Ty(X)> equals h*. Let S be a proper polynomial system of X-
equations. Obviously, its interpretation in A under g is the same as under h*.
Therefore, the first component p of the solution of S in N8 ((Ty(X)>> will
be mapped onto h*(p), i.c., g{p) = h*(p) for all peN*® ((T3(X)>). =
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