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0. Contents of the paper

Our purpose is to give an introduction, with examples and an intuitive
discussion of them, to the problems that arise in the study of surfaces via the
apparent contour of their generic projections. The exposition of these prob-
lems is preceded by a presentation of some very general properties of a class
of curves that includes the contours of generic mappings from surfaces to
Euclidean or projective planes (it is the class of “curves with cusps and
double points”, as they are formally defined in the opening part of the
paper). -

In Section 1 we recall some results present in the literature, concerning
curves in the Euclidean plane. It seems natural to try to generalize these
results in two main directions.

The first direction refers to curves in a real projective plane and is
quickly sketched in Section 2.

The second is about apparent contours of surfaces, and it is the main
subject of this paper, developed in the last two sections. Of these, Section 3 is
mainly a survey of known facts about mappings between orientable surfaces.
In Section 4, we turn to a new situation: we investigate the case in which the
target manifold is a projective plane and present some results that regard the
geometry of surfaces embedded in RP".

I would like to express my gratitude to Professor Levine, Professor
Martinet, Professor Siersma and Professor Trotman for the useful conversa-
tions we had during the Semester. Finally, I thank Professor Lazzeri for
raising my interest into this subject.
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1. Curves in R?

Let us consider a particularly simple object: a curve in the Euclidean plane
R:.

More precisely, we define a “curve with cusps and double points” to be
a compact connected subset y = R?, characterized in this way: Vxey 3U
open in R? with xeU, and a diffeomorphism ¢: U — R?, such that
e(Uny) is

1) either the set {(x, y)e R*| y =0};

2) or the set {x, y)eR*| x-y=0};

3) or the set {(x, y)eR?| x*—y> =0).
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Fig. 1

In the complex algebraic case (curves in CP?) similar objects give rise
to a well developed theory (Pliucker formulas, etc.). We pose to ourselves
the following question: are there results of the same kind in the real case,
concerning curves with cusps and double points?

We shall start by supposing that the curve is “irreducible”, that is, it can
be parametrized by one smooth (¥*) map ¢: S' — R? which is singular
only when the image is a cusp point. If y is an irreducible curve in R%, with
cusps and double points, it 1s known that the following relation holids:

(%) f+2n4+2c=2(d* —d” +df —d;).

Here, f is the number of inflection points of y, n that of double points, and ¢
enumerates the cusps; d* represents the number of positive double tangents
(see Fig. 2), d” counts the negative double tangents, d.” (respectively d ) the
lines of positive (respectively negative) type passing through two cusps, or
tangent to y and passing through one cusp.

Formula (#) is due to Fabricius-Bjerre: it was initially given for immer-
sions of the circle in the plane ([11]) and successively for the case with cusps
([12]). The later paper deals in addition with curves presenting “beaks” or
“cusps of the second kind”. If we call b the number of such singularities,
relation (*) becomes

f+b+2n+2c =2d% —2d” +2d} —2d;
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where d; , d; now include also tangents that pass through a beak, etc. These
facts were discovered again by Halpern [15], who proved as well that (%)
continues to hold for curves with any finite number of irreducible compo-
nents. Further studies on the subject were undertaken by Banchoff [4], [5].

Relation (*) holds under the following hypothesis on y:

(a) there are a finite number of inflection points (and of double
tangents) so that all terms in the equality are well defined;

(b) there are no triple tangencies of any kind (Fig. 3):

(c) no tangent to an inflection point or to a cusp is a double tangent.

__m___m___U_ "K'U""/k"

triple tangencies b}

xS Y

other excluded cases c)

Fig. 3

These conditions will be verified by almost any curve with cusps and
double points. Let % be the class of the “good” curves: given yc %, one can
find a neighbourhood W of the identity in the space of all diffeomorphisms
from R? to R?, such that Vo e W ¢(y) €¥. Furthermore, given any curve y
with cusps and double points, ¥V neighbourhood W of the identity in the
same space, 3@ €W such that @(y)€% (in the most elementary situation,
when 7 is the image of an embedding ¢: S' — R?, and so has no cusps or

22 — Banach Center 1. 20
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double points, the generic character of conditions (a), (b), (c) can be proved in
a nice simple way by studying y and its dual ({7], [8])).

The case where y is the image of an immersion ¢: S' = R* has been
studied in detail by Ozawa [27]. We have seen that the formula of Fabricius-
Bjerre provides a necessary condition on the numbers of flexes f, of double
points n, of double tangents d*, d~ presented by a curve y such that v
=Im ¢, with ¢ a smooth immersion of the circle in the Euclidean piane.
On the other hand, if we take any 4 nonnegative integers f, n, d*, d~
satisfying the relation

f+2n=2d"-2d"

(which implies f even), does this mean that there is at least one curve y
displaying exactly these numbers of “singularities™?

If the curve y presents inflections (hence, at least two of them) the
question was answered positively by Halpern [16]. However, when f = 0 the
condition n = d* —d~ is no more sufficient in order to find a curve present-
ing such values for n, d*, d™: for example, if y has no self-intersections, there
can be no double tangents, and so the four values f =0, n=0,d" =1, d”
= 1 satisfy the preceding relation but cannot be realized by a plane curve.

Halpern showed that, in this case, another requirement is sufficient:
namely that, besides being n =d* —d~, d” is even and satisfies d~ < n?—n.
Ozawa’s paper establishes that this condition must be verified by any curve
without inflections, that is, it is also a necessary condition for such curves.
Hence we have

TueoreM (Fabricius-Bjerre, Halpern, Ozawa). The necessary and suffi-
cient conditions for 4 nonnegative integers d*, d~, n, f (f even) to be attained
by a curve y, y =Im ¢ with ¢: S' = R? an immersion, as the numbers of its
positive and negative double tangents, double points and inflections, are the
Jollowing:

1) f+2n=2d" -2d";

2) iff=0,d is even and d~ < n’—n.

2. Curves in RP?

The first possible generalization of the results that we have just recalled
concerns the case in which the curve y lies in a real projective plane,
y < RP2.

The definition of “curve with cusps and double points” is trivially
extended to the new setting. But, of course, the definition of positive and
negative double tangents does not make any sense in the present situation.
In fact, when t is a double tangent for y = RP?, since {RP?\t} is connected
we cannot distinguish the positive [rom the negative case as we did before,
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when we checked whether y belonged, in a neighbourhood of the two
tangency points, to the same or to different components of {R*\r}.

However, it is still possible to define positive and negative double
tangents if we fix a line r = RP? in a generic way (r will cut y transversally
outside of its singular points, inflection points, etc.). {RP*\r} is now an affine
plane and we have a natural notion of positive or negative double tangency,
with respect to r (Fig. 4).

negative tangency positive tangencies
(a) (b)
Fig. 4

We can define: m, = number of intersection points of y and r; f, n, ¢ as
before; d, d;, d, d,, as belore but with respect to r. Furthermore, we need
to take into account the following numbers: 4%, d.: they represent the
numbers of “positive” (respectively “negative”) tangents of y passing through
an intersection point p of y and r; the negative case is that in which y, in the
neighbourhood of a tangency point aey, belongs to the same connected
domain of RP?\{z,ut,} to which belongs r — if this does not happen, we
have the positive case (Fig. 5); d,.., d5.: here we count the lines which pass
through an intersection point of r and y and also through a cusp of y;
positive, and negative cases are distinguished as in the preceding situation.
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Finally, we set
D,=d—d +di—d +d}—d +df.—d...

We see that, under reasonable (and “generic”) regularity assumptions pat-
terned on those of 1), the following relation hoids ([24], [25, Th.1]):

(%) S+ 2n+2c = m?—2m,+2D,.

As in the Euclidean case, when beaks are present one replaces f by f+b
(number of flexes and of beaks), introducing obvious adjustments in the
definitions of df, d,,, d}., d,..

In the projective plane, f need not be even (Fig. 6).

__________________ .

asymptote 7 r
f=1, n=1, m=1 d'=2

Fig. 6

In fact, since f and m, have, by the (*x), the same parity, f'is even < [y]
=0 (where [y] denotes the homology class induced by y in H,(RP?; Z,)).

One can observe that (**) actually applies to a larger class of curves
than the one we have described ([25, Remarks | and 4]). Furthermore, by
duality arguments, one can show ([24], [25, Th.2]) that curves with cusps and
double points satisfy also the relation

c+2d+2f=a;—20,4+2N,

which relies on the choice of a generic point p = RP?: a, is the number of
tangents which can be drawn from p to 7, d is the total number of double
tangents of y, and N, takes into account all the geometrical configurations
(“positive” and “negative” double points, etc) which are dual to those
represented by D, in (*x).

3. Apparent contours of surfaces

The second direction in which the ideas of Section 1 can be further
developed consists in taking into account the case of curves, in R? and RP?,
which arise as components of apparent contours of generic projections of
surfaces.
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Given a generic mapping f: S — N, where § 1s a compact surface
without boundary and N is a connected surface, the set of critical points of f
is given by a finite number of circles embedded in S, which are called the fold
curve C of f, while the set of critical values y = f(C) < N is a curve with
cusps. and double points, called the apparent contour of f ([29], [131]).

Of special interest are the cases of the linear projection, with image in a
2-dimensional vector subspace, of a surface embedded in R" ([22] and [1] for
n =13), and of the central projection, with image in a 2-dimensional hyper-
plane, of a surface embedded in RP" (for n = 3, a thorough study carried on by
Landis, Platonova, Shcherback, Goryunov has yielded a complete classifica-
tion of all germs of projections for generic surfaces [2], [3]).

The results we have just quoted are essentially of a local character while,
in the rest of this paper, we shall be concerned with a different question:
which statements can be made, from a global point of view, about apparent
contours of surfaces?

In the following, we are going to consider the case when N = R?* or N
= RP>.

It is obvious that the components of apparent contours form a very
special subset of the class of curves that we have examined in Sections 1 and
2, and so one expects them to satisfy more restrictive conditions. For
instance, the projective curve of Figure 6 cannot belong to any apparent
contour, since each component of a contour must display an even number of
inflection points ([24], [26]). Furthermore, in a contour we will never see a
portrait like that of Figure 4a) since it is fairly obvious that there must
always be an even number of inflection points lying between two cusps.

We give now a naive example of a typical global question.

ExampLE 1. Can any one of the following pictures represent the apparent
contour of a sphere immersed in R? and projected to a plane H = R*?

Yoo

Fig. 7

We shall collect some facts, dealt with in the literature, that provide us with
an answer.

Figure 7 a). The parity of the cusps in the apparent contour gives a
first important information about the surface. The early paper by Whitney
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[29], mostly dedicated to an analysis of the local properties of differentiable
mappings between surfaces, contained already a global result of this form: for
any excellent mapping f: RP* —R?* the number of cusp points is odd [29,
Theorem 30A, p. 409].

A sharper result immediately followed:

THEOREM ([ 28, Th.9, p. 84]). The number of cusp points presented in the
generic case by the apparent contour of a compact manifold M of any
dimension n = 2, projected to a Euclidean plane, is congruent (mod?2) to the
Euler—Poincare characteristic of M, y(M).

Knowing this, the curve represented in Figure 7a) can be excluded at
once. It has an odd number of cusps, and surfaces of odd characteristic are
not orientable. This curve, in fact, is theecontour of a projective plane (it is
not difficult to construct an embedding of RP? in R* which gives rise to a
projection with such critical values). Furthermore, it is easy to realize how
RP’ is the only surface S which can give rise to that profile: if ¢: R> >R is
a linear function of rank 1, by composing ¢ with the projection map we get
a Morse function on S having exactly three critical points. By the way, all
manifolds of dimension n > 2 admitting such a function were described in a
classical paper [9].

A deeper result about the problems that had been raised by Whitney
and Thom is due to Levine:

TheoreM ([18]). Let f: M — N be a generic map between two compact
oriented manifolds, dimM > 2 and dim N = 2. Then:

(I) if dim M is odd, f is homotopic to a generic g such that g has no
cusps;

(2) if dim M is even and > 2, f is homotopic to a generic g such that:

(a) if x(M) is even, g has no cusps,

(b) if x(M) is odd, g has one cusp;

(3) if dimM = 2, then f is homotopic to a generic g such that on each
fold curve of g there are at most two cusps.

Point (3), which concerns surfaces, has been made more precise in [10]:
if M is any closed surface and N is an orientable surface, and p: M = N is a
continuous map, then one can find an excellent map f: M — N, homotopic to
@, which has no cusp points on its fold curve when x(M) is even, and having
one cusp point when x(M) is odd. The same result is contained in {23], where
one can find interesting examples: in particular, that of an immersion of RP?
into R? whose projection to R? has a connected fold curve which contains a
single cusp (thus answering a question posed in [20, p. 156]).

Figure 7b. 1In Figure 7b and 7c¢ the number of cusps has the right
parity, so we cannot decide on such grounds whether the curves can or
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cannot be the apparent contour of a sphere embedded in R>. We use the
following

Tueorem ([14, Th.l, p. 49]). An excellent mapping f from a compact
surface S to the plane can be factored through an immersion g into R* if and
only if on each connected component C; of the fold curve of f the number of
cusp points is even or odd according to whether C; admits an orientable
neighbourhood or not.

(As a matter of fact, the conclusion of this theorem continues to hold for
maps f: S— N where N is any surface, with regard to factorization by
immersions in N xR ([23]).)

The contour of Figure 7b could belong to a surface S immersed in R?
only if S contained two M&bius bands. Hence it cannot belong to a sphere
immersed in R*. However, the curve of Figure 7b is indeed the contour of a
sphere embedded in R*. One can easily figure out the corresponding con-
struction (Fig. 8).

J
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Fig. 8
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The curve of Figure 7b cannot be the contour of any other surface.
One way to see this is as follows: let V' be a surface with boundary AV, and
let JV have k connected components B, ..., B,. If V is immersed in the
Euclidean plane by a mapping f, the natural orientation of the plane induces
an orientation on V. We can then orient JV as the boundary of
V: B,, ..., B, are now oriented circles.

Let n; be the number of times the unit normal (or the unit tangent)
vector to f(B;) turns around as one goes through B; in the sense of its

k

orientation; n = ) n; is called the normal degree of 6V immersed by f. By
i=1

[14, Th.3, p. 59], n = (V).

n=1

Fig. 9

Now, let’s go back to a generic map f: S — R?, where S is a surface
without boundary. If {y;} are the irreducible components of the apparent
contour 7, and |C;! are the corresponding components of the fold curve in S,
it 18 possible to take tubular neighbourhoods N; of each C; in § such that
N:AN; =0 if i #j, and

1) each N, is either a cylinder or a Mobtus band, and éN; has two or
one connected components, respectively;

2) S\ {UN;} is an orientable manifold with boundary B =) ¢N,, and

SISV{UN;} is an immersion of this manifold into the plane.

We fix the standard orientation on R* and compute n = normal degree
of /(B). We see that x(S\{lUN;})=x(S); hence n=x(S). In the case of

Figure 7b we compute as in Figure 10b.

We see, in this way, that the Euler--Poincaré characteristic of the surface
must be 2 and the surface must be a sphere. (If ON; had just one component,
as in Figure 10c, the value of the normal degree would have been the same
for that component, that is 1. The value »n; which is associated to each ¥
does not depend on whether N, is orientable or not, and this enables us to
calculate yx(S), provided we know the direction towards which S is being
“folded™ for at least one point of each component of the contour.)

Figure 7c. If N is the tubular neighbourhood of the fold curve C
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flan,)

a) b) c)

Fig. 10

corresponding to the contour shown in this figure, 6N must have two
components (otherwise S\ N would be an orientable surface with boundary
of odd characteristic, which would entrain that also y(S) id odd, and this is
impossible because y has an even number of cusps). The projection of these
components into R? gives rise to the curves shown in Figure 11b. These two
curves can be interpreted either as the boundaries of two surfaces (a
punctured torus and a disk, Fig. 11¢), or as the boundary of one surface (a
disk with a hole, Fig. 11d).

Figure 11c corresponds to an orientable S (torus), while the punctured
disk of Figure 11d lies in a Klein bottle (in fact, the curve of Figure 11a)
illustrates the usual way in which the Klein bottle is drawn). The answer to
the question of Example 1 is negative in all cases.

Fig. 11
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If S is orientable, we can interprete in the following way the relation n
= x(S). We choose an orientation on S and consider the two surfaces S* and
S~ made up by all points at which f preserves or (respectively) reverses
orientation. C can be oriented as the boundary of §*. Let &: C — RP! be
the mapping which associates to a point xeC the tangent line to the
apparent contour in f(x), translated to the origin. We give to RP! the
orientation induced, through its double covering n: S! — RP!, by the coun-
terclockwise orientation of S' = R%. One sees that ) deg ®|C; equals the

value of the normal degree of the boundary B = (S \ {U N;1). Since n = x(S),
we have Zdegd’l C; = x(S). (This result has been generalized in [19] to the

case of a generic mapping, with values in the Euclidean plane, of any
orientable compact manifold of even dimension.) So, we have described an
alternative procedure [cfr. 20] verifing that the Euler-Poincaré characteristic
of any orientable surface with the contour shown in Figure 7¢ must be O.

4. Surfaces embedded in RP"

Now we shall consider, from a global point of view, central projections of
surfaces embedded in RP". The global results that we have surveyed in
Section 3 regarded exclusively mappings with values in an Euclidean plane
(or some other orientable manifold). Here we go over to a new situation and
we need a few more definitions.

Let S be a smooth compact connected surface without boundary. Given
an embedding ¢: S — RP", we realize central projection by fixing an (n—3)-
hyperplane P transversal to ¢(S) and then taking the set X of all (n—2)-
hyperplanes containing P. We define a map n: RP"\ P — X by associating to
any xe RP"\ P the (n—2)-hyperplane containing x and P. We call P the
center of this projection. It can be proved, using methods of [22], that, given
any embedding ¢: S — RP", if we choose generically a center of projection P
we obtain a mapping no¢@: S —2 which is stable. Since ¥ is a 2-dimen-
stonal projective space, this means that the critical values of tog ~ that is,
the (n—2)-hyperplanes of X which are not transversal to ¢(S) — form a
curve with cusps and double points in 2. Let A4 be this curve: we call it the
apparent contour of the projection.

An approach which is dual to that of central projections is provided by
the study of linear nets of hyperplanes intersecting ¢(S). If we take the
family £* of all (n—1)-dimensional hyperplanes containing P, we define a
projective space of dimension 2 which is dual to X.

Figure 12 illustrates the situation (in the case n = 3). If we fix a plane H
not containing the center P, the elements of £ are in one-to-one correspon-
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Fig. 12

dence with the points of H. A mapping from § to H is thus defined, which
associates to any element xe S the intersection between H and the element of
2 that contains ¢ (x). The apparent contour of this function is represented in
Figure 12 by the curve 7y, a curve with cusps and double points isomorphic
to A. The elements of X* correspond to the lines of the plane H: the last are
the points of the dual projective plane H*.

Let T be an (n— 1)-hyperplane passing through a point y e@(S). We say
that T has contact of type 4, with ¢(S) at y = ¢(2) if, given an affine chart
(U, ¢) with ye U, y(y) = 0e R", and a linear functional ¢{: R" — R with ker &
= T, then the function {o() 0¢): S =R has a singularity of type A, in z.
When ¢ embeds S as an analytic submanifold of R?, it has been shown [6]
that it exists a closed subanalytic set I' = R?, of codimension > 1, with the
property that any ae R*\I' has at most a finite number of tangent planes to
¢ (S), passing through it, whose contact with ¢(S) is more degenerate than
A,. We call ¥ a regular ner for |S, ¢! if it admits a stratification X*
=XFu 2T ul? in which each stratum X¥* is a submanifold of dimension i,
with a finite number of connected components, and

% =all elements of Z* which are transversal to ¢(S);

2t =all elements of X* that have contact of type A, with ¢(S) in one

point, and are transversal to @(S) at all other points;

§ =all elements of X* having contact of type A, with ¢(S) in one
point, or contact of type A, in two different points (not lying on
the same element of X), and are transversal to %(S) in every other
point.

We call the set A* = X% U 2§ the discriminant of the net. The condition
that 2* is a regular net of hyperplanes for S, @) is seen to imply that 4* is
a curve with cusps and double points, the singularities of which are the
elements of 2§. (Looking at Figure 12, we visuahize A4* as the curve of
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tangents of the contour y.) Keeping in mind the results of [21], it is possible
to assert that, if ¢ is taken from an open dense set of embeddings of S in
RP", then for a generic choice of the center P, the resulting net £* is a
regular net of hyperplanes for {S, @}. So, generically, both the apparent
contour A4 and its dual curve 4* will be curves with cusps and double points
lying in their respective projective planes. In this case, we have a precise
relation between the following three entities:

(a) the homology class [4*] defined by 4* in H,(2*. Z,);

(b) the genus g of the surface §;

(c) the homology class [S} induced by ¢(S) in H,(RP"; Z,).

This relation is expressed by the following

TueoreM ([26, Th.2]). If S is orientable, [4*] = 0. If S is not orientable,
when the genus of S is odd

[S]=0 < [4*]#0

and when the genus of S is even

[S]=0 <« [4*]=0.

For orientable surfaces, let us see this in some trivial cases: a two-sheeted
hyperboloid projected in the direction of its axis gives rise to a double
covering of X, with an empty contour: hence [4*]=0. A one-sheeted
hyperboloid that is mapped to 2 in the same way, has a circle as its
apparent contour. In such a circumstance, 4 has no cusps and this entrains
that 4* has no inflection points: by an argument of the end of Section 2,
[4*] =0.

We will introduce now some illustrations of the theorem in the non-

orientable case.

b} c)
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ExampLE 2. In Figure 13a we have sketched a simple example of an
embedding in RP? of a nonorientable surface S, such that [S] # 0. The
surface i1s a projective plane, and we first embed it as an hyperplane of RP?,
then we remove a disk along the dotted line and replace it by a cell D in the
way that is shown in the picture. The resulting embedded RP? is projected to
a transversal plane H (we have taken P at oo In order to visualize the
projection). The apparent contour of the projection of center P is isomorphic
to the curve y < H. In our picture, the curve 4 is self-dual: it has an even
number of fAexes, it is obviously shrinkable to a point in the projective plane
in which it lies, and so [4*] = 0. This is what we expected, since the genus of
S is 1, that 1s, an odd number.

We remark that, by stretching and turning the attached cell D, it is easy
to obtain, after a projection from the same center P as before, a contour of
the surface S that is precisely the one of Figure 7c. The same contour could
be produced in quite a similar way (removing a disk, then attaching a cell,
finally stretching and turning this cell) from a two-sheeted hyperboloid. This
fact tells us that in RP? the profiles of a torus, of a Klein bottle, of a
projective plane, of a sphere, etc. may be indistinguishable. At first sight this
seems to be a major difficulty, since we have just seen that it happens even
for irreducible contours. How can we find out the Euler—Poincaré characteris-
tic of § from its contour? In [26] it is shown that in order to reconstruct the
Euler-Poincaré characteristic of a surface S embedded in RP", starting from
the apparent contour 4, a necessary and sufficient condition is given by the
knowledge of two data: the number of points at which one element of Z
intersects ©(S), and an orientation (suitably defined) of the normal bundle to
the contour in X.

In Figure 13b we have plotted the apparent contour of a nonorientable
surface of genus 5. To see where it comes from, start with the projective
plane of Figure 7a and attach two handles to it. Everything can be done in
R", n = 4. The resulting surface 1s thus homologous to zero in RP"; [S]=0.
Now, the dual curve to A4 is not homologous to zero: it has an odd number
of inflection points, which correspond to the cusps of 4, hence, by the same
argument as before, [4%*] # 0.

The surface of Figure 13c represents a Klein bottle, obtained by joining,
through a handle, Boy’s surface [17]) with the hyperplane K. The genus is
now even: [4*] # 0 (the contour is represented in the picture by the dark
line and its dual curve displays an odd number of flexes) and [S] # 0 (S\K
i1s homologous to the part of K which has been removed in order to attach
the handle; hence § is homologous to a 2-dimensional hyperplane).

At this point we may go back to a different question, and consider what
can be said about the number ¢ of cusp points presented by a generic
apparent contour 4 < 2. The conclusion we reach generalizes in some way
to the present setting what was known about mappings with values in the
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Euclidean plane. The requirements on the embedding ¢ that were needed in
order to state and prove the preceding theorem are not necessary any more.
Let ¢: S = RP" be any embedding of a compact connected surface without
boundary in n-dimensional projective space: if S is orientable, the number ¢ of
the cusps in the apparent contour is even. If S is not orientable and has odd
genus, then

cis odd = [§]=0;
while, if S has even genus,

cis even < [S]=0
([26; Th.3]).
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