MATHEMATICAL MODELS AND METHODS
IN MECHANICS
BANACH CENTER PUBLICATIONS, VOLUME 1§
PWN--POLISH SCIENTIFIC PUBLISHERS
WARSAW 1985

MATHEMATICAL MODELS OF PHENOMENOLOGICAL
PIEZOELECTRICITY

W. NOWACKI (Warszawa)

1. Introduction

In the present lecture we will consider some mathematical models ol pheno-
menological piezoelectricity. We begin our survey with the model of W.
Voigt [1], now ranked among the classical models, in which the quasi-static
electric field is coupled with dynamic mechanical motion.

A further step in our considerations will be a departure from the quasi-
static electric field: we will concern ourselves with a more general case, in
which the dynamic electro-magnetic field and the temperature feld are
coupled with the deformation field ([2], [4]). Finally, we will examine the
most general model, designed by R. D. Mindlin [3], in which the influence of
the electric polarization gradient upon the electromechanical field is taken
into account. '

Certain crystals, such as quartz, tourmaline, Seignette salt, when subject
to a stress, become electrically polarized (J. and P. Currie, 1880). This is the
simple piezoelectric effect. Besides the simple piezoelectric effect there occurs
an inverse effect, in which the electric potential produces a deformation. This
effect was foreseen by Lippmann [5] in 1881 on thermodynamic grounds and
confirmed by the Curie brothers [6] also in 1881.

The practical applications of piezoelectric effects are widely known; first
of all in the generation of ultrasonic waves and also in the conversion of
electromagnetic energy into mechanical energy and conversely, in prospecting
solids with piezoelectric properties, etc. [7].

2. Electromagnetism

We begin our consideration from the electromagnetic foundation of the
problem.
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The Maxwell equations in the MKS system have the form [§]
(2.1) curl H = 1+ D,
(2.2) curlE = —B,

where H is the vector of the magnetic field, E the vector of the electric field,
B the vector ol magnetic induction and 1 the vector of the electric conduc-
tion current. In a solid we have the following material relations for the field
vectors D, B:

(2.3) D=¢,E+P,
(2.4) B= lf()(H+M).

Here, P is the vector of electric polarization and M the magnetization vector;
£o. fty denote the electric and the magnetic permeabilities in a vacuum.
Equations (2.1) and (2.2) should be completed by the Gauss equation

(2.9 div D = g,
and an equation following from equation (2.2), namely
(2.6) div B =0.

Changing over from the Maxwell equations (2.1)—(2.6) to the quasi-static
approximation is rather inconvenient. Much more uscful will be the dis-
cussion of the Maxwell equations expressed by the potentials: the scalar
electric potential ¢, and the vectorial magnetic potential A.

These equations have the following form [8]:

(2.7) curl H=1+D,
(2.8) B = curl A,
(2.9 E = —grad ¢ —A.
(2.10) div D = g,.

In virtue of (2.1) and (2.2) we obtain the Poynting theorem [8]

o

(2.11) it ‘U,dV= - ln'hdA— lE-ldV,
=
| ¥

where
U.,=E-D+H-B, h=ExH.

Equations (2.11). the mathematical consequence of the Maxwell equations.
can be physically interpreted as the balance of electromagnetic energy. Thus
the scalar n-h represents the flux of electromagnetic energy through the
surface 4 of the body into the surrounding medium. The expression U,
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=E-D+H-B is identified with the time increment of the electromagnetic
energy. Finally, E-1 represents Joule’s heat.

The Poynting vector h can be written tn terms of potentials ¢ and A
(2.12) h=ExH=¢(I+D)—A xH.

Consider now piezoelectric bodies (which are dielectrics). In general they
are electrically neutral, contain the same amount of positive and negative
charges and do not conduct electric curremt. The introduction of a dielectric
into an electromagnetic field changes the latter. Consequently the vectors E
and D are not parallel and differ by the polarization P.

For piezoelectrics we introduce the same simplifications as for non-
magnetizable dielectrics
(2.13) I=0, M=0, o,=0

A further simplification consists in neglecting the magnetic therm A in (29).
From the energy balance (2.11) we obtain

% [UedV= —J.n-rpl')dA - fE-DdV
B y 7
and [rom the sysicm of equations (2.7)-(2.10) and (2.3)

(215) E= —gradp, divD=0, D=¢(E+P, A=0, B=0.

(2.14)

Introducing (2.15), into (2.15), we obtain the following equation for the
function ¢:

(2.16) —e, PP o+divP =0.

The simplification A ~ 0 or |A| < |grad ¢/ is valid when the electromagnetic
waves essentialy are uncoupled from the elastic waves and we are considering
wavelengths near those of the elastic waves, which are much shorter than the
electromagnetic wavelength of the same frequency.

The justification of the above (experimentally confirmed) simplification
was presented in an interesting paper by H. F. Tiersten [9].

3. Energy balance. Constitutive and differential equations
of piezoelectricity

Assume that the body under consideration undergoes a deformation due Lo
an external loading electromagnetic field, which may vary with time. Assume
also that there are no heat sources in the body and no heat conduction (i.c..
that the process is adiabatic). Apply to an arbitrary region V of the body
bounded by surface A4 the principle of energy conservation [10]

(3.1)

-~
)|A)

J(%Qv,- r,+U)dV =
1

Xt aV+ 'p,—v,-clA+ ‘E,-D,-dV.
‘l ‘/

4 vV 3
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Here ¢ is the density, v; = u; the time derivative of displacement, X; the
components of body forces, p; = a;; n; the contact forces, and U the internal
(mechanical and electromagnetic) energy.

The principle of energy conservation states that the time increment of
the kinetic and internal energies is equal to the power ol the externai forces
and the electromagnetic energy.

Transforming equation (3.1) and bearing in mind the equation of motion
(3.2 o

gt Xi = v,

we obtain the local form of energy balance
(3.3) H =o;é&;—E; D
where
&; =3y j+u;;), H=U-ED,

and H is the electric entalpy. It is evident that H = H (g;;, E;). Hence we
obtain

JoH \ . oH
(34) (O'ij—gij)ﬁu—(Di“Fa—Ei)E; =0.
This equation should hold for arbitrary values of &;, E;, whence
¢H oH
(3.5) g =

= p= -
Y gy ' OE;

This relation will be employed in deriving the constitutive relations,

Let us expand the electric entalpy H (g;;, E;) into the MacLaurin series in
the vicinity of the natural state (g; = 0, E; = 0), neglecting terms higher than
of the second order. For a homogeneous anisotropic body we obtain the
following expression:

(3.6) H(e;j, E) = jchutijen—eujsi; Ex— e E.E;.

Here cfy, is the elastic stiffnes for E; =const, e,; are the piezoelectric
constants and €; the dielectric permittivity (dielectric constant) for g,
= const.

From the thermodynamic consideration and symmetry of stress tensor

o;; and strain tensor g;;, we have

(3.7) Ciial = Cuiijy  Cijit = Cjim»  Cijwt = Cijuts €yij = €ji, €jj = €j;-
In the most general case of triclinic crystal (without a centre of symmetry) we

have 21 independent elastic constants, 18 independent piezoelectric constants
and 6 independent dielectric constants.

We see from W. Voigt’s theory that the piezoelectric effect can occur in
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materials which do not have a centre of symmetry. In bodies which do have
a centre of symmetry the polar tensor e,;; vanishes.

For non-centrosymmetric crystals relations (3.5) lead to the constitutive
equations

(3.8) Oij = Cijikd €1 — Euij E,,
(3.9) D; = ey e+ Ey.

The above-mentioned relations present the material law and the mathemat-
ical model of quasi-static piezoelectricity in the classical Voigt theory. Stresses
6;; and electric displacements D; are linear [unctions of strains ¢; and
components ol vector E;.

For centrosymmelric crystals we have (he following formulae:

(3.10) Gii = Cijut Exio D; = e, E,.

Let us now introduce the constitutive relations (3.8), (3.9) into equations
of motion and Gauss’ law (div D = 0). Accordingly, we arrive at a four-
equation system in which the displacements u; and the electric potential ¢

appear as unknown functions:
(3.11) Cijur Up i+ ewj O+ X; = 01,
(3.12) Cirt Un ti —€ix P = 0.

In the case of centrosymmetric crystals equations (3.11), (3.12) will take
the simple [orm

(313,) ciﬂd uuv_,--l—X,- = Ql:ii,
(3.13") €x@Pui = 0.

Voigt's piezoelectricity theory at present can be said to be developed to
the full. Not only the general theorems, such as variational theorems, the
fundamental energetic theorem, the theorem on uniqueness of solutions, the
theorem of reciprocity of work, the Hamilton principle have been derived
[10], but also a series of particular problems, concerning mainly vibrations
of thin plates and the propagation of Rayleigh and Love surface waves, have
been deal with and worked out for various classes of crystals [11]-[15].

4. Coupling of elastic and electromagnetic waves

In the preceding considerations we dealt with the coupling between the
quasistatic electric field and the motion of the elastic body. We now proceed
to a more general problem, namely the dynamic elastic and dynamic
electromagnetic problem of piezoelectricity.
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Consider the complete set of Maxwell equations, assuming that for the
piczoelectric medium we have 9, =0, F =0, M =0:

(4.1) curl H = D,

(4.2) curlE = —B,

4.3) _ div B =0,

(4.4) div D = 0.

This set of equations is completed by the matenal relations
(4.5) D=¢,E+P,

(4.6) B=y,H.

Performing the operation of rotation over equation (4.2) and making use of
equation (4.1) and relation (4.6). we arrive at the wave equation

4.7) curl curl E = — oD

We can represent the components of the vector D by means of the consti-

tutive relations for the quasistatic problem (Eq. (3.9)). We obtain

(4.8) E ;i—E; ;i = ttolegly+ey Ey.
when

o
E = 2 (Ut U e)-

In these three equations the unknown functions are u; and E;. The remaining
three equations can be deduced from the equations of motion. Making use of
equation (3.2) and (3.8), we obiain

(4.9) Cijit Urtj — €xij B j+ X = Qi

Thus. we have derived six differential equations in which six [unctions
appear: three components of displacement u; and three components of the
vector K.

J. Kayme [16] investigated the propagation of clastic plane waves and
electromagnetic waves in ammonium dihydrogen phosphate (ADF). This
crystal belongs to the tetragonal system (of class 42 m). It appeared that for
this case the influence of the electromagnetic field on the velocity of
propagation of an elastic wave is insignificant. The waves propagate with
constant velocity and do not undergo dispersion. In another case investi-
gated by J. Kayme [16], in which it was assumed that I # 0, attenuated
waves, undergoing dispersion, were obtained.

5. Thermopiezoelectricity

In the preceding considerations we assumed that the thermodynamic process
is adiabatic. Now we discard this restriction. Thus, the heat flow through
surface elements is denoted by q (referring to a unit area and a unit time.) In
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the interior of the body acts a heat source W (referring to unit volume of the
body and unit time). Consequently there arises in the body a temperature
increment (), equal to the temperature difference 0 = T— T, where T is the
absolute temperature and T, the temperature of the natural state, tn which
there are no strains or stresses.

We shall deal with the energy balance, taking into account the thermal
terms [4].

-

(5.1) (ov,v;+ U)ydV = J(X,- v+ Whd V- J(p,— vy, n)d A,

Vv P A

B
cr
and the Clausius: Duhem inequality

g\ W
(5.2) s—(‘T) —> 0.

The energy balance contains now the non-mechanical power, the flux of
heat through the surface of the body and the energy generated by heut in the
interior of the body. In the Clausius- Duhem inequality (5.2), § is the entropy
with respect to unit volume and unit time.

From the transformation of (5.1) by introducing the frce energy
F=U-ST and electric entalpy H = F-D; E;,, we obtain the following
relations:

cH cH cH q;: T,
53 L= D = — = . S = -, . 0
(5:3) % L ! CE, cT T >

The inequality @ = —¢g, T,/T> 0 is satisfied by assuming that

Equation (54) is the Fourier law for an anisotropic body. The quantity
§2 > 0 should be a positive definite quadratic form. Inequality (5.3) leads, in
view Silvester’'s theorem, to restrictions on the symmetric coefficients of heat

conductivity k;;. Expanding the entalpy H into a Taylor series in the vinicity
of the natural state

¢,
(55) H = %cijklﬁl'j};kf—ekijé;l‘j Ek—%e” E.‘ EJ_}’UC”U—‘L/. E,— U—‘_“ UZ,

<«fo
and making use of relations (5.3), we arrtve at the constitutive equations

(5.6) O;j = Cijut 1~ Vi 0 i kg Ey,
¢, f

(57) S = }'ijﬁij'{"‘_() ! +q| F,‘,
T,

(58) D.- = e“d Ekl+gi 0 +€ik Ek'
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Equations (5.6), (5.7), (5.8) are the Duhamel-Neumann equations generalized
to piezoelectricity; the second of them is an expression for entropy and the
last is an expression for electric displacement. This is the mathematical model
for linear thermopiezoclectricity. We have here ten new constants: y,;, ¢i. C..
The constant ¢, has the meaning of the specific heat at constant strain g,.

Introduce now the constitutive relations (5.6)—(5.8) into the equations of
motion and the Gauss equation

(5.9) CijurUp, 15+ €uij O.u;— ¥i; 0+ X = i,
(5.10) Cont Ui — € P +9: 0 = 0.

The set of equations will be complete if the equation of heat conduction is
supplemented. This equation is derived on the basis of the entropy balance

(S.ll) TS = —q,-,,-+W.

Taking into account the constitutive relation (5.8), the Fourier law (5.4)
and assuming that |6/Ty| < 1, we arrive at the linear heat conduction
equation
(5.12) k;; 9,.'1—0;0— To(yij&;—9: ‘Pe) =—-W.

Equations (5.9) (5.10) and (5.12) constitute the complete set of equations of
thermopiezoelectricity.

For the centrosymmetric crystals we obtain only the coupling between
the displacements and temperature

(5.13) Cijui Wty — 7 05+ X = oy,
(5.14) kl’j B.ij—cz 0— Toyijéij= — W,
(515) E“t (p.l'k = 0

Within the domain of thermopiezoelectricity we can obtain a series of general
theorems on solutions, principle of virtual work, [17], the Hamiiton principle
[18], the reciprocity theorem of work [19]. So far only a few particular
problems, related to the propagation of Rayleigh waves have been solved
[20].

The above considerations can be generalized to coupled dynamical
problems of mechanical motion and electromagnetic dynamical field. In this
case we are faced with a system of seven equations

(5.16) Ei,jj_Ej.ji = Ho D.',
(5.17) o-ji.j+Xl' = Qi‘.i’
(5.]8) kUU'U—CCG—To(}JUEfU-Fg,E,)= _W.

In these equations we introduce the constitutive relations (5.6), (5.8). Observe
that in view of the heat coupling all waves are attenuated and idspersed.
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6. Polarization gradient theory of piezoelectrics

In the derivation of the classical phenomenological theory, piezoelectricity is
expressed as an interaction between strain and electric displacement or
electric polarization.

The equations of classical piezoelectricity are based on the assumption
that the internal energy is a function of only strain and polarization (or only
strain and electric displacement).

R. D. Mindlin [3] has introduced the polarization gradient into the
internal energy and examined the consequences of considering an additional
linear electromechanic effect. The resulting mathematical theory has interest-
ing novel properties. The generalized theory accomodates the mathematical
representation of surface energy of deformation and polarization (measured
in the laboratory).

It can account for an apparent anomaly observed in measurements of
the electrical capacitance of thin dielectric films ([21], [22]). The additional
electromechanical effects are not confined to non-centrosymmetric materials.

Let us decompose the internal energy U of the dielectric into the energy
U* related to the deformation of the body, the polarization and polarization
gradient and the energy related to the electric field ¢.

(6.1) U= UL(E.-_,', P, Pj,i)'{"%eo PiPi-
Introducing the entalpy H = U —E; D;, we obtain from (6.1)
(6.2) H = UL(F-.',‘, P, Pj.i)_%eo 0ipi+o,;P;.

Consider a body V bounded by surface A4 separating the body from the
vacuum V'. Toupin’s form ([23], [24]) of the Hamilton principle is the
following one:
ty &)
(63) O fdt | (K-H)dV+ | dt[j(X,- 6u,-+E?5P,-)dV+jp,- du;dA] = 0.
V A

f v f

Here V* = V+ V' and E? is the external electric field; K is the kinetic energy.
We have

out  out Ut

64) O6H=—0¢;+—0P,+—38P;,+ P, d¢,; 0P, — ;00 ;.
( ) 68.‘_,‘ su + ﬁP, i + an,.‘ Jii + i (p,: + (p,l i elI) (p,l 6(10.1
We define the stress o;;, the local electric force E; and the tensor E;; by the
formulae
' Ut out Ut
(6.5) 6y = < E = — _ 9

YT 0, v ep T ep;

ij
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Introducing (6.4) and (6.5) into the Hamilton principle (6.3), after simple
transformation we arrive at the equation

2
(6.6) J' d’ .'. [(Gﬂ‘_’ + X‘: - Qi"i)()'u" +(Ejl.j+ E"L_ (P,,- + E'U) (SPi +
[ V
1 6
+( —€Eq (p’“ + Pi.i) (s(p] dV- j‘ dt J‘ EO (P,“ (S(P dV+
i Vv’

12

+ [ dt [[Upi—o;n)ou;—E;n; 8P+ m(eolg | — P)dp]ldA = 0.

l] A

In view of the arbitrariness of the virtual increments we obtain Euler's
equations

(6.7) o+ X = o,

(6.8) E;,,+Ef—¢,+E’ =0,
(6.9) -+ P ;=0 on V,
and

(6.97) ;=0 on V,

These equations should be completed by the natural boundary conditions
following [rom (6.6):

(6.10) Gyn; = p,
(6.11) EJ-,-HJ-:O,
(6.12) (—eolp i+ P)n, = 0.

Besides condition (6.10) for traction we may assume the displacement
condition (where ou; = 0). Similarly, besides E;n; = 0 we may take a condi-
tion for the polarization P;. Finally, besides condition (6.12) prescribing the
charge on the surface we may prescribe the potential ¢.

Let us take the energy UY(P;, P;;, &;) in the form

(613) UL=b3PJ'I+'%ai;G PIPJ+%blE_;rlPJ,IPLk+
+3elid e e+ diu Py e+ Piep +ii Pi P

Here the indices P, G, ¢ denote a fixed polarization, the polarization gradient
and the strain. In view of the constitutive relations (6.5) we obtain the
constitutive equations

(6.14) Gij = Cijur & +ij Pu : +dyyi; Py,
| .
(6.15) —EJI" =S+ @u P +ip Pra.
LD
(6.16) E;=dijututiui Pv +biju Pl.k+bi0j d;;-
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Introducing relations (6.14)-(6.16) into equations (6.7)--(6.9) we arrive at a
system of scven dilferential equations with the [ollowing unknows: the
pclarization P;, the displacement u; and the electric potential ¢. Observe that
the introduction of the polarization gradient does not raise the order of the
differential equations.

It is noteworthy that electromechanical coupling appear also in a body
with central symmetry. Although in this particular case we have f;; =0,
Jiix = 0 (since odd tensors do not appear in bodies with central symmetry),
the constants d;;, do not vanish. It follows from (6.14), (6.16) that these
constants play the role of coupling between the mechanical and the electric
fields.

The tensor E;; is asymmetric. For ¢; = 0, P, =0, P, ; = 0 the stresses a,;
and the local clectric ficld Ef vanish. But in this case the tensor E;; does not
vanish and is equal to b} = const. It is evident that the magnitude b} will be
introduced in the solution of the set of different:al equations through the
boundary conditions. In consequence we obtain a residual state of strains
and stresses in the medium.

In this case of the isotropic body the constitutive equations will take the
form

(6.17) 64 = Cr 2, 0+ cya(u jHu; )+ dy oy Py 0+ dyy (P j+ P ),

i

(618) E = ‘!lZ “k,’-. ‘jij+‘l44(“i.j+“j,i)+blz Pk.k ()lj+b44(Plj+PJ,l)+

Y,

1

+bo: (P — P j) + bij 0
(6.19) El= —uP,

Substitution ol relations (6.17)-(6.10) into the diﬂ‘erenti\al equations of
the problem leads to the three-coupled cquations system

(6.20) Caq VPu+(c;3+Caq) PP -u+dyy V2P +(d,, +dyg) VV-P+ X = oli,

(6.21) dyg PPu+(d, +da) VV - u+(bya +b:5) V2P +(b,, +bsy — b)) VP -P—
—aP—Vp+E° =0,

(6.22) V-P—eoVp =090, lor xeV,

(6.23) F2og=0 for xel"

Into the differential equations we introduce in addition the boundary
conditions

(6.24) Uij"j:pi' Eﬂnj =0, [—GOICP',-|+P,~]I1,- =0 OI'I A.

Let us return to system (6.20)—(6.23). It is a system of coupled equations,
the system being very complex and very difficult to solve in this form. It is
evident that the functioning of the sources: body forces X, external electric
field E, and electric charges ¢,, produces in the body a state of strain,
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attended by polarization and electric potential as well. The above mentioned
fields are also induced by boundary conditions and initial conditions.

The gradient theory developed and flourished particularly in the period
of the last ten years. Especially the static problems engaged a good deal of
attention in the investigations. Green functions of elastostatics were ob-
tained; stress functions were designed, the reaction of electric charge in
elastic half-space was examined. Much attention was devotcd to the problem
of surface energy ([25]-[29)).

Within the range of dynamics we should notice some works concerning
the propagation of plane wave and Rayleigh and Love’s surface waves ([30],
[31D.

In recent yers, the fundamentals of thermo-piezoelectricity, both sta-
tionary and dynamic, have been worked out ([33]-[37]).

7. Coupling of elastic and electromagnetic waves in
the gradient theory of dielectrics

In our considerations referring to the gradient theory of dielectrics we
understood the electromagnetic field as the quasi-static electric field. At
present, we give up this assumption, and we will consider the full system of
Maxwell's equations for dielectrics (assuming 1 =0, M = 0):

(7.1) curlH = D,
(7.2) B = curl A,
(7.3) E = —grad ¢—A,
'(7.4) div D = g,.

Equations (7.1), (7.2) together with the relations:
(7.5) D=¢c,E+P, B=pu,H,

are the point of departure for further considerations. Carrying out an
elimination, we obtain the wave equations:

2 _1 2 -1 q; -1, _
(7.6) (V —C—z('.?,)qo—eo div P+eg ' 0, =0,

1
(7.7) (Vz-? 6,2)A+C"266'P=0, for xe V.

Here ¢ is the speed of light.
Let us notice that the balance equilibrium equation of intermolecular



MODELS OF PHENOMENOLOGICAL PIEZOELECTRICITY 605

forces
is coupled with equation (7.3), owing to the relation E; = — ¢, —A4;.

If we have to do with an isotropic body, we will obtain the following
system of equations

(79)  caa PP+ (crz+Caa)PV U+dyy V2 P+(d 3 +des) VP -P+X = ou,
(7.10) d44 V2u+(d12+d44) VV'“+(b44+b77) V2P+(b12+b44—b77)VV'P+
+aP—Vp—-A+E’=0,

| .
(7.11) (V’—?af)q:—ea‘V-P+ea‘99=0,

(7.12) (Vz—%ﬁf)A—eglc_ZP=0.

The above differential equations were given by R. D. Mindlin [32].
Moreover we can generalize our mathematical model to thermopiezoelectri-
city. Hence we obtain the following system of equations:

(7.13) cqqVPu+(cip+ i) VV-u+d,, V?P+(d;,+d ) VV-P+X = pii+y70,
(7.14) d44 V2“+(d12+d44) VV“+ (b44+b77) V2P+(b12+b44_b77) VV'P_
—aP—Fe+E° = npo,

1
(7.15) (Vz—(_—zﬁ,z)(p—ealV'P+ealge=0,
| o
(7.16) (VZ—C—Z(?,Z)A—GOIC 2p =0,
(7.17) szg—Cgo—']})(yukvk+r]Pk'k)= _W

In the present report we have revised the mathematical models of
piezoelectricity and thermopiezoelectricity from the simplest Voigt model up
to the very complex model of the dynamic thermopiezoelectricity. Together
with generalization of the model arises the expansion of mathematical
difficulties. Simultaneously, the developed (and intricate) models explain a
series of anomalies and allow us to discover new phenomena. The investiga-
tion of coupled fields leads to the creation of new interdisciplinary branches
of science, since there arise new phenomena and new effects. We encounter
here a collaboration of scientist representing various fields, namely
mechanics, acoustics, thermodynamics and electrodynamics.

The development of the theory of coupled fields is a characteristic trend
in the modern mechanics of solids.
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