MATHEMATICAL PROBLEMS IN COMPUTATION THEORY
BANACH CENTER PUBLICATIONS, YOLUME 21
PWN — POLISH SCIENTIFIC PUBLISHERS
WARSAW (988

ON SOME ARITHMETICALLY EXPRESSIBLE
PROPERTIES OF PROGRAMS

M. E. SZABO*

Department of Mathematics, Concordia University, Montreal, Canada

0. Introduction

The purpose of this paper is to show that the method of diagrams of types in
[4] and [5] can be used to express familiar properties of parallel programs in
Peano anthmetic (PA). By an expression of a property we mean a formula of
PA which holds in the standard model N of PA precisely when a given
program has the specified property. Although non-temporal, the underlying
semantics of programs is similar to the branching-time interpretation of
parallel programs of [3] in which the meaning of a program is identified
with the totality of computatjon trees over a fixed data base generated by the
given program. In the present context, this data base is the standard set of
natural numbers. We show that the properties of programs discussed in [2]
and [3] can be described effectively as first order properties of computation
trees. By Church’s thesis and by virtue of the representability of recursive
functions and relations in PA, all extraneous function and relation symbols
used can be eliminated from the resulting formulas in favour of genuine
formulas of PA expressing the same properties. One of the key elements of
such descriptions is the inclusion, at each node of a computation tree, of a
numeric analogue of the current instruction of a given program.

1. Programs

Programs are constructed inductively from the atomic assignment statements
[x/v] (v=xi, xi+1, or xi—1), the null statement, and from quantifier-free

* This paper was written while the author was a guest of the International Mathematical
Banach Center and was stimulated by discussions with Professor Helena Rasiowa. The present
research is supported in part by the Natural Sciences and Engineering Research Council of
Canada and by the Fonds F.C.A.C. pour l'aide et le soutien 4 la recherche du Québec.

25 — Banach Center 21

386 M. E. SZABO

formulas C(vl,...,vn) of PA using the programming constructs
compose(P1, ..., Pn), if (C, P1, P2), while(C, P1), parallel(P1, ..., Pn), and
await (C, P1) in the usual way. The set of programs is based on the fixed
infinite list x1, x2, ... of program variables.

The construction of programs is subject to the following syntactic
restrictions: The variables vl, ..., vn in C are assumed to be among the
program variables of the programs in which the condition C occurs, the
statements Pl, ..., Pn of a compose statement must not be await or compose
statements, the statements Pl and P2 in an if statement must not be await
statements, the statement P1 in a while statement must not be a null, await,
or while statement, and the statements P1, ..., Pn in a parallel statement
must not themselves be parallel statements.

2. Execution schemes

Each program determines a finite number of labelled “subprograms” which
correspond to the current instructions in the course of a computation of a
program. We refer to these “subprograms” as execution schemes. Their
definition requires the introduction of a numerical type structure on the
occurrences of the subprograms of a given program. For this purpose we
think of a program as represented by its construction tree, with the occur-
rences of its atomic statements numbered consecutively from left to right, and
all occurrences of null labelled with type 10, and assume as given a fixed
recursive Godel numbering G: N*¥* — N of al finite sequences of natural
numbers. Based on these data, we introduce the following system of program

types:

2.1, t(null) = 10;

2.2. t{occ(i, [x/x])) = 10G (i, x)+1;

23. ¢t (occ(: [x/x—1])) = 10G (i, x)+2;

2.4. r(occ(i, [x/x+1]) = 10G (i, x)+3;

25. ¢ (while(C, P1)) = 10¢(P1)+4;

2.6. r(awalt(C P1)) = 10t (P1)+5;

27. 1(if (C, P1, P2)) = 10G (G (¢ (P1), 1 (P2))+6:

2.8. t(compose(P1, ..., Pn)) = 10G (i (PL), ..., t(Pn))+7;
29. t(parallel(P1, ..., Pr)) = 10G(t(P1), ..., t(Pn))+8;
2.10. (11, ..., tn: E)=10G(G(t1, ..., tn), t(E))+9,

where the variable x = xi in 2.2-24 is coded by its index i, occ(i, [x/x])
stands for the ith occurrence of [x/x] in a given program, and 1, ..., tn: E
is a pair consisting of a finite sequence 1, ..., tn of types of compose and
while statements, together with a program statement E.

ARITHMETICALLY EXPRESSIBLE PROPERTIES OF PROGRAMS 387

We define the execution schemes of a program as follows:

2.11. The execution scheme of null is null;

2.12. The execution schemes of t: null are ¢: null and, if r = 10G (¢1,
..., u, 100+7 and u = t(S), the execution schemes of §;

2.13. The execution schemes of [x/v] are [x/v] and null;

2.14. The execution schemes of t: [x/v] are t: [x/v] and the execution
schemes of ¢: null;

2.15. The execution schemes of compese(P1, P2) are compose(P1, P2),
t: P2, where t = t(compose(P1, null)), and the execution schemes of t: P2
and of Pl;

2.16. The execution schemes of u: compose(Pl, P2) arc u: compose
(P1, P2), ut: P2, where t = t(compose(P1, null)), and the execution schemes
of ut: P2 and of u: Pl1;

2.17. The execution schemes of if (C, P1, P2) are if(C, P1, P2) and the
execution schemes of Pl and of P2;

2.18. The execution schemes of r: if(C, P1, P2) are r: if(C, P1, P2),
t: P1 and t: P2 and the execution schemes of : Pl and of r: P2;

2.19. The execution schemes of while(C, P1) are while(C, P1), t: PI,
-where t = {(while(C, P1)), the execution schemes of (: Pl, and null;

2.20. The execution schemes of u: while(C, P1) are u: while(C, Pl),
ut: P1, where t=t(while(C, P1)),- the execution schemes of wt: Pl, and
u: null;

2.21. The execution schemes ol await(C, P1) are await(C, P1) and the
execution schemes of Pl;

2.22. The execution schemes of parallel(P1, P2) are all schemes of the
form parallel(Q, R), where Q is an execution scheme of P1 and R is an
execution scheme ol P2;

2.23. The execution schemes of r: parallel(P1, P2) are all schemes of the
form r: parallel(Q, R), where Q is an execution scheme of Pl and R is an
execution scheme of P2; '

2.24. The execution schemes of t1, ..., t(n—1), tn: P are all schemes of
the form t1, ..., t(n—1): Q, where Q is an execution scheme of tn: P.

This definition extends in the obvious way to compose and parallel
statements with more than two arguments. An induction on programs shows
that every program determines only finite many execution schemes.

3. Cancellation trees

We structure the possible orders of execution of a parallel program P with
initial input a in the form of a rooted tree Tr(P, a) whose nodes contain
both a program and a data component describing the currently active

388 M. E. SZABO

components of P and the values computed up to the given point in a
computation. Since the program component of a node is obtained by a
“cancellation” procedure from the execution schemes determined by P, we
refer to Tr(P, a) as a cancellation tree. The root of Tr(P, a) is the pair (P, a)
and every other node is computed from an earlier node by the next-node
“function” o. A related operational semantics for parallel programs may be
found in [1].

The nodes of the tree Tr(P, a) are defined inductively from the root
(P, a) as follows:

3.1. o(null, b) is undefined,
o(t: null, b) = (S, b),
where u =1¢(S) and ¢t = 10u+4 or 10G (u, 10)+7;
o ([x/x], b) = (null, b),
o(t: [x/x], b) ={t: null, b);
33, o([xi/xi+ 11, (..., xi, ..)) =mull, (..., xi+1, ..),
o(t: [xi/xi+1], (..., xi, ..))=(¢: mull, (..., xi+ 1, ...));
34. o([xifxi—11, (..., xi, ..)) = (null, (..., xi—1, ..))
oft: [xifxi—1], (..., xi, ..))=(c: mall, (..., xi—1, ..));
3.5. o(compose (P1, P2),b) = (r: P2, b), where r = t (compose (P1, null)),
o (compose (P1, null), b) = (P1, b),
o(u: compose(P1, P2). b) = (ut: P2, b),
where t = t(compose (P1, null)),
o(u: compose(P1, null), b) = (u: PL, b);
3.6. o(while(C, P1), b) = (r: P1,b) if C[b] is true,
' =(null, &) if C[b] is false,
where ¢ = t(while(C, P1)),
o(u: while(C, P1), b) = (ur: P1,b) if C[b] is true,
" =(u:mll, b) if C[h] is false,
where ¢ = t(while(C, P1));
37. 6(if(C, P1, P2),b) = (P1,b) if C[b] is true,
” =(P2,b) if C[b] is false,
o(u: if(C, P1, P2), b)=(u: P1,b) if C[b] is true,
) =(u: P2,b) if C[b] is false;
38. o(P1//P2, b) = (o1 (P1//P2, by, a2(P1}/P2, b)),
a(P1//(P2//P3), b) = &(P1//P2//P3, b),
o((P1//P2)//P3, b) = ¢(P1//P2//P3, b), _
o(t: (P1//P2), b) ={al(t: (P1//P2), b), (62(t: (P1//P2), b)),
a(t: (P1//(P2J/P3)), b) = & (t: (P1//P2//P3), b),
a(t: (P1//P2)//P3), b) = o (t: (P1//P2//P3), b)
o(t: (null//null), b) = (S, b), '
where u =t(S) and ¢t = 10u+4 or 10G(u, 10)+7;

3.2.

N

ARITHMETICALLY EXPRESSIBLE PROPERTIES OF PROGRAMS 389

3.9. o1 (null//P, b) = undefined.
, If P=await(C, P1), u=1(S), and r = 10u+4 or 10G(u, 10)+7,
then
al(t: mll//P, b) =(S//P, b) if C[b] is false,
=(S//P1,b) if C[b] 1s true;
if P # await(C, P1), u =1t(S), and t = 10G (u, 10)+7, then
cl(t: null//P, b) = (S//P, b);
if P=mnull or ¢: null, u =1¢(S), and r = 10u+4, then
al(t: mull//P, b) = (S//P, b);
al(t: null//P, b) is undefined otherwise;
3.10. ol ([x/v)//P, b) = (null//P, b[x/v]),
ol((z: [x/v))//P, b) = ((¢: null)//P, b[x/v]);
3.11. o1 (compose(P1, P2)//P, b) =((t: P2)//P, b),
where ¢t = r(compose (P1, null)),
o1 (compose(P1, null)//P, b) = (P1//P, b),
o1 ((u: compose(P1, P2))//P, b) = ((ut: P2)//P, b),
where t = r(compose (P1, null)),
o1((u: compose(P1, null))//P, b) = ((u: P1)//P, b};

3.12. o1(if(C, P1, P2)//P, b) = (P1//P, b) if C[b] is true,

=(P2//P, b) if C[b] is false,
al((t: if(C, P1, P2))//P, b) =((t: P1)//P, b) if C[b] is true,
=({(c: P2)//P, b) if C{h] is false;

3.13. o1 (while(C, P1)//P, b) =((t: P1y//¥, b) if C[b] is true:

=(mull//P, b) if C[b] is (alse,
where t = t(while(C, P1)),
ol ((u: while(C, P1))//P, b) = ((ut: P1)//P, b) if C[b] is true,
= ((u: null)//P,b) if C[b] is (false,
where t = r(while(C, P1));
3.14. o1 (await(C, P1)//P, b) =(P1//P, b) if C[b] is true,
= undefined if C[b] is false.

The definition of 62 is analogous and the cases of compose and parallel
statements with more than two variables are obtained by an obvious
induction. In clause (h) it is understood that a(Pl//P2, b) may give rise to
only a single node if o1(P1//P2,b) or 62(P1//P2, b) is undefined. The
ordered pair notation is intended to convey the idea that the next nodes of
(P1//P2, b) are considered to be ordered from left to right, with
al(P1//P2, b) to the left of ¢2(P1//P2, b). Similarly for more than two next

nodes.
4. Computation paths

In order to be able to describe the computational behaviour of a program P
arithmetically, we Gd&del-number the nodes (Q, b) of the cancellation trees

390 M. E. SZABO

Tr(P, @) of P by defining G(Q, b) to be G(t(Q), G(b). We then define a
computation path G(e)e N to be the Gddel number of a finite sequence e
=(G(el), ..., G(en)) of Gdel numbers of nodes el, ..., en of a cancellation
tree of P with the property that el = (P, a) for some a, and that if e(i+ 1} €ee,
then e(i) = (t(Q), G(b)), e(i+1) = (¢(Q), G(b)), and (@', b)) is a next node of
(@, b) in Tr(P, a). To simplify the notation, we often write ei in place of G (ei)
and refer to e = (el, ..., en) as a path. We denote the set of all computation
paths of P by Paths(P). It is clear from the algorithmic nature of the next-
node function ¢ that Paths(P) is a decidable set of natural numbers and we
introduce new “path” variables m and n' to range over Paths(P). It is
immediate from the recursiveness of the divisibility relation that the property
of being a subpath of a path is also a decidable property. We shall write
n' =7 to express the fact that n' is a subpath of . We define three special
types of “path” functions t = t(P), A = A(P), and ¢ = o(P).

(a) 1(e) = en if ee Paths(P),
=(0,0) if e¢Paths(P),
(b) i(e) = A(en) if eePaths(P),
=0 if e¢ Paths(P),
(c) o(e) = g(en) if eePaths(P),
=0 if e¢ Paths(P),

where (4(i), o(i))) = ei. Strictly speaking, 7t(e)=1(G(¢)) and en
= G(t(Q), G(b)). The functions t(P), A(P) and ¢(P) are clearly effective.

In addition, we introduce a new type of relation symbol /1 = [T(P) with
the property that N|= II1(n)[e/r] if and only if eePaths(P). By Church’s
thesis and the representability of recursive functions and relations in PA we
have the following result:

4.1. THEOREM. Any formula constructed from the language of PA rogether
with the relation symbol I1(P) and the function symbols 1(P), A(P), and ¢(P) is
equivalent to a formula of PA. =

5. Diagrams of types

Next we use the types of the execution schemes of a program P to construct
a finite diagram which depicts the possible changes of the “program states”
during the execution of P. For this purpose we order the execution schemes
determined by P as follows:

(a) Si > Sj if §j is an execution scheme of Si and Si # Sj.

ARITHMETICALLY EXPRESSIBLE PROPERTIES OF PROGRAMS 391

(b} Si > §j if 8§i > Sj and there is no execution scheme Sk such that
Si > Sk > §J.

5.1. Using the ordering >, we define the rypical tree T(P) as follows:

(a) The root of T(P) is the type t(P) of P.

(b) If ¢(Si) is a node of T(P) and Si » §j, then t(§j) is a next node of
t(Si).

(c) T(P) has no other nodes.

5.2. The diagram Diag(P) of P has a vertices the nodes of T(P), and
every pair (t(Si), t(Sj)) with the property that t(Sj) is a next node of (Si) in
T(P) (by 3.1 to 3.14) determines an arrow ((Si)— t(Sj) in Diag(P). The
remaining arrows ‘of Diag(P) are determined by the execution schemes
corresponding to while statements as described in 3.1, 3.8, and 3.9. Specifical-
ly, if Sj = while(C, P) and Si = t(Sj): mull, we introduce an arrow from 1 (Si)
to r(Sj). Similar arrows are introduced for while statements occurring inside
parallel statements. Since the arithmetical formulas C in if, while, and await
statements are lest in the determination of program types, we label the
arrows of Diag(P) depending on the truth of C or 7C with those formulas.
In particular, if Si = while(C, P1) and Sj =¢(Si): P1, we label the arrow
from r(Si) to t(Sj) with C, if Si =if(C, P1, P2) and Sj = Pl and Sk = P2, we
label the arrow from t(Si)-to ¢(Sj) with C and the arrow from ¢ (Si) to t(Sk)
with 1 C, and if Si = parallel(await (C, P1)//P1) and Sj = parallel(P1, P2), we
label the arrow from t(Si) to 1(Sj) with C, etc. We write (i, j)e Diag(P) if
there is an arrow from t(Si) to ¢(Sj) in Diag(P).

6. Programs as arithmetical formulas

From the diagram of a program P we construct a formula @(P) equivalent
to a formula of PA which describes both the program states and the
relationships between thé corresponding intermediate values in any computa-
tion of P. The basic construction is taken from [4] and [5]. We require three
types of new variables for the definition of @(P). For each program variable
xi of P, we introduce a new “input” variable ri and a new “output” variable
si. We also introduce two new “control” variables z and z' ranging over the
vertices of Diag(P). For each arrow t(Si) — t(Sj) of Diag(P) we define a
formula (i, j) describing the computational effect of Si and let

eP=_\/ oG)),

(i, eDiag(P)
where @ (i, j)) =(E A F A G A H), with

E =z =1t(S)) Az =t(S)),
F=1(n)=(i(n), o(m)) A A(m) =¢(Si} A g(r) =,

392 M. E. SZABO

G = TRUE if the arrow t(Si) — ¢(Sj) is unlabelled,
= C[x/r] if the arrow ¢(Si) — ¢(Sj) has the label C,
= 1C{[x/r] if the arrow t(Si) — t(Si) has the label 1C,

=(s=r) jif t(Si) is not the type of an execution scheme 3.3 or 34,
=(s=r+1) if t(Si) is the type of an -exécption scheme in 3.3,

=(s=r—1) if t(Si) is the type of an execution scheme in 34.

Here (s =r) stands for (sl =r1 A...sn=rn), (s=r+1) stand for
(s1=r1 A...Asi=Fi+1 A... Asn=rn), where [xi/xi+ 1] is the assignment
typed by ¢(Si). The conjunction (s =r—1) is defined analogously.

We take care of the trivial programs not containing any assignment
statements by defining ¢(null) = @ (null//null) = ¢ (0, 0) = TRUE, and treat-
ing any other trivial program as a program in the single variable x1, so that
it is consistent to write (r1 = sl) etc.

The following result is immediate from the deﬁnmon of ¢(, _;)

6.1. THEOREM. N |= @ (i, j) [a] if and only if there exists a cancellation tree
Tr(P, a) and a path e =(el, ..., en, e(n+1)) in Tr(P, a) such that en = (Si, bi)
and e(n+1) =(Sj, bj), and such that the valuation [a] of the variables z, z', =,
r, and s in the formula (i, j) is [z/ti, Z'[t], n/e, r/bi, s/bj]. =

6.2. CoroLLARY. N|= @(P)[d] if and only if NE= @(i, j) for some i,j. =

It 1s clear that the formula @ (P) described precisely the computational
behaviour of the program P and can therefore be taken as the arithmetical
meaning of P. By Theorem 4.1, the special function and relation symbols
occurring in &(P) can be eliminated and the arithmetical meamng of P
can be fully described in PA.

7. Properties of programs as arithmetical formulas

We now use the program formulas ®(P) to express several properties of
parallel programs in PA. The verification of the appropriateness of these
definitions is routine.

7.1. TERMINATION. A parallel program terminates at ae N" if every
maximal path of Tr(P, g) ends in a leaf of the form (mull, b). We can express
this fact by means of the formula “term(P, a)” defined as

(Vrel)(G(P, @) cn=>@r'eM(n <a' A A(n) = t(null))).

In [2] and [3], the property expressed by term(P, a) is referred to as
“universal termination” in contrast to the property expressed by the formula

@ned)(G(P, a) =m A A(n) = ¢t (null)),

ARITHMETICALLY EXPRESSIBLE PROPERTIES OF PROGRAMS 393

which merely "asserts the existence of some terminating path and which
therefore represents “existential termination”.

7.2. PARTIAL CORRECENESS. If A(r) 1s an input condition in the input
variables r and B(s) is an output condition in the output variables s of @ (P),
then P is partially correct at ae N™ with respect to A(r) and B(s) if

NE A(r) A @(P) A term(P, a)= B(s).

7.3. TtoTtAL CORRECTNESS. If A(r) is an input condition in the input
variables r and B(s) is an output condition in the output variables s of @(P),
then P is totally correct at ae N" with respect to A(r) and B(s) if

NE A(rT) A @(P)=term(P, a) ~ B(s).

7.4. FReepoM From DEADLOCK. The fact that every node of a cancellation
tree Tr(P, a) which is not. a leaf -of the form (null, b) has 2 next node can be
expressed by the formula

(Vrel)(G(P,) =n A A(m) # t(nul) =@ ' eM)(n =’ A 7 % 7).

7.5. EQuivaLENCE: We can express the computational equivalence of two
programs P and Q at a giveh input ae N" by means of a conjugation
(P(P, Q, a) A ¥(Q, P, a)), where

Y(P,Q,a) =(Vrel)(A(r) = t(nall) A G(P, a) cn=Tnely)(A(n)
=t(null) A G{(Q, a) =7’ A g(n) = g(n))),
and
¥(Q, P,a)=(Va'ely)(A(n) =t(oull) A G(Q, a) =’ =@ nelF)(A(n)
=t(null) A G(P, @ S A g(n) = o(m))).

The desired computational equivalence of programs is obtained by specifying
that

P=Q ifand only if NE(VaeN")(P(P,Q,a A ¥(Q, P, a).

7.6. FunctionaLiTy. The following formula asserts that any two termin-
ating computation paths in Tr(P, a) produce the same output:

(Vr,nel)(G(P,a) =t AG(P, @) =7’ AA(m) = A(n) =t (null) =

e(n) = o(n)).
In [2], this property is referred to as the “partial determinateness” of P.

References

[1] K. Apt, Recursive assertions and parallel programs, Acta Informatica 15 (1981), 219-232.
[2] E. Ashcroft and Z. Manna, Formalization of properties of parallel programs, Machine
Intelligence 6 (1971), 17-41.

394 M. E. SZABO

[3] M. Ben-Ari, A. Pnueli and Z. Manna, The temporal logic of branching time, Acta
Informatica 20 (1983), 207-226.

[4] E. J. Farkas, 4 type structure for parallel programs, Ph. D. thesis, Concordia University.
Montreal [985.

[5] — and M. E. Szabo, On the programs-as-formulas interpretation of paralle! programs in
Peano arithmetic, Ann. Pure and Appl. Logic, to appear.

Presented to the semester
Mathematical Problems in Computation Theory
September 16-December 14, 1985

