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1. Introduction

Suppose that f is a polynomial given by
(1) f(x)=gx"+a, x""'+...+a,., x+a,,

where a; (1 <j < n), g are rational integers, g > 0. For the purposes of this
paper we will assume f to be irreducible over the rationals and primitive. We
will denote the zeros of f by « =«,, a5, ..., a,, which will therefore be
distinct. Of course the ay, a,,...,a, form a conjugate set of algebraic
numbers, and in the special case that ¢ =1, a conjugate set of algebraic
integers. It will be the case g =1 that will mainly concern us.

The following proposition is a well-known elementary fact about conju-
gate sets of algebraic numbers.

ProposITION. For given positive integers n, ¢ and a given bounded subset
E of the complex plane there are only finitely many (in terms of n, q and E) sets
of conjugate algebraic numbers of degree n and leading coefficient q contained
in the set E.

The proof is immediate since if B is such that |zj < B for all zeE and
a,eE (1 <j<n), then |ay/q|, being the modulus of the jth elementary
symmetric function of «,, a5, ..., a,, is bounded in terms of n and B. Thus
there are only finitely many possibilities for each of the coefficients of the
minimal polynomial (1) for such o.

In all but the final part of this paper, we will suppose a = ay, a,, ..., &,
to be a set of conjugate algebraic integers of degree #n, so that g=1.1fr >0
we will denote

S, = {z: |z €r}.
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For a given degree n and for specific small », we may wish to determine
which conjugate sets of algebraic integers of degree n are contained in the
disc S,.

For 0 < r < 1 the only such conjugate set is a = 0. However, S; contains
additionally all conjugate sets of roots of unity, but no further complete
conjugate sets. This is a classical theorem of Kronecker, and is usually stated
as follows:

THEOREM 1 (Kronecker [12]). Let a be an algebraic integer of degree n
with conjugates a = ay, 0y, ..., &,. If @ is non-zero and not a root of unity,
then
(2) max |y > 1.

1$/€n

The result follows from the proposition after noting a couple of alge-
braic facts. For a positive integer k, the conjugates of o* are af (1 <j < n),
and the degree of o* is a factor of n. Thus if all the conjugates of « belong to
§,, so too do all the conjugates of a*. The proposition then implies the
existence of positive integers k and m with k # m and such that o = ™ It
follows that ¢ =0 or « is a root of unity.

Kronecker’s theorem suggests the determination, for a given n, of the
least r > 1 such that S, first contains a complete conjugate set of algebraic
integers of degree n which are not roots of unity and not zero. Applying the
proposition to S,, say, we deduce the existence of a positive function g(n)
which strengthens Kronecker’s theorem by replacing the inequality (2) with
(3) max |oj} = 14g(n).

1€j<n

We define 1+g(n) to be the least value (of the finitely many possibilities) of

max |a;| in the range
1£j€n

1 < max |of < 2.

1€j<n

Schinzel and Zassenhaus [25] were the first to propose the evaluation (or
estimation) of this function ¢(n). By considering the zeros of x>—2 we have
that

g <2~ =0(1/n) as n— .

Dobrowolski [4] has shown that for every ¢ > 0 there exists n, () such that

for n > ngy(e)
2—¢ (loglogn\?
g(n) > ( 508 )
n logn
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This has recently been slightly improved by replacing 2—¢ with 4—g¢ (see
Rausch [18], Cantor and Straus [3]).

The problem of finding g(n) is closely connected with the problem of
finding the greatest positive function h(n) which strengthens Kronecker’s
theorem by replacing the inequality (2) with

@ [T max {1, lof} 3 1+ (o).
j=1

It follows that h(n} =O(1) as n— oo, and D. H. Lehmer [13] has asked
whether h(n) is bounded below by a positive constant independent of n.
Towards answering this question it has been shown that for every & > 0 there
exists n, (¢) such that for n > n, (g

3
W) > (2—8) (loglogn)

logn

(see Dobrowolski [4], Rausch [18], Cantor and Straus [3]).

These two problems have attracted considerable attention over the past
decade or so. I have discussed them here by way of introduction to the
analogous question for discs which are centred at an arbitrary point a on the
real axis. Of course if a is a rational integer, we need only consider ¢ —a and
we are again in the case of discs centred the origin. Hence the new interest
lies in the case when a is not a rational integer. That the answer is not the
same is seen immediately by considering the example a = —1/2 and «
satisfying «> +a+1 = O (that is, a is a primitive cube root of unity). Then «
and its conjugate lie in the closed disc with centre —1/2 and radius %\/3T .

In the context of this problem it seems natural to consider the following
definition (see Yaglom and Boltyanskii [27]).

DEeFINITION. If o is an algebraic integer of degree n with conjugates «
=0, &y, ..., &, the circumcircle of {a,, a;, ..., a,} (or of &) is the circle of
least diameter enclosing the points o, a5, ..., &,. The circumdiameter of o is
the diameter of the circumcircle of a and will be denoted by D ().

That the circumcircle of & exists and is unique is clear. It is easily seen
that if n 2 2, the circumcircle of 2 contains at least two conjugates of a. Also
il n> 3 and if no two conjugates of a are placed diametrically opposed on
the circumcircle, then the circumcircle must contain at least three conjugates
of a.

In addition to the circumdiameter we will consider the usual (Euclidean)
diameter of the set f{o;, as, ..., a,}.

DeriniTioN. The diameter of o is defined and denoted

diam (o) = max o, —ay.
i
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We have the following classical result of Jung relating the two diameters
(see Yaglom and Boltyanskil [27])

(5) 1./3D () < diam () < D(®).

It is easy to see by example that these inequalities cannot be improved in
general.

For the remainder of this paper we will consistently assume that a has
degree at least 2, so that D(a) and diam(o) are both positive. If we know the
existence of a positive constant b for which D(a) > b for all such a, then it
would follow that any disc with real centre and radius at most +b contains
no conjugate sets of algebraic integers, except perhaps rational integers.

That such positive b exist follows immediately by considering the
discriminant of ay, oy, ..., a,. If we write d for the discriminant of the field
K generated by o over the rationals, then

il < TT I —ot)) < {diam (o)} 1),
Py

Since [dyg| > 1, we deduce (using (5))
D(o) = diam (&) > 1.

We proceed to describe known results of this kind.

2. Earlier results

Favard [5], [6], [7] seems to have been the first to study general lower
bounds for the diameters of «. We write

M (n) = mindiam («),

where the minimum is taken over all algebraic integers of degree n. Favard
showed that M(2) = \/5, and if § is the real zero of x*—x—1, then

2 1/2

+— =1.79%...

)

He examined the diameters of quadratic and cubic « in some detail, and

determined some other a with diam(a) < 2. In general, he showed that for n
=2

| In \M2 O [3)\V2
“ > (5t5) > ()

In the context of this paper we will use the following terminology.

3
M(3) = (—2

DerFiNITION. If o and B are algebraic integers, we say that o is equivalent
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to f if @ = +f'+k for some conjygate B’ of 8, and some rational integer k.

It follows that for equivalent a and B, diam(¢) = diam(f) and D(x)
= D(B).

In the special case when « is totally real we have diam(x) = D (f). Polya
has earlier shown (see Schur [26]) that for any & > O there exists only a finite
number of equivalence classes of totally real algebraic integers with diameter
at most 4—e. In fact, it can be shown from his proof that for n > 2,

. ]
diam(x) > 4 (1 —%) (see McAuley [17]).

Somewhat later, R. M. Robinson took up this question of the diameter
(span) of totally real algebraic integers. He showed [24] that for such a with
nz2

diam (x) =2 \/5 ,
with equality if and only if « is equivalent to 4(1+./5). If n>3 then
diam (a) > 3,

and he determined [24] all totally real « with diameter at most 3. This work
was recently extended by McAuley [17] who determined the 13 equivalence
classes of such a for which

diam () < 3.7336

(see also Robinson [21]).

In [19], [22] Robinson determined all intervals which can be approxi-
mated both by intervals containing infinitely many conjugate sets of totally
real algebraic units, and by intervals containing only finitely many such sets.

We will proceed to describe more recent results of Lloyd-Smith, McAu-
ley and the author.

3. Recent results

In 1980 Lloyd-Smith [14], [2] obtained the following improvements of
Favard’s result (6).

THeoreM 2 (Lloyd-Smith). Let a be an algebraic integer of degree n = 2.

(i) D(a) = ﬁ, with equality if and only if o is equivalent to a primitive
cube root of unity.

(ii) If Y oy =0(modn), then D(a) = 2.

j=1 I3 . 1]
Moreover, in this case equality holds if and only if o is equivalent to a

primitive m-th root of unity with m not square-free.
Using the inequality (5) we have
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CoroLLARY. Under the hypothesis of the theorem we have
(i) diam(ax) > 3/2.

(i) If ) o; =0(modn), then diam(x) > \/5
=1
Lloyd-Smith’s methods were surprisingly simple, and involved estimating

the sum ) |o; — a|?, where a is the centre of the circumcircle of «. The lower
i=1

bound on diam(a) given by the Corollary (i) is not best possible, and was

improved by McAuley [17] to

diam (@) 2 1.659.
The following is a rather plausible conjecture.

CoNJECTURE. For n 2 2, diam(x) 2 \/5, with equality if and only if o is
equivalent to a primitive cube root of unity.

Lloyd-Smith has proved a number of results which give support to this
conjecture.

Tueorem 3 (Lloyd-Smith [14], [2]). If o is equivalent to a reciprocal
algebraic integer f of degree at least 2, then

diam (o) > /3.

Moreover, for reciprocal a, equality holds if and only if a is a primitive
cube or sixth root of unity.

(An algebraic integer 8 is said to be reciprocal if 7! is a conjugate of f.)

Theorem 4 (Lloyd-Smith [14], [2]). Let { be a primitive m-th root of
unity (of degree ¢(m)). If m =3, 6 then

D() = diam({) = /3.
If m#3, 6 then
D({)=2
and

[ 2 if m =0(mod4),

L2t |m ) _
diam(l) = 1 2sin P [Z] if m=2(mod4),

T

m
2sin — | — j =
smm [2] if m=1, 3(mod4),

\

(where [ ] is the integer part function).
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This result and the work of Robinson suggests an investigation of
diameters for cyclotomic and totally real fields. More generally,

DeFiNITION. A number field is said to be a CM-field if it is a totally
imaginary quadratic extension of a totally real field.
A number field is called a J-field if it is either totally real or is CM-field.

See Gydry [11], Blanksby and Loxton [1], and the works referred to in
these papers for a discussion of these fields.

Tueorem 5 (Lloyd-Smith [14], [15]). Let « be an algebraic integer of
degree at least 2 and belonging to a J-field. Then

D(a) > 4cos -;5—1 —2758...,

except in the following cases:
(1) a is equivalent to a root of unity (see Theorem 4);

(1) o is equivalent to %(H—\/g), when D(a) = \/5;
(ili) o is equivalent to 3(1+., ~7), when D(x) = \ﬁ.
Using the inequality (5), we get the immediate

CoRrOLLARY. Under the hypothesis of the theorem,
: K] n
dlam(a)zT 4 cos 6—1 = 2.389...,

except in the following cases:

() a is equivalent to a root of unmity (see Theorem 4);

(1) o is equivalent to %(1+\/”§), when diam (o) = \_/5_

Extending the work of Favard, Lloyd-Smith determined all algebraic
integers a of degrees 2, 3, 4 and 5 for which diam(«) < 2, and those for which
Do) < 2. These results are tabulated in [14] and [16]. There are respectively
2, 2, 5 and 2 classes for which diam(a) < 2, and respectively 2, 1, 4 and 0
classes for which D{x) < 2. It follows from his tables that

M@2)=./3, M@3)=179%..., M@ =1898..., M(5) =1991...

For a compact infinite subset S of the complex plane, Fekete [8], [9],
[10] introduced the concept of the transfinite diameter d,, of §,
d (S)=1lim{ max []lz—z}'"™" "
Ny z1,2302y68 i #£])
If S is a disc, then d, (S) is the radius of the disc. Among other results,
Fekete showed that if S is compact and with d (S) < 1, then there are only a

finite number of conjugate sets of algebraic integers lying in § (see also
Robinson [19], [20], [23]). This result of Fekete can be used to deduce that
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for every ¢ > 0, there are only finitely many equivalence classes of algebraic
integers for which D(x) < 2—e¢.

As pointed out by McAuley [17], [2], this result can be given a
quantitative formulation by a simple argument. If, as before, we write dy for
the discriminant of the field K generated by a over the rationals, and a for
the centre of the circumcircle of «, then

g < [Tlei—af = [Tl —a)—(e;—a)l = ]| elzi—

i#J ij i)
where ¢ = g(@) =4D{«) and z; = ¢ *(o;—a) (1 <j< n). It follows that the
unit circle with centre at the origin is the circumecircle of z,, z,, ..., z,. By a

well-known result (for example, by using Hadamard’s inequality on the
corresponding Vandermonde determinant),

[Tlzi—z] <n

i#]j
Thus
D(e) > 2 {ldel/m"} ",
and we obtain the straightforward consequence.

THeorReM 6 (McAuley [17], [2]). If a is an algebraic integer of degree

> 2, then
1
D) 2 (1— Oi’"),

diam (x) > \/3 (l—loﬂ)

n

and

The argument above can be refined somewhat, and the following result
by Blanksby, Lloyd-Smith and McAuley [2] goes some way towards settling
the conjecture mentioned earlier.

THEOREM 7. There exist positive absolute constants c, and n, such thar for
all algebraic integers a of degree at least n,,

diam (o) > \/3—+c0.

The method yields explicit values for ¢, and n,. At the time of writing
this account the author is optimistic that the conjecture is within reach, and
the details and ideas will form the content of a forthcoming paper.

There are a number of other problems about diameters that can be
posed. For example: '

(1) Is there an n, such that D(x)> 2 for all algebraic integers a of



DISTANCE BETWEEN ZEROS OF INTEGRAL POLYNOMIALS 29

degree at least ny? If so, can n, be taken to be 5? (See Lloyd-Smith [14].)

(2) Is it true that for every & >0 there is an n, =n,(¢) such that
diam(«) = 2—¢ for all algebraic integers of degree exceeding n,?

(3) Favard asked whether M (n) < 2 for every n = 2.

4. Diameters of algebraic numbers

In conclusion, we note that if a is an algebraic number whose leading
coefficient in the minimal polynomial (1) is ¢, then diam(«) may be arbitrarily
small when g is sufficiently large. For example, if « is a zero of gx?—
—(29+1)x+gq, then

D(x) = diam(a) = O(1//q) as g — co.

Il q is held fixed, Fekete also proved a result about d. analogous to the
one quoted earlier. This suggests a generalization of Theorem 6, and using
the method of the theorem it can be shown that if « has degree n > 2 and
leading coefficient g then

log(n-qz))

n—1

D)= 2 (1—

and so

2
diam (@) = \/-(l—log(i)).

n—1
Indeed the result of Theorem 7 generalizes in the following way:

THEOREM 8. There exists a positive absolute constant ¢, and a number
ng = ns(q) such that for all algebraic numbers o with leading coefficient g and
degree at least ns,

diam(a) > /3+¢; .
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