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Introduction

Let Sy = {s;, ..., s} be a set and let X, X,, ... be independent identically
distributed random variables with values in S, taking on the value s; with

K
probability 6, >0, ) 0; = 1. Neither K nor (s;, 8,), j =1, ..., K, are known
j=1
and, sampling X, X,, ... one after another, we are interested in discovering
all “classes” s5;, j=1,..., K.
The following two examples reveal the origin of the problem and give
some intuitions.

ExaMpLE 1. Suppose we are interested in estimating the number K of
fish species living in a newly discovered and completely unknown lake. It is
not known in advance what species s,. s,, ..., S¢ live in the lake. The
random variable X is now interpreted as the type of a randomly captured
fish and 0; is a number proportional to the species s;.

ExampLE 2. Let f be a continuous function on the unit interval and
suppose we are interested in discovering all local minima of f. Now Sy is the
unknown list of local minima. The procedure consists in making a random
choice of point xe(0,1) and then applying an iterative algorithm A for
seeking local minima. Write A(x) = s; if, whenever we start from the point x,
the algorthm leads to the local mimimum s;. The random variable X 1s now
interpreted as the local minimum discovered when we start from a random
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point, and 6; is the probability that the starting point lies in the set {x:A4(x)
=s;) (the set of attraction of the jth local minimum).

The problem is rather old and goes back as far as Goodman’s (1949}
paper, which 1s the first paper in the statistical hiterature on the subject, as
we can conclude from the lack of references in it. To the best of our
knowledge there exists no general solution to the problem and our approach
presents a new endeavour to attack it from the Bayesian standpoint. The
problem has recently revived in the context of Example 2 above and our
solution is in the spirit of the papers presented in Dixon and Szegs (1975,
1978), Archetti and Cugiani (1980), and a paper by the second of the present
authors (Zielinski (1981)).

Optimal stopping problem

Let w, = w,(X{, X5, ..., X,) be the number od different X;’s in the sequence
X{, X3, ..., X,,. Consider the following loss function:

L(w,, K) = {Bn ff w, = K,

A+ Bn if w,# K,
where A and B are positive constants. The number A is interpreted as the
loss connected with not discovering all classes and B is interpreted as the
cost of one observation.

Let %,. k=1.2...., be a prior distribution of K and let g, (d0) be a
conditional prior distribution of 0 =(60,, 0,, ..., 0x) given K =k. We are
looking for n minimizing the Bayes risk. The standard procedure (cf.
DeGroot (1970), Ferguson (1967)) consists in evaluating, for any given n
=1, 2, ..., the posterior expected loss and optimal stopping of that stochas-
tic sequence. In our case we have

expected posterior loss = Agq,+ Bn = A{(q,+cn),

where g, is the posterior probability that all elements of S have not been
discovered, and ¢ = B/A. Now the problem reduces to that of optimal
stopping for the stochastic sequence Y, =q,+cn, n=1,2, ...

Solution for a specific choice of the prior distribution

Given n, X,, X,, ..., X,, and w, = w, suppose that the discovered elements
are s; , S;,, --- 8, Let Nj, j=1, 2, ..., w, denote the number of X;s which
are equal to Sij- Let [n,, n,, ..., n,] denote the set of all permutations of

numbers n,, ny, ..., n, such that n; >0 for all j=1, 2,...,w and n; +n, +
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... +n, =n. Denote by h, the number of n/s which are equal to m. Then

P{Wn =W, (Nl’ Nz, ceey NW)E[nl, nz, ceany nw:”k, (91, 92, ey 9’()}
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the summation being extended over all permutations of w different elements
of the set |1,..., k}. E.g., for k=3 and w =2 this means the summation
with respect to (i, i,) over the set {(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)}. A
detailed discussion of the above formula as well as of the posterior prob-
abilities given below is presented in Boender and Rinnooy Kan (1982).

Take as the prior distributions a, =const, k =1, 2, ..., (improper dis-
tribution on the set of all positive integers), and y, (d0) = I' (k)d68, d6, ... db,
on the set {(0,,0,,...,6): 0<0;,<1,>0,=1}, (df) =0 otherwise
(uniform distribution on the unit simplex in R¥*).Then, after some compu-
tations, we obtain the density of the posterior distribution

P{K =k, (8,,...,08)|w,=w,(Ny, ..., Ne[ng, ..., n,]}
rkyrmrn-1j y 6;1072 ...

iy Yig
lig, iyl <(1....k}

rwyriw+\)rin—w—ln;tn,! ...n,t °

2 el

w

and integrating with respect to (4,, ..., 6,) gives us, for 1 <K w<n-2,
P{K =k|w,=w, (Ny,..., Nyelng, ..., n,]}

rk+O)rrnrn-1)
Tk—w+OT(n+k I w+ )T W) F(n—w—1)

which does not depend on ny, n,, ..., n, and will be denoted shortly by
P K =k|w,=w]. If w,=n—1 or w, = n, the posterior distribution of K is
again an improper one. Due to this fact we shall confine ourselves to the
case where n > 3, which is nonrestrictive from the practical point of view.
The above formula gives us

'mI'(n-1)
CTm+w)(n—1—w)

go=1—PK=wlw,=w] = 1<w<n-2.

By similar arguments we obtain the posterior transition probabilities

ww+1
P{Wn+1 =W+1lW,,=W} =n—$n_—1)),
wiw+1)

P{wn+l =W|W,,=W} =1_;(_':,_—1),
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which describes the stochastic sequence (w,) except for w =n—1 and w = n.
Now the stochastic sequence (Y,) is defined as

rimrn-1)
—F(n+w,,)F(n—1—w,,)

Y, = +cn, l<w,<n-2,n=3,4, ..

and the stopping rule N which minimizes the expected loss EYy is that which
maximizes EZ, with

_ rmren-n
T Tn+w)(n—1—-w,)

Z,=7Z,w,) cn, l<w,<n—-2,n=3,4,..

Observe that
E(Z}+1|Z})=:Zn4‘g(n,"M%—C
where

(n, w) = wwtl) T l(n—1)
T = it wintw+1) F(ntw) Tn—1—w)

By the formula

w+1l n—w-—1
w—1 n+w+1

g(n, w) = g(n, w—1)

we conclude that

max g¢g(n, w)=g(n,r,)

1<wgn-2
where v, is the (unique) positive solution of the equation (w+1)(n—w—
1) w—D(n+w+1)=1, ie, v, =(/1+4n—1)/2. It is easy to observe that

1
n+l+/4n+1

g(l’l, Un) g

and hence g(n, w,)—c¢ <0 for all n greater than

1 4
—+1- /;+1J+1
C C

where [x] denotes the integer part of x.
It follows that (Z,, n > N(c)) is a supermartingale, so that the optimal
stopping rule N for the sequence {Z,, n > 3} satisfies

P{N <max {3, N(o)}} =1.

N(c) =

Given N(c), the construction of the optimal stopping rule N may be
performed by the backward induction technique (see, e.g, DeGroot (1970) or
Ferguson (1968)).
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The case \w, =n—1 or w, = n} needs some comments. If w,=n—1 or
w,=nfor all n=3,4, ..., then K = o¢c and there is no reason to continue
observations because of the loss increasing to infinity. If K is finite, then for
some n we will pass from the situation [w,=n-1 or w,=w] to the
situation {w, =n—2} and then we should proceed according to the general
stopping rule constructed as above.

~ Observe that g(n, n—2) =(n—2)I'*(n)/T"'(2n) decreases in n so that,
given ¢, g(n,n—2)—c <0 for all n > N,(c) with an appropriate positive
integer N,(c). It follows that it is reasonable to stop the process Z, with
w,=n—1 or w, =n not later than at the moment N, (c).

Numerical examples

Consider P, =(n,w,), n=1,2,..., as a random walk on the plane: the
point py emerges at (3,1), (3,2) or (3,3) “in a mysterious way” and afterwards
passes “cast” or “north-east”, i, if p, =(n, w), then p,., =(n+1, w)or p,,,
= (n+1, w+1). The stopping rule may simply be presented by a list of the
absorbing points of the random walk. For ¢ =0.03 and ¢ = 0.02 the sol-
utions are as follows (encircled are the stopping points with w < n—2 and
stars represent p, such that n = N, (¢)):

\
wl w4 .
A 4
3 3 4 —4
2 o 2 4
1 1 1
1 2 3 4 5 6n 1T 2 3 4 5 6 7 8 9 10 1 120

The above stopping rules have been computed by the backward induc-
tion assuming that, if p, reaches one of the points (N(c), w), 1 < w < N{(0),
the process will be stopped immediately.
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