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1

My main objective in this talk is to describe the gross geometric anatomy of
smooth stable maps of 3-manifolds into the plane. As are all stable maps,
these maps are characterized by certain transversality conditions which, in
this low dimensional case, can be given concretely in terms of germs and
multi-germs. We begin with this characterizing fine geometric anatomy.

For f: M — R*, M a 3-dimensional compact manifold, we let S(f) be
the singular set of f, {PeM| rkT, i <2}. f is stable if:

(S,) For each Pe M there are coordinates (u, x, y) centered at P and
(U, X) centered at f(P) such that:

(U@ x, 9) X(flu, x, )

(u, x), P a regular point,
(u, x*+y?), P a definite fold point,

2 2 , _ _ PeS(f).
(u, x*—y%, P an indefinite fold point,

(u, y2+xu—x3/3), P a cusp point,

In these coordinate neighborhoods in M, S(f) consists of smooth arcs of
definite or indefinite fold points or one of each meeting smoothly at a cusp
point. Thus S(f) is a union of embedded circles and f|S(f) is an immersion
except at cusps where f|S(f) is singular with image {(x2, 2x*/3)}.

(Sz) If P is a cusp point, f~'(P) nS(f) = {P} and f|(S(f)— {cusps}) is
an immersion with normal crossings.

2

In order to study such maps systematically, we introduce an equivalence
relation in M. We say that P ~ P! if f(P) = f(P') and P and P! belong to
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the same connected component of f~! f(P). We let W = M/~ and factor
f: M — R? through this quotient.

M —L =Rt

W

We give W the quotient topology. As a consequence of the stability of £,
W is easy to describe and is a 2-dimensional simplicial complex with very
simple singularities. We call a subset of M saturated, if it is the union of
connected components of f-fibres.

2.0. At any regular point PeM—S(f), f is locally a projection, so
a neighborhood of g(P) in W can be identified with a neighborhood of
f(P) in R

21. If Pis a definite fold point, the map f in coordinates is a product
(u, x, y) = (u. x*+y?) so it suffices to consider the map (x, y) — (x2+ y?) on
each (u = constant)-plane. The f-fibres in this plane are just concentric circles
through the regular points in a neighborhood of P and single points at the
definite fold points. Thus the neighborhood {ju] <e¢, x*+y* <é! for & > 0,
d > 0 is saturated.

7

Thus the g-image of a neighborhood of P can be identified with its
f-image. In this case the germ of this image at g(p) or f(p) is the germ of a
closed half plane, the boundary of which is the image of the arc of definite
fold points.

2.2. If P is an indefinite fold point, the map f is a product (u, x, y)
—{u. x*—v?) and on each (4 = constant)-plane we have:
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In this coordinate neighborhood the components of the f-fibres are not
closed in M; that is they are not whole g-fibres. Thus we must leave the
coordinates neighborhood to obtain a saturated set. The possibilities for
completing these g-fibres will depend on the orientability of M.

Notice that the fibres of f|M—S(f) can be oriented iff M —S(f)
is orientable. In fact, orienting the fibres of f| M —S(f) is the same as
orienting the line bundle K = (kernel Tf | M —S(f)). The quotient bundle, N,
of T(M—S(f)) by K being isomorphic via Tf to f*(TR*)|M—S(f) is
always orientable. Thus K is orientable iff M —S(f) is.

For the moment, we assume that g~ 'q(P)\S(f) = [P}. We will
return to the possibility that the component of the f-fibre through P has a
second point P! in S(f). If M is oriented, we orient the f-fibres in our
coordinate neighborhood. Compatible with this orientation there are only
two ways to complete these local fibres to obtain whole g-fibres

‘

Thus a saturated neighborhood of P is the product of a disc with two
holes and an interval. The map on each of these punctured discs looks like:
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Thus a neighborhood of g(P) in W is the product of a “Y” with an
interval and the segment at the branching of the Y’s is the image of the arc
of indefinite points. The g-fibre through each indefinite point is a figure eight.

\|

\
by

A}
\

If M is not oriented, there is one other possibility. Namely, a saturated
neighborhood of P is the product of a Mdobius band with one hole and an
interval, and a neighborhood of q(P) and f(P) is a product of two intervals,
[—1, 1] x 1. The image of the arc of indefinite points is {0} x I. The maps f, ¢
and f on this punctured Mdbius band may be visualized as:

o

~
_/

=5

f
_—_ ) _ - ]

f

Notice that in all cases the f-fibres above two points on opposite sides of
the image of a curve of indefinite points differ by a single surgery (oriented
surgery if M is oriented).

23. If P is a cusp, f in coordinates is (u, x, y) — (4, y>+ xu—x3/3), no
longer a product. The singular set of this map is {(x2, x, 0)} with image
{(x2, 2x*/3)}.
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We describe a saturated neighborhood of P in M and its image in W by
describing the f-fibre components in the f-pre-image of (U = constant)-lines
whose union gives the saturated neighborhood.

@ ) — q
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Above to (U = 0)-line.
g 7

A

Above any (U = positive)-line.
Thus a neighborhood of the g-image of a cusp is:

cusp point . /indef curve

I
\\\N
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def curve
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Remark. By the stability assumption (S,), we know P is the only

singular point on f~! f(P) for P a cusp. Hence we know that g~ ! g(P) is just
an embedded circle except for one cusp singularity at P.

2.4. We now deal with the situation that we deferred in 2.2, namely that
of P an indefinite fold point such that g~ ' g(P) nS(f) = {P, P'!. Obviously,
‘P! is also an indefinite fold point and the f~images of the arcs of indefinite
fold points through P and P' cross transversally. To simplify the exposition
we complete the local description of W in the M-oriented case only.

We notice first that above a little neighborhood of f(P), there are only

two possible arrangements of the number of f-preimages in a connected
neighborhood of W containing g(P).

ond

These two possibilities actually occur and the g-fibres above ¢(P)
correspond to the two connected graphs with two transversal saddle nodes.

without self-loop- with self -loops

To see how these two cases arise, we follow the g-fibre as we move about the
neighborhood f(P). As we cross each of the image arcs of the indefinite fold
point curves the f-fibres change as a result of an oriented surgery. Note that
there are only two ways to perform two oriented surgeries on a circle,

namely:
A : B8 A : B8
B A A ]

alternating parallel
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where the A-surgery replaces

B —
by A}{A
—_—

A

(similarly for B-surgery). We draw the fibres in a saturated neighborhood
containing P and P! above a neighborhood of f(P). We perform the
surgeries A and B as we cross image of the indefinite fold curves labelled A
and B respectively.

In the alternating case:

NG

25

28 B 0=
\@

/g3 52

In the parallel case:

N

OO O > O OO
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Thus on W neighborhoods are in these two cases:

>

alternating parallel

In the alternating case we call g(P) a (1-2-2-1)-point and in the parallel
case we call g(P) a (1-2-2-3)-point. We have now completed the catalog ol
local descriptions of W.

3

The following is an old problem addressed in [2], [3] using the auxiliary
space W.

Given f: M — R?>, M a compact, oriented 3-manifold and f stable, when
does there exist an h: M — R? such that (f, h): M — R* xR? is an immersion
and how many different such h are there.

Haefliger in [1] solved the analogous problem of the existence of an
immersion in R® over a stable map of a surface into R®. The necessary and
sufficient condition for the existence of such an immersion is that for each
component curve of S(g), a neighborhood of that component is orientable iff the
number of cusp points on that component is even.

He gave the following beautiful example of a stable map of S? into R?

that cannot be lifted.
—
Here the polar caps are embedded as the tear drop shaped regions and the

equatorial cylinder is mapped to the degenerate fattened figure eight.

In the rest of this talk I will give two examples of stable maps of 3-
mantfolds into R? that cannot be lifted to immersions in R*. To show that no
such immersions exist will require a few of the ideas used in the classification
of the regular homotopy classes of such lifts.
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We know that for any stable map f, that W—q(S(/)) is a disjoint union
of smooth connected surfaces. Let # denote the set of all such component
surfaces. Obviously each Re & is immersed by fin R? and so each Re # has
a natural orientation via f. Furthermore ¢~ ! (R} is a circle bundle —a trivial
one if M is oriented. Thus if M is oriented the circle fibres of ¢~ ! (R) can be
coherently oriented in a way compatible with the orientations of M and R.

Suppose there were an h: M — R? such that (f, h) immersed M in R*.
Then every circle fibre of ¢~ ! (R) for all Re # would be immersed in R? by h.
In the oriented case, if we oriented the circles as described above, the
rotation number of h would be the constant, r,(R), for all the g-fibres over R.
If M is not oriented, define r,(R) to be the absolute value of the rotation
number of h on any g-fibore over R with any orientation.

We make two preliminary remarks:

(a) If Re# has the g-image of an arc of definite fold points on its
boundary then |r,(R)] = 1 for (f, h) any immersion. This is clear since Th is
injective on ker Tf. At any fold point therefore, h embeds a planar neighbor-
hood transverse to the fold curve. If the fold curve is a definite fold curve,
this planar neighborhood may be taken saturated. Thus A embeds the circle
fibres above R close enough to the definite fold curve and hence |r,(R)! = 1.

(b) Let K be the Klein bottle obtained from I x §* by identifying 0 x S*
with 1 x §' with opposite orientations. Let i: I xS' — K be the identification
map. Let h: K — R? be such that hoi|t xS! is an immersion for all ¢. Then
since the rotation number, rot(hoi|t x S!) is independent of ¢t and

rot(hoi|0xS") = —rot(hoi|1 x §Y),
we sec that rot(hoi|t xS") =0 for all ¢.

ExampLe 1. Let ¢: R?* -R*: (x,y,2) =(x, —y,2) and =: R® —R:
(x,y,2) >x. Let 8§ ={(x,y,2eR?|x*+y*+2z? =1}. The diffecomorphism
¢ restricts to an orientation reversing diffecomorphism that commutes
with = which maps 8% onto [—1, 1]. Let M be the identification space of
[0, 1] x 82 obtained by identifying 0 x S? with 1 xS? using ¢. M is an S?
bundle over S*. We let g map M into S! x[—1, 1] by mapping each fibre S
by = onto [—1, 1]. Finally we let f: M — R? be the composition of g with
any embedding of $' x[—1, 1] in R% This f is obviously stable and makes
the following diagram commute.

IeSt—t oy

l AN
twm lg
Il —L > s[4 R?

Here i and i are the obvious identification maps. By construction g~! (S>1
xt) = K, is a Klein bottle for any lt] # 1 and S(f) =g~ '(§' x{—1, 1}), two
definite fold curves.
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Suppose (f, h): M — R?* x R* is an immersion, then h: K, — R? immerses
the circle f-fibre over each point of S! x¢, with rotation number zero by (b)
above. On the other hand since W = §' x[—1, 1] and R consists of a single
element namely, S' x(—1, 1), whose boundary consists of the images of the
two definite fold curves, |r,(R)] =1 by (a) above. Contradiction. Thus no h
exists which makes (f, h) an immersion.

ExampLE 2. In this example we do not describe M directly but describe
W and f(M). For this example we need the following easily proven state-
ment: Let M be orientable. If there is an h: M — R?> making (f, h) an
immersion, then S(f) can be oriented so that the rotation number-. function r
=r,. R — Z satisfies:

For a neighborhood of a point in the g-image of an arc of definite fold
points, r(R) =1 (= —1), if the f-image of R lies to the left (right) of the image
of the oriented definite fold curve.

R

e

For a neighborhood of a point on the g-image of an arc of indefinite fold
points, r(Ry)+r(R3)—r(R)) =1 (= =1), if the f-images R, and R, lie to
the left (right) of the f-image of the oriented indefinite fold curve and the
f-image of R, lies to the right (left).

Now suppose that /(M) < R? looks like:

-

flRy)
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The integers in the regions indicate the number of times W covers that
region. We assume that the fpre-image of the doubly-covered region is
connected. The single element R,e # that double covers that region is an
annulus whose boundary circles double-cover both boundary components of
f(R;). The embedded circles are all images of definite fold curves and the
immersed circle is the image of an indefinite fold curve. The self intersection
point of this immersed circle is the image of a point of type (1-2-2-1).

Suppose there were an h: M — R? such that (f, h) immerses M in R*.
Take an orientation of S(f) as described above, and let r,(R;) = r;. By (a)
since every region R; has the image of a definite fold curve on its boundary,
|r;] = 1. Further by the unproven statement above,

2ry—r, =r3—2r,.

There is no solution satisfying both of these conditions.
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