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Introduction -

In Friedman' [7] a result of semantic completeness for typed A-calculus is
given, by using the full type structure over w. That is, two typed terms are
shown to be provably equal iff they define the same functional of finite type
over w (1.e. the same morphism in the category of sets and all functions). The
key to Friedman’s result is a simple and elegant notion of homomorphism
between type-structures. We wish to extend Friedman’s notion and its
consequences to more constructive settings.

As a matter of fact both typed and type-free A-calculus have been
primarily regarded as a formalization of the concept of effective process or
computation. Indeed, A-terms are extremely adequate to describe computable
functions and functionals (see Barendregt [1], Goedel [9] and Troelstra [35],
say). Moreover, since Scott’s work, the role of A-calculus and its extensions in
denotational semantics of programming languages is well known, as it
provides the core of functional programming languages.

For these reasons, we are interested in models which yield useful
properties for the theory of programs. For example, they should provide
(effective) solutions to equations which recursively define programs and data

* A preliminary version of this paper, focusing on Section 3, appeared in LNCS,
Springer-Verlag (CAAP’86). Research partially supported by Min. P. 1., fondi 40°%, (Mat).

** Invited Lecture, Semester in Theory of Computation, Banach Mathematical Center,
Warsaw, December 1985.
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types. These may be given by using the effectively given domains of Scott
[28]. Actually, one may take. as objects, the countable collections of the
computable elements in the effectively given domains, that is, one may
consider the category CD of constructive domains (see Giannini-Longo [8]
for an introduction). CD is a model for typed A-calculus, is closed under
inverse limits and limits are also preserved by the functors which give higher
type objects (product, exponentiation...). By this, the semantics of the
recursive definitions of programs and data may be soundly and effectively
given (see Kanda [12], Smyth [29], Smyth-Plotkin [30]). By the work of
Ershov, it also yields models for the Kleene—Kreisel {countable) recursive
functionals (see Ershov [6], Longo-Moggi [14]).

Note that the fully effective Aavour of CD is due to the fact that
morphisms and functors are represented by recursive functions over suitable
indexing of objects. Indeed, CD is one of the several interesting subcategories
“of the category PER_, of countabie (quotient) sets, we will consider. PER
may be loosely viewed as the constructive counterpart of Set, the usual
category of sets and functions (see Hyland [11]). The choice of countable
(and numbered) dala types is a very natural one also for the purposes of
Computer Science.

The aim of this paper is to compare type-structures, i.e., models of typed
A-calculus, when data types are taken to be (possibly structured) countable
sets and morphisms to be effective transformations. This will be done by
tools related to Friedman's homomorphisms and Plotkin-Statman’s logical
relations (see later or Friedman [7], Plotkin [21], Statman [32]).

A key point in the present perspective, as much as in Friedman’s, is the
possibility of handling partial functions. In our case, though, we cannot rely
on the intuitive notion of partiality for set-theoretic functions. Therefore,
Section 1 is devoted to an introduction to categories with partial morphisms
and to “complete objccts”, winich will turn out to be relevant notions for the
proof of the main theorem. The elementary, but detailed, presentation of
partial categories in Section 1 is independently motivated also by the
increasing interest in (typed) partial computations and in their denotational
semantics (see Plotkin [22]).

Section 2 introduces and discusses “partial retraction systems”. The
methods in Section 2 are endebted to the work in Friedman [7] and Plotkin
[21]. Note, though, that Friedman’s technique relies on an highly non-
constructive use of the axiom of choice for sets. By an informal analogy, we
may say that, in our approach, choice functions are replaced by retraction
pairs, which are “effective” relatively to the intended category. Section 2 does
not depend on Section 1.

Finally, in the section which originally motivated our work, Section 3,
we apply the results presented in Sections 1 and 2 to the relation between
PER, and the typed A-calculus by using partial retraction systems.
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1. Partial morphisms and complete objects

In this section we survey, from a new perspective, and develop the notions
introduced in Longo—Mogyi [15]; in particular, we focus on the notion of
“complete object”. )

The natural sctting for partial morphisms, in Category Theory, is the
Theory of Toposes, as it is mostly motivated by the categorical treatment of
well-known set-theoretic notions (subset, inverse image...). We will not get
into the details of Topos Theory and we sketch a more elementary approach
to the interpretation of “divergence” in familiar’ categories. Moggi [18] and
Rosolini [25] elegantly work out various aspects of a topos-theoretic
approach to partial morphisms.

A stronger, but related, notion of Dominical Category may be found in
Di Paola-Heller [5]. In Dominical Categories the “domain” of a morphism
(see below) is given as an endomorphisin; the results in this section are still
valid in those categories. Our approach will be related to the notion of
partial morphism in Obtutowicz [19].

A sound requirement for a category, in order to allow partial
morphisms, is the existence of everywhere divergent morphisms. These must
correspond to everywhere divergent functions and, thus, behave like a zero
wr.t. right and left composition.

1.1. DeriniTioN. A category C has partial morphisms (is a pC) iff
Vb, c€0b.30,.€C[b, c]Va, dcOb Y[ eCla, b]VgeC[e, d],
Ochf = Oa‘. and gOObc = Ocd'

1.2. DeriniTiON. Let € be a pC. A morphism fe C[a, b] is total iff for
all ceOb¢ and all ge C[c, a], fog =0, =g = 0.

1.3. Remark. Note that: (1) f, g total = fog total,

(2) fog total =g total,

(3) all monomorphisms are total.

14. DerFinimioN. Let C be a pC and fe C[a, b]. A morphism ge C[c, a]
is into the domain of f (in short: g into dom(f)) iff fog is total.

The idea should be clear: g has values in the “domain of convergence”
of fiff fog “converges” everywhere. Just note that g itself must be total; this
may seems a little unpleasant, but the results below should convince the
reader acquainted with the other approaches to partial morphisms that the

definition above is both reasonable and useful (see, in particular, 1.6, 1.14,
1.22).

1.5. Derinttion. Let € be a pC. The. (associated) category of total
morphisms, Cy, has the same objects as C and as morphisms the total ones.
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Inc: C;— C is the inclusion functor defined in the obvious way (it will be
omitted if there is no ambiguity).

1.6. LEMMA. Let C be a pC and feCl[a, b]. Then the following are
equivalent .

1. (id, into dom(f)),

2. feCrla, b],

3. Vee0bcVhe Cr[c, a] (h into dom(/)).

Proof. 1= 2. By foid, ={.

2=3. By 1.3.1.

3=1. Obvious. =

ExampLEs 1. pSet is the category of sets with partial maps as
morphisms. pR = PR is the monoid of the Partial Recursive functions (PR).
PEN is the pC whose objects are pairs a = (a, €), where a is a countable set
and e: w — a (onto) is an enumeration of a. Moreover, f is in pEN [a, a'] iff
there exists f'e PR such that the f.d.c.:

'J

€
\j
€

»

Q .

Q

[

Clearly, (pSet); = Set, PR; = R and (pEN); = EN, that is Malcev’s
category of numbered sets.

Since the beginning of denotational semantics of programming
languages, the basic notions of approximation and continuity suggested the
introduction of posets with a least element 1. The bottom 1 provides the
meaning to diverging computations over non-trivial mathematical structures.
This is mathematically very clear in several specific categories, such as
continuous or algebraic lattices or cpo’s, Scott’'s domains... It is not so
obvious in interesting categories for computations such as EN, say (see
Example III below).

(For typographical reasons, we write a° instead of a'; lifting and
complete objects below were first defined, under different names, in Longo-
Moggi [15])

1.7. DerFintTION. Let € be a pC. Then the lifting of ae Ob is the object
a° such that the functors C[—, a]olne, C;[—, a°]): C; — Set are naturally
isomorphic.

Recall that, by definition of natural transformation, of hom-functor and
by the definition of Inc, 1.7 requires the existence of a function t such that
the f.d.c., for all b, ce C and feC;[c, b]:
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clo.a) — 2w, [b.a")

(Diag. N)

That is, tc(gof) = th(g)of and, also, (tc)” ' (hof) = (zb)™ ' (h)of.

It is easy to check that a° defined as in 1.7 is unique, if it exists. The idea
for a° is very simple: as C[—,a]~C;[—,a°], in a pC any partial
morphism may be uniquely extended to a total one, when the target object is
“lifted” (and the lifting exists).

Recall now that in a category K, given objects a and b, a is a retract
of b (notation: a <b) if there exist ie K[a, b] and je K[b, a] such that
joi =id,.

1.8. LemMa. Let C be a pC and a° be the lifting of ac Obc. Assume also
that t is the natural isomorphism in 1.7. Then a is a retract of a° in C
(notation: a <,a°) via (in,, ex,), where

in, = ta(id): a — a°,
ex, = (ta®)~ ' (id): a° — a.

Proof. Immediate, by the diagram corresponding to (Diag. N), i.e. by
naturality. =

1.9. ProrosiTiON. Let C be a pC and assume that for each ac Ob. there
exists the lifting a°. Then there is a (unique) extension of the map al- a° to a
Sunctor —°: C— C; (the lifting functor).

Proof. Let ex, be as in 1.8 and feC[a, b]. Define

J° =1a’(foex,)e Cy[a®, b°],

where 1 is the natural isomorphism between IncoC[—, b] and C;{—, b°].
Then one has id° =id and, for feC[a, b] and ge C[b, c], g°of° = (gof)",
by naturality. m

ExampLes I1.1. The lifting functor for pSet is obvious. It can be easily
guessed also for the category pPo of posets and partial monotone functions
with upward closed domains: just add a fresh least element and the rest is
easy by applying Proposition 1.9. Note that, by monotonicity, the lifting
functor does not exist if one does not assume that the domains are upward
closed.

2. The category pCPO is given by defining complete partial orders



26 A. ASPERTI and G. LONGO

under the assumption that directed sets are not empty. Thus, the objects of
pCPO do not need to have a least, bottom, element. As morphisms, take the
partial continuous functions with open domains following Plotkin [22].
Clearly, the lifting functor is defined as for pPo.

ExampLE III. Let pEN be as in Example I. Given a =(a, e)€0by,
define a° = (a°, €°) by adding a new element L to the set a and by defining

e°(n) = if ¢,(0) converges, then e(p,(0)) else L.

Clearly, e°: w — a° onto. Let now b = (b, ¢) and fepEN[b, a], thus there
exists f'e PR s.t. foe' =eof’. We define fe EN[b, a°] which extends f by
giving f’ € R which represents f. That is, set ¢, (0) = f'(n). Such an f'eR
exists by the s-m-n (iteration) theorem. Then

fle'n) =e(f'(m)
=if @;(0) conv, then e{p,,(0)) else 1.

Therefore, if f(e'(n)) =e(f'(n) is defined, f(e'(n) = e(@,n(0) =1(e(n).
Finally, set t,b(f) = f. For each a, 7, gives the required natural isomorphism,
as VgeEN[b, a°] 3! fepEN[b, a], f'(n) = ©®gm(0). By Proposition 1.9, this
defines the lifting functor in pEN.

1.10. DerFiniTioN (Complete objects). Let C be a pC. Then aeOb is
complete iff a <a® in C;.

The intuition should be clear. An object is complete when it “already
contains”, in a sense, the extra 1. Think of an object d of pCPO and take its
lifting d°, i.e, add a least element L to d. Then d is compiete (d < d° via (i, j),
say) iff d already contained a least element, j( 1) to be precise. Obviously, the
objects of CPO are exactly the complete objects of pCPQ. 1.13 below
characterizes the complete objects in all pC’s.

1.11. Remark. Let C be a pC and a <a° via (i, j) (in Cy). Then

doute C;[a°, a], a < a° via (in, out),

“where in is as in 1.8. As for the proof, just set out = jora®(exoioex), for ex
as in 18, and apply the naturality of . ~

The following fact gives the main motivation for the invention of
complete objects: exactly on complete . objects as targets, all partial
morphisms may be extended to total ones, with the same target.

1.12. DeriniTioN. Let € a pC. feCr[b, a] extends feClb,a] iff
Yee Ob.VheC[c, b] (h into dom(f)) = foh = foh.

1.13. TueoREM. Let C be a pC and a° be the lifting of acObe Then
a<a’<VbVfeClb, aldf eC;[b, a] f extends f.



CATEGORIES OF PARTIAL MORPHISMS 27

Proof. (=) Set f =outctb(f): b— a° — a. Then, for h into dom(f),
foh = outotb(f)oh
= outott(foh)
= outota(id)ofoh
= outoinofoh by definition of in
= foh.

(<) Just take ex € C;[a®, a], for ex = (ra®)~ ' (id) in 1.8, and note that in
is into dom(ex). a

1.14. Remarks. 1. Note that, if fe C;[b, a] extends fe C[b, a], then
S=fiff feCr[b,da], by 1.6 (1<2). In particular, if a <a®, one has
S =outotb(f) ff fe C;[b, a]. This suggests the definition of a very natural
pre-order on each C{b, a]:

f<g iff VceOb, YheC[c, b] (h into dom(f)) = foh = goh. Then, in
(C[b, a], <), 0,, is the least element and the total arrows are exactly the

maximal ones. Moreover, the composition is monotone in each argument
wrt. “<”. (See also Remark 1.22)

2. b<a<a®°=b <b° (Indeed, let b <a via (i, ) and, for any ceOb,
and fe C[c, b], consider the extension iof € Cr[c, a] of iofe C[c, a]. Then
joiof € Cy[c, b] extends f, since Vh (h into dom(f)) joiofoh = jo(iofoh)
= foh.) Note also that a° < a*°.

The point with the categorical approach to complete objects is that their
properties may be inherited at higher types.

1.15. DeriniTion. Let € be a pC such that C; is a Cartesian Category
(CC; see Lambek (1)) with the usual product functor (_x_);: C;xCr — C; and
tupling ¢_,_). Then C is a partial Cartesian Category (pCC) iff there exists
a functor (_x_): CxC — C satisfying:

— (x_) =Inco(_x_)r on objects;

— for feCl[c, a] and geC[c, b]:

YhVk (h into dom(f)) (k into dom(g)) fxgo<h, k> = (foh, gok>

(recall that h and k are total by 1.4 and 1.3.2).

Set also C[_xa, b] = C[_, b]o(_xa)clnc.

Note that we only require that (_x_) exists with the above properties:
the choice of (_x_) on morphisms is not unique, as in Hoenke(?). However,
given objects g and b, (axb) is uniquely determined.

() J. Lambek, Functional completeness of Cartesian Closed Categories, Ann. Math.
Logic, 6 (1974), 259-292.

(®) H-). Hoenke, On partial algebras, Universal Algebra, Csakany et al. (eds), Coll.
Math. Soc. J. Bolyai 29, Amsterdam 1982.
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1.16. DeriniTioN. A pC C is a partial Cartesian Closed Category (pCCC)
iff Cr is a CC and for all a, b€Ob there exists a (unique) object b?, (the
representation of partial morphisms) and an arrow eval: b°,xa —b which is

universal from (—xa). Inc to a, ie, such that, for all ceOb, and
feClcxa, b], the fd.c.:

f
cxQg ————— b

1

Alf)xia eval

|
1
|
|
|
!
Y

b pxa

As usual, A(f) is the carrying of f.
The above condition uniquely defines an adjunction between C and Cj;.
In particular there is a natural isomorphism

A C[—xa, b] ~ Cr[-, b%,].

In a pCCC we write b% if it exist, for the representation of total

morphisms. That is, for the (unique, if it exist) object b? such that there is a
natural isomorphism

A'T: CT[-—-xa, b] x> CT[—, ba].

As for ordinary CCC’s, the naturality of Ay is equivalently expressed by the
following diagram, where ge Cr[d, c]:

C;lexbal o Crlc.a®)
_ulg."ld‘ £g

(Dlag )'T)
Crldxb,a] €rlda®)

T

That is, Ar(f)og = Ar(fo(gxid)). The same holds for pCCC’s, provided
that the equation is restricted to domains. Namely, for ge C[d, c], one has

(Eq. ) Vh (h into dom(g)) A(f)ogoh = A(fo(gxid)oh.
Indeed, (Eq. 4) is proved as follows:
A(f)egoh = i(fo((goh) xid)) = A(fogxidohxid) = A(fo(gxid))oh,
as, for h into dom(g), one has

(goh) xid = {gohop,, p,> =gxidochop,, p,> =gxidohxid.
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Observe that, in 1.16 A goes from C[—xa, b] to C;[—, b°,]. This may
be understood in terms of classical Recursion Theory, which actually inspired
Longo-Moggi [15]. Let PR = (PR, ¢) be a goedel-numbering of PR and o
= (w, id). Observe, say, that ¢ is the currying of the universal function
u(n, m) = @(n)(m). Thus, the partial binary function u is curried to a total
unary function ¢, whose range is a representative of partial morphisms,
namely o”, = PR. Or, also, for each fepEN[wxw, w] of index i,
A(f)eEN[o, 0”,], where A(f)(n) = @y.n, by the s-m-n theorem. That is, f
and A(f)(n) are partial maps, while A(f) is total.

1.17. Remark. 1t is easy to extend A~} from C;[—, b°,] to C[—, b°,].
For all ¢ and feC[c, b%,], set A" '(f) = evalo(fxid). Then
Cl[—xa, b] < C[—, b%,] via (4, A ).

1.18. ProrosiTiON. Let C be a pCCC and t be the terminal object in Cy.
Then

1. ="', C— C is the lifting functor in C,
2. for all a, beOb¢, b°, is a complete object.

Proof. 1. C[—, a]olnec ~ C[—xt,a] =~ C;[—, d,], by 1.15, 1.16.
2. Let A”' be as in 1.17. For any c€Ob¢ and feCl[c, b°,], define f
= A(47(f)).Then
Vh (h into dom(f)) A(4~'(f))oh = A(evalo(fxid))oh
= A(eval)ofoh by (Eq. 4)
= foh by definition of eval
That is, fe Crfc, b°,] extends f =

1.19. Lemma. Let C be a pCCC and a, beObe. Assume also that
1. b* exists;
2. b < b° via (in, out) (i.e., b is complete).

Let t be the isomorphism C[b°,xa, b] ~ C;[b°, xa, b°] and define out’
= Ar{outor(eval)). Then

Vce 0b VfeClcxa, b] out’ 0A(f) = Ar(outoz(f)).

Proof. Clearly,
C[b°, xa, b] <> Cy[b°, xa, b°] 22>~ C1[b*, xa, b] “T> Cy [b°,, b°].

That 1s, out’e C;[b%,, b"]. Compute then



30 A. ASPERTI and G. LONGO

out’'04(f) = A1 (out oz (eval))oA(f)
= ir(outot(eval)o(A(f) xid)) by (Diag. ir)
= A7 (outoz(evalo(A(f) xid)))
= Ar(outot(f)). =

The next theorem “internalizes” the operation which extends each
partial morphism to a total one, when the target is a complete object. It even
gives a retraction b* < b®, in Cy.

1.20. THEOREM. Let C, a, b be as in 1.19. Then
b* < b°, via (in’, out’),
where out’ is as in 1.19 and in’ = A(A7 ' (id,,)).
Proof. Clearly,
Cr [b°, b7] —i»CT [b° xa, b] < C[b° xa, b] *- C;[b°, b°,].
Thus in"eC,[b% b°,]. Compute then
out’'oin’ = out’0i (47! (id))
= Ar{outor(i;!(id))) by Lemma 1.19
= Ar{Ar'(id)) by Remark 1.14.1
=id. =

1.21. CoroLLarY. Let C be a pCCC. Assume that a, b €Ob are such that
b® exists. Then

b < b°=b* < (b%°.
Proof. By 1.14, 1.18 and the theorem. =

By this, completeness is inherited at higher types, also for total
morphisms.

1.22. Remark. (Following a suggestion of P.L. Curien) In Obtulowicz
[19] partial categories are defined by equipping each hom-set with a partial
order and a distinguished set of maximal arrows, called total. The maximal
arrows are required to include the identity and to be ciosed under
composition; moreover, composition is assumed to be monotonic in each
argument. As pointed out in 1.14.1, we do not need to axiomatize these
properties, since they are essentially derived in our approach. We just needed
to assume the existence of a “zero” morphism (1.1) and to define the notion
of “being into dom(f)” (1.4). As for the other notions and results, we think
that the merits of our approach partly consist in the use of consolidated
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notions in Category Theory. For example, lifting functors are defined by
classical naturality on total morphisms. However, one could also use the
concept of quasi-naturality in Obtutowicz [19], which coincides with
naturality on total arrows, and carry on the discussion in a slightly more
abstract setting, i.e, with no “zero” morphisms.

A few remarks on concrete categories. A suitable notion of
“concreteness” may be helpful in the study of categories of functions.
Concrete categories are widely used in denotational semantics, where they

are defined by a (less general) “enough points” requirement (see below and
references in Section 2).

R.1. DeriniTioN (MacLane [17]). Let € be a category, teOb, is a
generator iff for all a, beOb, and all f, ge Cla, b]

f #g=3heC[i, a] foh s goh.

R.2. DeFiniTiON. A category C is concrete iff it has a generator,

A category has enough points il there exists a generator t which is
terminal in the given category. In contrast to concreteness, this notion does
not extend naturally to pC’s, as non-trivial pC’s have no terminal objects: in
a pC each object g has at least O, and id_, as morphisms. Moreover, there is
no relevant reason to have a particular generator.

RJ. ProrosiTioN. Let C be a concrete pC and t a generator; then
feCla, b] is total iff VheC[1, a] foh=0,=h=0,,.

Proof. (=) Obvious.

(<) Let geC[c, a] be st. fog =0,,. Thus VheC[t, c] fogoh = 0,
and, by the assumption, goh = Q,,. Recall now that ¢ is a generator, then
g=0,. a

R.4. ProrosiTioN. Let C be a pC. Assume that Cy is concrete and let t be
a generator for Cy. Then fe Cyp[b, a] extends fe C[b, a] iff Vhe C[t, b] (h
into dom(f))= foh = foh.

Proof. (=) Obvious. .

(<) Let ge C[c, b] be into dom(f). Then fog and fog are both total.
Suppose now that they are diflerent; then, as t is a generaior in Cp, there
exists he C;[t, c¢] s.t. fogoh # fogoh. This is impossible since gche C[t, b]
is into dom(/). =

Observe also that both results above do not depend on the choice of the
generator .

Finally, consider a pC C such that C; has enough points. Then, for any
feClixa, b], A(f)eCy[t, b?,] is the “point” which represents f in b%,.
Similarly for A, w.r.t. b°. Thus, if we identify C;[q, b] with b Lemma 1.19
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gives
(R.5) out’(f) = outot ().
Therefore out’(f) is the extension f of fin 1.13. This will be used in Section 3.

2. Partial retraction systems

2.1. DerinrTioN. The collection of types Tp over a ground set At of
atomic type symbols is inductively defined by:

(1) At =Tp;

(i) if o, TeTp then ateTp.

Given sets C/s and C = |C}| i€At], Te = |C,},cr, 1S @ pre-type-structure
over C if Vo, 1eTp C,, =C, — C, (= Set[C,, C.]), the set of all functions
from C, to C,. For xeC,, and yeC,, we write xy for x(y), if there is no
ambiguity.

A type-structure Ty = ({4,}qer,, [ 1) is @ pre-type-structure which is a
model of typed A-<alculus. That is, given an A-environment h: Var
— |J {4,}, one has:

acl
(Var) [x'], = h(x)e 4,,

(App) [M° ™ N7), = [M° J(IN°]w€ 4.,

(B) [Ax". M), (a) = [Mt]h[a,‘x’]EAf for agA,.

Note that, in a type-structure, axiom (n) and rule (¢) (ie., iy.My =M,
for y not free in M, and M = N=ix.M = Ax.N, respectively, with the
intended types) are always realized, since one has:

(m Vally’.M°™y),(a) = [M* "i(a) and

&) VaIM T, , o = [N)p o = [AX°. M), = [Ax°.N]), by (B) and by
[Aix®.p'l, €4, S A, = A,.

(Notation: we may omit types, il there is no ambiguity; given
T.=(QA}6erpp [ 1, TJEM =N means that, for all A-environment A,
(M1, = [N].)

Thus a pre-type-structure T, is a type-structure ifl

ABr-M=N=>T=M=N.

In particular, one obtains type-structures from “concrete” categories, i.e.,
from categories whose objects and morphisms may be viewed as sets and
functions “in extenso” (see R.1-R.6 in Section 1), provided that they are
closed under formation of morphisms spaces. More formally, let K be a
Cartesian Closed Category (CCC) and C = |C;| ie At} = Obg. Then K,
= {C,| aeTp} is the type-structure generated by C in K, that is each C,,
coincides with Cf’, the representative of the collection K[C,, C,] of
morphisms from C, to C, (if needed and not ambiguous, we may identify
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C,C‘ and K[C,, C.)). By the well-known results relating CCC’s and typed A-
calculus (see Lambek [13], Scott [27], Dibjer [4], Poigne [23]), K¢ is indeed
a type-structure. The equivalence between the assumption on “concreteness”
(more precisely, “enough points”) and rule (g} is tidely investigated in Berry
[2] and Poigne [23], for the typed case, and Koymans in 1982, and
Barendregt [1] for the type-free calculus.

22. ExampLes. The simplest type-structures are the full type-structures
and the term model of typed Afn. That is Set,, where A4 is a collection of
sets, and Term = ({Term,},cr,, [ 1), where Term, is the set of terms of type ¢
modulo Bn convertibility. (If there is no ambiguity, we identify M® and [M"]
= [N 4Bn}- M° = N°})

Given a CCC K, there is a canonical way to inherit retractions (see
before 1.8) at higher types; namely, if B, < A, via (a,, B,) and B, < A4, via
la,, B,), then B, < A,, via

Clearly, a,,¢ K[A,, B,.), B K[B,., A-] and a,, oﬂ,, = id.

Retractions play a major role in the semantic investigation of type
theory, as they provide a strong and precise notion of “subtype”. A simple
result in this section will be the following (see Corollary 2.15):

Let A= {A,};.,, and B = |B;};.., be collections of objects in a CCC K if
VieAt B, < A;, then

This fact gives a strong consequence in any type, by some information
on the ground types. However, it uses the assumption that both type-
structures are built in the same category. That is, for all o, 7eTp, both A,
and B,, are exactly the morphisms in K of the intended type. 2.12 and 2.14
will prove more by comparing type-structures which do not need to satisfy
this strong assumption. That comparison will be made possible by an
essential use of partial morphisms.

How does partiality come in? Given type-structures T, and T, assume
that, for all 6eTp, 4, and B, are objects of a CCC K. Very roughly, the idea
is to take the category K where the type structure with “more morphisms”,
T, say, is built in (or jllSt the category Set). Then, even if A, = A, Ae , B,
may be smaller than B, s for some s, 1€Tp. Thus, for xe€A,, ,,,(x)
=a,0x0f, does not need to be in B, that is «,: A, — B,, does not need
to be defined on x.

For the purposes of this section we only need the classical notion of
partiality for set-theoretic functions. In particular, we write B <, A if there
exist partial functions a: 4 — B and f8: B — A s.t. aof = id. Clearly, then, a is
a (possibly partial} surjection and 8 a total injection.

3 — Banach Center 2t
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24. DeFiNtTioN. Let {A,}, . {Bsleer, be pre-type-structures. Then
{0, Bo)}aerp is a partial retraction system (prs.) from {4,},, onto {B,},.r,
if VieAt B, <, A, via partial functions (x;, f;) and

cond. (1): Vxe A, [2,0x08,€B,. =a,.(x) =a,0x08,],

cond. (2): VzeB,, Vyedoma, (. (2)y = B (z{x,(»))

25. Prorosimion. Let {A,},cp {Bs}oer, be pre-type-structures and let
{(@5) Bo)}ser, be a prs. from {A,}er, onto {B,},er, Then Vo, t €Tp one has:

() a,08, =id,

(i) (Bar (2))(Bs () = B.(2¥).

Proof. If oeAt, (i) holds, by definition of p.rs. Suppose then that (i)
holds for o, 7. One then has, for all ze B,, and yeB,:

(Bae @) (B (») = B.(2(2,(B,(»)))) by cond. (2) and induction on (i)
= B.(zy) by induction on (i).
This is (i1) and, thus, for all ye B,:

o (B (@) (Bs (1) = o (B ()

=zy by induction on (i).

Observe now that {B,},.r, is extensional and then

ato(ﬂa-r (Z))Oﬁ,, =2z.

Thus cond. (1) applies and gives VzeB,, tor(Bse (2)) = z or, equivalently, (i)
at the higher type. »

By (i) in the proposition, for each ¢ Tp, B, <, A,. Moreover, by (ii), the
injection B, is a ‘total “homomorphism”, ie. it preserves functional
application. As this is a fundamental notion, we briefly survey the
connections between p.r.s., homomorphisms and logical relations.

Let T,={A,}ser, and T3 ={B,},4, be a pre-type-structure and
R, € A;xB;, ieAt. Define then a logical relation {R,},e, With
R, € A, xB,, by

R.(a, b)<>Vx, y(R,(x, y) = R.(a(x), b(»))).

26. ProposiTioN. Let {R,},«, be a logical relation.

(1) If VieAtR, is single valued and Yo R, is surjective, then Vo R, is
single valued. !

(2) If Vo R, is single valued, set a®,(a) = b iff R,(a, b). Then {a®,},r, is
an homomorphism, ie, Vo,t of,.(a)(x?,(c)) = a® (a(c)). Conversely, each
surjective homomorphism {a,}, .. defines a logical relation {R,},., such that

Vo R,(a, b) iff a.(a) = b.
(The proof is easy.)
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Recall that also the B,’s in 2.5 yield an homomorphism. The way 8,’s
and the a®_’s relate is expressed by 2.7-2.8. Assume that a p.rs. {a,, Bo}oerp iS
given from a pre-type-structure {A,},q, onto {B,},., Define a logical
relation {R,}, ., as above over R;, where R;(a, b) iff a;(a) = b. Then one has:

2.7. Tueorem. YoeTp (1) VbeB, R,(B,(b), b), (2) VaeA, VbeB,
R,(a, b)=ua,(a) = b.

Proof. (By combined induction on types.) o At: O.K.

() c=y—46: Let R,(a,d). Then «,(a)=d by induction on (2).
Moreover, aedoma, and, then, B,(b)(a) = Bs(b(x,(a))) = Bs(b(d)). Thus
R;(B,(b)(a), b(d)), since R,(B,(b(d)), b(d)) by induction on (1).

(20 e=vy-8:R,(B(c),c) for.all ceB,, by induction on (1)
= Ry(a(B,(0)), b{c)) by R,(a,b)
= as{a(B,(c))) = b(c) by induction on (2)
=ua,0a0f, =beB, by extensionality

=a,(a)=b. u

Thus any prs. (&, Bsleer, Bives a logical relation {R,},e, Which is
surjective (2.7.1) and single valued (2.7.2) and, hence, a surjective
homomorphism (z®, in 2.6.2). In general, z®, and «, are partial maps:

28. CoroLLary. Yo eTprangef, = domR, = domaR®, < dom a,. More-
over, Yaedoma®, a,(a) = a®,(a) and, hence, a®, 0B, =id.

As it will be pointed out in 2.10 and 2.12, the existence of a surjective
homomorphism between two type-structures has several consequences. The
first. 2.10, has been recently communicated by Statman to the authors.

29. DeFiniTION. Let T, be a type-structure. fe A, is n-piecewise-A-
definable iff Va,, ..., a,e A,AMeTerm,, (closed) f(a)=[M],(a) for
l<i<g<n

2.10. ProposiTiON. Let T, be a type-structure such that there exists a

surjective homomorphism from T, onto Term and let f € A,, be 2-piecewise-A-
definable. Then f is A-definable.

2.11. FUNDAMENTAL THEOREM ON LOGICAL RELATIONS (Statman [32]). Let
T, and Ty be type structures and {R,,},ETP a logical relation. Then

Vo Vh,, hy(VYx7 R, (h(x%), hp(x7)) = VM R, (M1, [M],p).

2.12. Corovrary (Friedman [7]). If \R,}ser, is a surjective and single
valued logical relation (a surjective homomorphism) from T, onto Ty, then
T=eM=N=T,=M=N.

The main difficulty with logical relations is to construct singled valued
and surjective ones, ie, to find surjective homomorphisms. P.rs’ may be
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viewed as a tool for defining them in a way which is constructive w.r.t. the
intended category. Indeed, this is how p.rs.’s will be used in Section 3.
We give a proof of the relation between type-structures in 2.12 by a

direct use of prs.’. Recall that all typed terms possess a normal form:
moreover, if M is in normal form and M = PQ, then, for no P, P = ix.P"

2.13. Lemma. Let Ty =(i4sl6er,, [ D, Ty =(iBsloer,y [ 1) be type-

ajoelp?
structures and (o, By)}oer, @ pr.s. from T, onto Ty. For each B-environment h

define an A-environment h' by
Vo eTpVx® ' (x%) = B,(h(x9).
Then one has:
(i) if M, of type o, is in nf,
M=x or M = PQ=[M], = B,(IMT),
M =ix.P=a,([M°]) = [M"];
(ii) for all M, of type o, a,(IM]y) = (IM1).

Proof. (i) By induction on the structure of M.
M =x7: [x]y = K (x) = B,(h(x) = B.([x],
M = PQ: by the remark above, one has P = x or P = RS.

By the inductive hypothesis, [P], = B ([P]») and a,([Q]s) = [C]:.
Then

[PQLy =([P1x)([Qw) by definition of [ ]
= (B, ([P ([Qw) by induction
= B[P (2, ([QI)) by cond. (2)
= B.([P1.([Q1W) by induction
= B.([PQ]n by definition of [ ]

M = Ax°.P" for all yeB,
@ ([x.PYy (B, () = % ([PIy [B.(3)/x]) by definition of [ ]

= [P]y [ y/x] by induction
= [Ax.P}i(y) by definition of [ J.

Thus by ' extensionality: .
a,0[Ax.P], 08, = [Ax.P],

and by cond. (1):
a.([Ax.P),) = [).x.P];,.
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(i1) Just observe that each A-term M has a nf. M’, and, as T, and T, are
models,

do’([M]h') = aa([M’]h')
= [M1], by (i) above and (i) in 2.5
= [M],. =

2.14. THeoreM. Let T, and Ty be rype-structures and suppose thar there
exists a prs. from Ty onto Ty. Then Ty=M =N=Ts=M = N.

Proof. For each B-environment h define an A-environment k' by
VoeTp Vxh'(x%) =B, (h(x°). If T=M=N then [M];,=a,(IM]y)
=%,([N]») = [N],. Hence Tz M =N. »

2.15. CoroLLARY. Ler A = {A;}; .., and B = |B;};.., be collections of
objects in a CCC K; if VieAt B, < A;, then

KsseM=N=K;,=M=N.
Proof. By 23. =

2.16. CoroLrary. (Completeness, Friedman [7].) Let A = {4, ic At} be
a collection of 'infinite sets. Then

Set,EM=N</ifn-M=N.

Proof. We only need to prove (=). Clearly, for any ie At, Term; < A4, via
some (x;, f;).in Set. Define then a prs. {(%,, B,)}scrp» in pSet, by using
cond. (1) and cond. (2) in 24 in the obvious way, with B, = Term,. »

Note that, in 2.16, a,, B, are well defined as partial functions, for all
o€ Tp; indeed, this is all what we need, as pSet, with the obvious partial
morphisms, is used as “frame” category (by frame category we intend the
category whose objects include the types of the considered type-structures).
Also Plotkin [21], which was brought to our attention when this paper was
in preparation, uses a particular notion of partial retractions in our sense, for
the special case of cpo’s, in the frame of pSet. More generally, a notion of
partiality in arbitrary categories is needed, as presented in Section 1. By this it
will be possible to apply theorem 2.14 to type-structures of more structured
objects (numbered sets, domains, cpo’s...). Of course, the definition of a p.r.s.
cannot be given, in general, as simply as in 2.16 for pSet and p.rs.s must be
constructed “effectively”, in a sense which is relative to the intended frame
category.

Remark. A recent result of Statman, the “l-section theorem”, f[ully
characterizes “complete” type-structures, in the sense of 2.16, by a necessary
and sufficient condition. Apparently, the 1-section theorem may be recovered
by digging deeply into Statman [31], [33]. We state it here in its great
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elegance as we could borrow it from Types [34]. This simple statement uses
models with a unique atomic type, Dy.

THEOREM (l-section). A type-structure Tp is complete iff for any two
algebraic closed terms s and t, constructed from a constant ¢ and a binary
Junction symbol f there exist:

An interpretation of ¢ in Dy,
An interpretation of f in Dy _ g,

such that the resulting interpretations of s and t in D, are distinct.

Note though that the existence of a p.r.s. and, hence, of a surjective
homomorphism from a type-structure onto Term is a stronger property
which gives some important extra information (e.g. 2.10).

3. Types as quotient sets

The data types one is usually dealing in effective computations are countable
sets, possibly structured by an order or similar relations. Indeed, since its
origin, denotational semantics was based on the idea of interpreting (higher
type) computations by countable approximations of (possibly infinite)
processes. Thus even uncountable sets for the interpretation of formal types
have a countable and effective core. This is the leading idea for the various
categories of Scott’s domains (w-algebraic cpo’s, effectively given domains.. ).

Countable or, more precisely, numbered sets may be viewed as quotients
over the set w of natural numbers. That is, each A = (4, e,), where e,: @ = A
is an onto map (numbering), defines an equivalence relation on w by n.dm iff
e,(n) = e,(m) (and conversely). Thus each element of A corresponds exactly
to an equivalence class in w and we may view at Malcev-Ershov category of
numbered sets as the category ER, of equivalence relations on w, whose
morphisms are defined as follows. Let (P)R be the set of (partial) recursive
functions. Then f e ER,[A, B] iff there exists f'e R s.t. the following diagram
commutes:

ER, is a cartesian category (products are obvious), but not a CCC. It
contains, however, several interesing full subCCC, such as Scott’s
constructive domains (see later) and a lot of higher type recursion theory
may be carried on within it, see Ershov [6] (or Longo-Moggi [14]).
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Clearly, given numbered sets 4 and B, not all f'eR induces an
S€ER_[A, B], as ' must preserve A-equivalences, that is nAm = f'(n) Bf ' (m).
This suggests a way to introduce higher type objects and thus to define a

cartesian closed extension of ER,. Let {¢;)};.. be any acceptable goedel-
numbering of PR. Define then

(Quot.) pBA qg il nAm=¢,(n)Be,(m).
4B is a partial equivalence relation on w, as it is defined on a subset of
. Indeed, dom (BA) = {p| pBA p} Sw, and a partial numbering 7,5

dom(BA)—vAB is given by m(n) = {m/nBA m}. In general, each partial
surjective n: w — C uniquely defines a partial equivalence relation (and
conversely).

3.1. DeriNiTioN. The category PER,, of partial equivalence relations on
@ has as objects the subsets of w modulo an equivalence relation. Given
objects a =(a, n,) and b= (b, n,), where n,, n, are partial numberings,
fePER,[a, b] iff there exists f'e PR st. the f.d.c, where dom(n,) = w,:

Clearly, ER,, is a full subcategory of PER_. Moreover, PER_ is a CCC;
it is actually a full subCCC of the “effective topos” (see Hyland [11]), a tool
widely used for the semantics of intuitionistic logic because of its constructive
nature. Note that the representative b? of PER_[a, b] is partially
enumerated by the quotient subset of w determined by the partial relation b%
(see (Quot.) above). That is, n (i) = f iff forn, = n,0¢;.

In Computer Science, PER,, is also known as the quotient set semantics
of types over w, following the ideas in Scott [26] on A-models (see Longo—
Moggi [16] for details and further work on arbitrary (partial) combinatory
algebras).

Classical computability suggests now a natural way to extend PER,_ to a
category with partial morphisms. Note that, by definition, if pp®p then @, is
a (partial) recursive function which is total on dom(a), as we are defining an
ordinary category with total morphisms. Just drop this condition and define

pPER, exactly as PER_, by allowing fepPER_[a, b] to be partial. More
formally,

fepPER,[a, b] iff If'€ PR (nam and f'(n)| = f'(m)|)
and fon,(n) = n,of '(n).
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By checking the condition in 1.16 one may actually prove:

3.2. Tueorem. pPER,, is a pCCC.
Clearly, (pPER,); = PER,,.

(Notation. 1. We will keep writing f', M, «
defining the morphism f, M, a ... in {(p)PER,,.

2. Set m,,, for the enumeration of (%),

7

,... for the functions in PR

pPER, is the “effective” frame category which we are going to use. It
will serve as a tool for comparing type-structures of quotient sets within
PER,, to the typed term model Term. As an immediate consequence, this will
give us full information on p.rs. onto Term from type-structures built out of
usual “flat cpo’s” of data as ground types

eg. 1 2 3 /n
\-L
Observe first that Term = ({Term,},,eTp, [ ] is a collection of countable
sets. Indeed each Term, can be numbered by an injective e,: @ — Term, . Just
code all terms in normal form and set e, (i) = [N] if i is the code of the fn-
normal form of N. Thus we may view Term, as an object (Term,, ¢,) in ER
and, hence, in PER,,.

Moreover, Term,, < PER,,[Term,, Term,], since for each MeTerm,,
there exists M'eR s.t. the fd.c.:

w

W Lol 1

- Term, " Term,

Clearly, M’ depends uniformely effectively on M. That is,
(3.2.1) d1eR e, () = M=g; =M.

This will be used in Theorem 3.4, jointly with the “inverse” property.
The later property is formalized in 3.3 and gives some new information on
typed terms and their relation to computable functions.

3.3. MaIN LEMMA. There exist a partial recursive function f such that for
all icw, if there is a term M’ for which one has M™oe, = e,0¢;, then M
= €gr (f (l))

That is, for all iec @ we can uniformely effectively find (an index for) M
such that the following diagram commutes, if M exists: ‘
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(Diag' M) e, l I'r

_——
Term , m Term,

Proof. Clearly, if (Diag. M) commutes, thert
(1) IM eTerm,, e.(p;(e; ! (x))) = Mx® for x* not in FV(M).
Claim. Let M” be in nf, and x° # y* two variables of type o.
Mx?[y°/x"] = My?<>x° is not in FV(M).

Proof. M =zP: (zPx°)[ y°/x°] = (zP)([y°/x*])y°, and this is equal to
My” if and only if x° is not in FV (M),

M = AyvzP: (AyvzP) x°[ y°/x°] = (Ayv.z2P) y° [ y°/x")

and again this is equal to My” if and only if x° is not free in M. This
concludes the proof of the claim.

By definition, for all NeTerm,. e(o;(e;'(N))eTerm,. Then the
algorithm which defines f goes as follows: given i, find x” and y“, if any, such
that

(2) e (@: (e " () [y°/x°T = e (@ies ' (¥)).

If and when the variables in (2) are found, set f(i) equal to the
e-number of Ax"-e (¢, (e, ' (x7)), that is

en(f () = Ax".e,(0:(e5 1 (x7)).

Observe now that (1) implies (2). (The converse does not need to hold.)
Therefore, if (1) applies, e, (f (i) = Ax".e,(¢;(e; ' (x7)) = Ax".Mx* =M by
axiom (). =

34. THEOREM. Let a = {a)| ie At} be a collection of complete objects in
PPER,, s.t. Term; <, a;, for all ie At. Then there exist a p.rs. \a,, By)qer, in
pPER, from (pPER,), onto Term.

Proof. Let a; >,Term; via («;, B;). Assume by induction that (a,, B,),
(., B.), partial retractions in pPER,, have been defined. We will first
construct B,.c PER_ [Term,, a,.] satisfying cond. (1) in 24.

Let MeTerm,,. By definition, the f.d.c.:

!

14 1 ﬁ

ad M T
e @ » W > W,

wﬂ
”al ., e Tx
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Define now h,: Term,, — (&%), by
h,. (M) = f.oMoa,ecpPER,[a,, a.].

Clearly h,, is a well defined total map.

Claim. h,, € PER,[Term,,, (a,%),].

Proof. Let leR be as in (3.2.1). Since the composition of partial
recursive functions is an effective operation, one has

ke R h,. (e, (i))on, = B,0e, ()0 om,
= %, 0f, 0@, Oty by the diagram

= R OPyi)-

By the definition of x,,,, the partial enumeration of (a,“'),, in PER,, one has
n,0Q; = R, (j)on, and, hence, h, (e, (i)) = n,. (k@) for all icm by the
computation above. Equivalently,

By Olyy = TqppOk.

That is, h,. € PER_[Term,,, (a,af),] with h,, = k. This concludes the proof of
the claim.

By 1.20, a,, <(a%), via (in, out’) in PER,.
Set then

B.. = out’'oh,, e PER_[Term,, 4,,].

By R.5 in Section 1, out'oh, (M) = out’(h,, (M)) = outor (h,,(M)) and this is
exactly the definition of the extension of h,, (M)epPER_[a,, a,], in the sense
of 1.13, to a morphism in PER_[a,, a,]. Indeed, by assumption on a and
1.21, VreTp, a, is a complete object. Thus, if h,.(M)(y) converges (i.e.
yedoma,), B.(M)(y)=h,(M)(y)=poMoa,(y) and this is exactly
cond. (2) in 24 for B,..

We now need to define «,, € pPER,, [a,., Term,,]. By definition the f.d.c.:

\ 7] o
(] T
L) > W — w, » W
[ ” n, LA ay
-
Term —> g — g —»-Term
a g H T T
ﬂu e .

Define then g,.: (a.,,)—»(Term,Terma), by

Got (M (i) = ¢, Om,, () OB, € pPPER,, [Term,, Term,].
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Clearly g¢,. is a well defined total map.

Claim. g,.€ PER, [, (Term,167M0) .

Proof. As the composition of partial recursive functions is effective, one
has

ar € R ga‘t (nm (i))oeo' el # Ona-r (l) Oﬂaoea
= ¢,00,0¢;0f, by the diagram
= € OPp)-

Moreover, if =, is the enumeration of (’I‘erm,Tem"")‘p in PER,, one has
€,0Q; = M,,(i)oe, and, hence,

(%) Gor (Toe (D)0e, = €,0¢,; for all iew
= Ty, (r(i))oe,.
That is, ¢, 0y = T,,Or and, thus,
d.. €PER,[a,., (Term, T¢Ms) 1 with g/ =r.

This concludes .the proof of the claim.
Let f be the function given by Lemma 3.3. Define then a, by

e (Tae () = 0 (f(r())) for all icw.

Note now that, by definition, f above preserves indexes, that is ¢
= @; = . (1 ()) = e, (f()). Thus a, cpPER,[4,,, Term,] with a, = for.
We only have to show that a,, satisfies cond. (1). That is, suppose that

(%) AM eTerm,, a,on, ()of, =M

(this 1s the assumption in cond. (1)). Recall that, by (*) above,
% Oy, (i) O 40, = gor (Mo () O, = €,00,

and, hence, condition (*x) can be rewritten as:

(&) IM eTerm,, ¢,09,, = Moe,.

Finally, by the construction of f, if (,},) holds, one has:

M = eo (£ (r D) = e (e ()

and this proves cond. (i). =

We conclude this section by a very loose summary of applications of the
previous results and their consequences (see Section 2) to some interesting
type-structures in denotational semantics.

The category CD of constructive domains may be naturally defined
from Scott’s effectively given domains (see Giannini-Longo [8] or Ershov
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[6] for a detailed definition). In short, each constructive domain is the
collection of computable elements of some effectively given domain. By
generalized Myhill-Shepherdson theorem CD is a full subCCC of ER,,.
Indeed, it may be embedded into PER,, by a full and faithfull functor which
preserves products and function spaces. Clearly all objects in CD are
complete as they possess a least, bottom, element.

As already pointed out, the usual ground types of data are trivially in
CD, eg. all flat cpo’s (such as w). Moreover, given i< At, all what is required
in order to have a partial retraction, from a constructive domain a onto
Term,, is that a contains as many incompatible elements as the cardinality of
Term;. Thus, one may also take as ground types the following objects in CD
and 3.4 applies: the partial recursive functions, the effectively generated trees
on some countable alphabet... Interesting instances of the later example of
data type are the (possibly infinite) parenthesized expressions in a language
(e.g. LISP S-expressions).
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