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Chapter 1
BASIC PRINCIPLES OF THE KINETIC THEORY OF GASES

1. Introduction

According to the molecular theory of matter, a macroscopic volume of
gas (say, 1 cm?) is a system of a very large number (say, 10?%) of molecules
moving in a rather irregular way. In principle, we may assume, ignoring
quantum effects, that the molecules are particles (mass points or other
systems with a small number of degrees of freedom) obeying the laws of
classical mechanics. We may also assume that the laws of interaction
between the molecules are perfectly known so that, in principle, the evolution
of the system is computable, provided suitable initial date are given. If the
molecules are, e.g., mass points the equations of motion are:

E.u‘ =X,

(1.1a)
X; = &;
or
(L.1b) X=X
where x; is the position vector of the ith particle (i=1, ..., N) and E; its

velocity vector; both x; and &; are functions of the time variable ¢ and the
dots denote, as usual, differentiation with respect to t. Here X; is the force
acting upon the ith particle divided by the mass of the particle. Such a force
will in general be the sum of the resultant of external forces (e.g., gravity or,
if the observer is not inertial, apparent forces such as centrifugal or Coriolis
forces) and the forces describing the action of the other particles of the
system on the ith particle.
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2. Phase space and Liouville theorem

In order to discuss the behavior of a system of N mass points satisfying Eqs
(1.1a), it 1s highly convenient to introduce the so-called phase space, ie. a 6N-
dimensional space where the Cartesian coordinates are the 3N components
of the N position vectors x; and the 3N components of the N velocities ;.

In this space, the state of a system at a given time 1, if known with
absolute accuracy, is represented by a point whose coordinates are the 6N
values of the components of the position vectors and velocities of the N
particles. (Frequently, thc momenta of the particles are used in place of their
velocities, but the difference will not matter for our purposes.) Let us
introduce the 6N-dimensional vector z which gives the position of the
representative point in phase space; clearly, the components of z are orderly
given by the 3N components of the N three-dimensional vectors x; and the
3N components of the N three-dimensional vectors ;. The evolution equa-
tion for z is from Eqs (la)

_2_4
dt
where Z is a 6N-dimensional vector, whose components are orderly given by
the 3N components of the N three-dimensional vectors &, and the 3N
components of the N three-dimensional vectors X;. Given the initial state, i.e.
a point z, in phase space, Eq. (2.1) determines z at subsequent times
(provided the conditions for existence and uniqueness of the solution are

satisfied).

If the initial data are not known with absolute accuracy, we must
introduce a probability density Py(z) which gives us the distribution of
probability for the initial data and we can try to set up the problem of
computing the probability density at subsequent times, P(z, t). In order to
achieve this, we must find an evolution equation for P(z, t); this can easily
be done, as we shall see, provided the forces are known, ie., if the only
uncertainty is on the initial data.

An intuitive way of deriving the equation satisfied by P(z, t) is the
following. We replace each mass point by a continuous distribution with
density proportional to the probability density; in such a way, the system of
mass points is replaced by a sort of fluid with density proportional to P and
velocity z = Z. Hence conservation of mass will give:

(2.1) z

oP .
(2.2 — +div (PZ) =0,
ot
where, as usual, for any vector u of the phase space, we write

(2.3) divu=Y “=
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Equation (2.2) is the Liouvilie equation; note that the components of z are
independent variables. But:

(2.4) div (PZ) = Z-grad P+ P div Z,

where, as usual, grad P = ¢P/¢z is the vector of components ¢P/cz;. Hence P
satisfies the equation

cP

(2.5) _’I»+Z-grad P+PdivZ =0.
(

Usually, div Z = 0. In fact, since x; and §; are independent variables:

avz=5 (L erlx)-yLx
(2.6) WL:,-;(}’E §i+a—él_ i)_.'=1-('£ i-

If the force per unit mass is velocity-independent, then also (d/¢E;)-X; =0,
and div Z = 0 as announced. Note, however, that for some velocity depend-
ent forces (0/d€;)-X; =0, the most notable case being that of the Lorentz
force acting on a charged particle in a magnetic field. We shall always
consider forces such that div Z = 0 (typically, velocity-independent forces).
Hence we write the Liouville equation in the following form:

cP N cP
ot oz

(2.7) 0.

Equation (2.7) can be of course rewritten in terms of the variables x;, &;:

P X ep X P
—+ Y&+ Y X =
cr i=1 exi i=1 (‘E,
where ¢P/cx; 1s the gradient in the three-dimensional space of the positions
of the ith particle, ¢P/CE; the gradient in the three-dimensional space of
veloctties of the ith particle.

(2.8) 0,

3. Hard spheres and rigid walls. Mean free path

In the previous sections, we considered the case of mass points which
continuosly interact with each other according to the equations of motion
(1.1). It is frequently convenient to consider limiting cases in which the
system has only discrete interactions of finite impulse (hard collisions); in
such a case the forces are not describable by means of ordinary functions
and the Liouville equation must be handled in a different way. The limiting
case of hard collision is useful, because it gives a more intuitive idea of the
evolution of the system and is a good approximation to the strong repulsive
forces which actual molecules mutually exert when they are close to each
other. These considerations lead to the concept of a gas of hard spheres; i.e.,
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a system of many “billiard balls” which do not interact at distance and
collide according to the laws of elastic impact. The diameter ¢ of the spheres
is equivalent to the range of the force through which actual molecules
interact; as a matter of fact a gas of rigid spheres can also be pictured as a
system of mass points which do not interact when their mutual distance is
larger than o but interact with a formally infinite repulsive central force
when this distance becomes exactly equal to ¢ so that a closer approach is
impossible.

Another example of instantaneous interaction is considered when a
molecule is assumed to be elastically reflected by a sohd wall. This model is
more unrealistic than the hard spheres model, because a solid wall has
macroscopic dimensions and certainly shows a very detailed structure at a
microscopic level. This structure will prevent an elastic collision on the
regular geometric surface representing the wall in a macroscopic description.

In spite of this, it is useful to consider the case of perfectly elastic
reflections on a rigid wall for illustrative purposes.

In n is the normal at the wall (assumed at rest), the effect of a collision
will be to change the sign of the normal component while leaving the
tangential component unmodified. Thus, if & denotes the velocity of a
molecule before the collision and § the velocity after the impact, & and & will
be related as follows

(3.1) E=E—2n(n-&).

Equation (3.1) simply expresses the fact that the molecules are specularly
reflected by the wall. If the wall is not at rest, but moves with velocity u,
with respect to the reference frame chosen to describe the motion, then Eq.
(3.1) will apply to the velocities relative to the wall, i.e, § and & must be
replaced by &—u, and & —u,. Hence Eq. (3.1) will be replaced by:

3.2) E=8-2n[n(§—uH)].

In the case of a collision between two identical rigid spheres, the
equations which relate the velocities after impact, £, and &, to those before
impact, &) and &), are:

& =& —n[n-(& —&3)],
&2 =E&;—n[n-(§;—-&})],
where n is the unit vector directed as the line joining the centers of the two

spheres (orientation does not matter). Equations (3.3) can be derived by a
suitable use of the laws of conservation of momentum and energy:

g, +&, =8 +&3,
B +E3 =EZ+EL

(3.3)

(3.4)
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We want to show, now, that the Liouville theorem (conservation of the
volume in phase space) remains valid for the instantaneous interactions
considered in this section. We observe that both Eq. (3.1) and Eqs (3.3) are
reversible: i.e., one can solve for the primed variables to find

(3.5) E=E—2n(n-§)

and

Ei =& —n[n-&, —&)],
;=& —n[n(§;,—&}],

respectively, ie, the same equations as (3.1) and (3.3), with the primed
vanables interchanged with the unprimed ones. To derive Eq. (3.5), it is
sufficient to compute n-&’ first (and this is easily done by scalarly multiplying
Eq. (3.1) by n) and replace the obtained value n-§'= —n-§ into Eq. (3.1).
Analogously, to obtain Egs. (3.6), we first compute the value of n-(E; —£5) in
terms of the unprimed variables; to this end, we deduce by subtraction the
relation between relative velocities

(3.7 §1—82 =88~ 2n[n-(§, - E2)}.

Scalar multiplications by n yields n-(§; —E3) = —n-(E, —&,) and inser-
tion of this result into Eqs (3.3) produces the desired relations, Eqs (3.6).

We observe now that in both cases (interaction with the wall and impact
between two rigid spheres), the components of the velocities involved
undergo a linear transformation described by some matrix A (3 x3 or 6 x 6),
whose elements depend on n. In both cases comparison of the direct and
inverse transformations (Eqgs (3.1) and (3.5); Eqs (3.3) and (3.6)) shows that
the inverse matrix A~! equals A, i.e, A? is the identity matrix. Hence the
square of the determinant of A (which is nothing else than the Jacobian T, of
the linear transformation) is unity, i.e. T, = +1.

In connection with hard spheres, it is convenient to introduce the notion
of free path. It is the distance travelled by a sphere §; between two
subsequent collisions. This distance, of course, depends upon the number n of
spheres per unit volume, the velocity of the chosen sphere S, and the velocity
of the sphere S, with which §, will have the next impact. Accordingly, only
the notion of mean free path will be meaningful

A simple estimate of the value of the mean free path I of a hard sphere
is obtained by assuming the other spheres at rest and surrounding each of
them by a sphere of radius equal to the diameter ¢ of the particles, while the
travelling sphere S, s represented by a point. Then is §, travels a distance |
in average, between two impacts, this means that there is only one molecule,
namely S,, in a cylinder of base no? and height [ or:

(3.8) ' nto?l~ 1.

(3.6)
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Hence

(39) I~ — .

4. Equations for the many particle distribution functions for a gas of rigid
spheres

In this section we derive the equations satisfied by the s-particle distribution
functions (s=1, ..., N) for a gas of N nigid spheres contained within a
region R of volume V. We have lor the probability density Py = Py(x;, E;, 1)

4.1) Py=0 (Ix;—x; <o,i#))

since the spheres cannot penetrate into each other; accordingly, Py, In
general, will be discontinuous at the points of phase space where |x;— x| = o,
the limit from one side being zero and from the other side (|x;—x; > o),
generally speaking, different from zero. Accordingly, when we consider Py for
some [x;—x;| =0, we shall always understand the limiting value from
“outside”, i.c., from the region |x;—x;| > o. In the latter region the state of
molecules corresponds to inertial motion; hence the Liouville equation, Eq.
(2.8) reduces to:

Py N ep y
4.2) RN Zg ~—”v= (X=Xl > 0,i#))

o X
where it is appropriate to assume that P, is symmetric with respect to an
exchange of the N molecules.

Let us integrate Eq. (4.2) over its domain of validity, with respect to the
coordinates and velocities of N—s particles; without loss of generality, we
shall integrate with respect to the particles numbered from s+ 1 to N. If we
introduce the s-particle distribution function P§{ by integration of Py with
respect to the coordinates and velocities of the last s particles, Eq. (4.2) gives:

s) s N N
(4.3) ‘”:” Zj-'{PN [T dx,dg,+ Z fg, Py

=1 1ls+l j=s+1

dg, =0
_; I=s+1
where integration extends to the whole space with respect to & (I =s+
+1,..., N) and to the volume V deprived of the sets |x;—x| <¢o
(i=1,..., N, i## ) with respect to x,(I=s+1, ..., N). Terms with 1 <i<s
have been separated from those with s+1 <i < N for later convenience.
A typical term in the first sum in Eq. (4.3) contains the integral of a
derivative with respect to a variable, x;, over which one does not integrate; it
is not possible, however, to exchange the orders of integration and differenti-
ation because the domain has boundaries (|x; —x,| = ¢) depending upon x;.
To obtain the correct result, a boundary term has to be added:
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¢
(4.4) jr & =& ™ J‘Pm [T dxdg—
i I=5+1 ¢ 1 I=s+1
N
Z PNéi'nide:'jdéj n dx, dg,
j=s+1 I=s+1
i#j

A pls) N
=t ‘(::-— ) fP“*”é, m do;

iz

where n;; is the outer normal to the sphere |x; —x;| = ¢ (with center at x),
do;; the surface element on the same sphere and P{* ! the (s+1)-particle
distribution function with arguments (x,.E,) (k =1, 2, ..., s, j).

A typical term in the second sum in Eq. (4.3) can be immediately
integrated by means of the Gauss lemma, since it involves the integration of

a derivative taken with respect to one of the variables of integration. We
find:

Py
(4.5) Jgj“ax” [l dx,d&, = Z jP‘““gJ n;do;; d&; +

j I=s+1 i=1

+ Z j‘ $+2)&4J I‘I,UdO',JdE_,dekdE_,,‘
k=s+1
i2J

+J‘P‘,$+”2';j-njdAjd§j,

where dA; is the surface element of the boundary of the volume V in the
three-dimensional subspace described by x;, and n; the unit vector normal
to such surface element and pointing into the gas. The last term in Eq. (4.5)
is the contribution from the solid boundary of R; if the molecules are
specularly reflected there, then the term under consideration is obviously
zero because §;-n;; changes its sign under specular reflection. The boundary
term, however, is zero under more general assumptions; it 1s sufficient to
assume that the effect of an interaction of a rigid sphere with the wall is
independent of the evolution of the state of the other spheres and no
particles are captured by the solid walls. We shall discuss this point at the
end of this section and neglect the boundary term for the moment.
Inserting Eqs (4.4) and (4.5) into Eq. (4.3), we find:

PP L PR ¢

R ) S PV, n,doy de, -
ot i=1 i=1 j=s+1
N
—'% Z Jp§+2) v,u'nk_rddkj dE_dekdE_,k,
k,j=s+1

i#j
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where V;; =, —&; is the relative velocity of the ith particle with respcet to
the jth and we took into account that & -n;; can be replaced by (1/2)V
in the second sum because of the antisymmetry of n;; with respect to its own
indexes. x; and E; are integration variables in Eq. (2.6); hence the sums over j
are made of identical terms, as well as the sum over k in the second integral.
We shall write x,, €, in place of x;, §; in order to emphasize that the index j
is dummy, and x,, &, in place of x,, &, while we shall simply write V,, n;, do;
for V;;, ny, do;, Vo, ng, dog for V,;, m;, do,;. Accordingly we obtain:
s) s $)
(4.7) %g(—+ L& P( L (V=) > jP‘:ﬁ”V.--n.-da.-da*—
i=1
(N—38s)(N—-s—-1)
2

J‘F&‘*— 2) VO ’ no dﬂ'o dg* déo de,

where the arguments of P§*" are (x,, &, ..., X, & X, &y, £) and those
of P(}e’+2)(xl’ gla ooy Xgy gs’ L gt’ X0, §0a t)'

We observe now that multiple collisions (i.e., simultaneous contacts of
more than two spheres) contribute nothing to the above integrals (at least, if
Pt P2 are ordinary integrable functions). In fact, the integrals with
respect to do;, do, are extended over the surface

(4.8) x,— x| =06 (i=0,1, < N)

with center at x; but not the whole surface, because we must cut out those
parts which are inside the other similar surfaces

(4.9) X,—X]=0 (i=0,1,...,N;j#i.

(This is due to the fact that Py = 0 inside such surfaces.) Multiple collisions
correspond to the boundary of the integration region, hence to a one-
dimensional subset; accordingly, their contribution to the integrals is zero,
unless singularities occur, which we have excluded by using a smoothed out
Py.

It is important, now, to separate each of the integrals appearing in Eq.
(4.7) into the corresponding integrais extended to the subsets V;-n; < 0 and
V.'n,>0(=0,1,...,s), respectively. The first set corresponds to molecules
entering a collision, while the second set corresponds to molecules which
have just collided (remember that P§* " is the limiting value from outside the
sphere |x, —X;| = ¢ with center at x; so that the value of P§"" for |x,—x,]|
= ¢ and V;-n; > 0 corresponds to the limit from the state just after collision,
since m; =(x.—x,,)/o). Accordingly, Eq. (2.7) becomes

Py o
N " —5) Z [f PGV, -0y do; dE, —

(4.10)

-)
- f POV ny da.-d:.]—
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— —_s— )
— S)U: : 2[.“ PR 2|V nol dag &, d&o dxo—

=)
- J‘ P2 (Vo ngl do'odg.déod"o]

s=1,...,N)

where the (+) and (—) superscripts in the integrals correspond to V;-n, 2 0
(i=0,1,...,s), respectively).

The equations used so far are incomplete, because we have not used the
laws of elastic impact, Eqs (3.3) or (3.9).

According to these laws, the velocities after collision, & and E,, are
related to the ones before collision, &; and &, by

E =& —m(n;- V),

. V, =k —E'
(4.11) §*=§*+n(n Vi, (Vi =E—E)
or
(4.12) S = &ninVl), (V, =&—E,),

B = Eu+mi(m; 'vi),

where n; = (x; — x,)/o, the unit vector directed as the line joining the centers
of the two spheres, coincides with the outer normal to the sphere |x;—x,|
= ¢ with center at x, and variable x; and variable x. V; and V; are, of
course, the relative velocities before and after collision, related to each other
by Eq. (44.12):

(4.13) V., = V.= 2n.(n;- V).

Accordingly, any molecule entering a collision with velocity &; at x; is at the
same time {(or a vanishingly short time later) in an after-collision state with
velocity &; related to & and n; = (x;—x,)/c by Eq. (4.11); accordingly:

(4.14) PR U(x, By, o X By oevs Xo By Xy Eys 0)
= P‘,f,“'(x,, Ei, .-, X, &—mi(m- V), .., x,, &, X, &, +“i(“i'vi))s
(i=0,1,...,s; 1 <s<N=-1)

We first examine the term involving P§*2 in Eq. (4.11) and claim that it
IS zero, 1.e.,

(4.15) [ P§* 2|V noldoodE, dEgdxo = [ PE* 2|V ol doo dE, dEo dXo.

In fact, changing the variables from &, and &, to &, and &, given by
Eqgs (4.12) with (i = 0) and taking Eq. (4.14) (with i = 0 and s replaced by
s+1) into account, the left-hand side of Eq. (4.15) becomes:

(4.16) Lhs. = [T P§* 27 |Vy - ng| dog dE,, dEp dxo,
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where the arguments of Py*?" are the same as in Py*? with &, and &,
replaced by €, and £;, and we took into account that the absolute value of
the Jacobian determinant of the transformation from §,, §, to &, &; is 1 (see
Section 3). The integral extends to the hemisphere V,-n, < 0, because Eq.
(4.13) (with i = 0) implies

(4.17) VO'HOZ —Vé)'llo.

We can now drop the primes in Eq. (4.16) since &, and E, are
integration variables; we find

(4.18) Lhs. = [ PR 2|V, gl dog dxy dBo d, = rhs.

and Eq. (4.15) 1s proved.

A similar argument cannot be used in connection with the integrals
involving P%*". We can use, however, Eq. (4.14) for expressing both
integrals in terms of the distribution function holding before the collision, or,
alternatively, in terms of the one prevailing after the collision. In fact, Eq.
(4.14) is perfectly reversible and can be used for expressing either the
distribution function of molecules which have just collided in terms of the
one of molecules entering a collision or the latter in terms of the [ormer. It is
obvious that the first way 1s to be used if we want to predict the future from
the past and not vice versa; it is equally clear, however, that, at this point, we
commit ourselves to a definite time arrow, ie., we introduce a diflerence
between past and future, as we shall see in more detail later.

According to this discussion, we use Eq. (2.14) to obtain:

(4.19) [ PSTOIV nddode, = [ PG|V, g do, dE,

where P{™"" means the value taken by P{™"" when the arguments &; and &,
are replaced by &, and £, given by Eqs (4.12). If we insert Eqs (4.19) and
(4.15) into Eq. (4.10), we obtain

P(s) s ap(s) s +) ,
(4.20) 8&" + Y g,.-ﬁ =(N=s)02 ¥ [f Pt |V, nydn, dE, —

i=1 i=1

=)
_f P(1$+2)|Vi'“i|dnid§,:l s=1,...,N)

where we replaced do; by its expression ¢®dn; in terms of the radius ¢ of the
sphere given by Eq. (2.8) and the elements of solid angle dn;. We may even
abolish the index i in n; provided the argument x, in the ith integral is
replaced by

(4.21) X, = X;—Nd.

Finally, we may transform the two integrals extended to V,'mn <0 and
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V:-n > 0 into a single integral by changing, e.g., n into —n in the second
integral. Thus we have

0Py & aPy s

L T o [ AU LR P

4.22
(4.22) — P

i=1

s=1,...,N)

where integration is extended to the hemisphere V,-n > 0 and the arguments
in P! are the same as those in P! except for §;, &, which are replaced
by &, &, given by Eqs (4.12) and x;—ng which is replaced by x;+no.

We stress the fact that Eq. (4.22) was derived under the only assump-
tions of symmetrical dependence of P upon the molecules and sufficient
regularity of Py (the latter is required in order to neglect the contribution of
a line to a surface integral, ie., to neglect the effect of triple collisions). In
addition we neglected the surface integral in Eq. (4.5).

To justify the fact that we disregarded the boundary integral, we must
discuss the boundary conditions satisfied by Py when x; belongs to the
boundary /R of the region R where the gas is enclosed. This is a topic which
will be considered in detail in paper [1]. Here we assume that a molecule
hitting the solid boundary JR at some point x with some velocity &' re-
emerges at practically the same point with some other velocity &, the
duration of the molecule-wall interaction being negligible.

The nature of the interaction determines a probability density R(E'
—&; x, 1) ol a transition from a velocity & to a velocity § at point x and
time t; we shall assume that this probability is independent of the state of the
other molecules and no particles are captured by the solid walls.

The probability that the jth molecule emerges from the surface element
dA; about x; during the time interval dt with velocity between §; and &; + dg;
when the I/th molecule (I # j) is 1n the volume element dx, with velocity
between &, and &, +d€, is

N
(4.23) d* # = Py|&; n|dtdA;dE; [ ] dx,dE,

B
where n; is the normal unit vector pointing into the gas at x;; in fact, this is
the probability to find the molecule in the cylinder filled by points leaving
dA; during the time interval dr with velocity between &; and &; +dE; when the
Ith molecule (/ # j) is in the volume element dx, with velocity between E; and
E,+dE, and the two probabilities are obviously the same thing.

Analogously, the probability that the same molecule impinges upon the

same surface element with velocity between &; and E;+d%; during dt when
the lth molecule is in dx; with velocity between &, and §,+dE, (I # ) is

N
(4.24) d* #' = Py|E; ) di dA;dE; [] d&,dx,
I=1

1%
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where the arguments of Py are the same as those of Py except for the fact
that E; replaces §;. If we multiply d* ' by the probability of a scattering
from the wall from velocity E; to a velocity between §; and §;+d€; ie. R(&;
—&;; Xx;, 1)dg; and “sum”, Le. integrate, over all the possible values of §;, we
must obtain d* #:

(4.25) d* 2 =dt; | R(E;-&;x;,nd*#  (E;n >0

E‘J“l <0

or, using Egs (4.23) and (4.24) and canceling the common factor
dE;(I1dE,dx,)dA;dt:

(4.26) Igjnjl PN(XI, gl" chey x"', é_’, ey xN, gN, t)
= ‘ RE; —&;;x;, ) Py(x, &y, ..., X;. Ejs ooy XN, B, NIg; ny dé}

é:’“nj<0

(x;e R, E;'m; > 0)

This is the boundary condition satisfied by P, at the solid boundaries,
under the assumptions of instantaneous interaction. In particular, if the wall
specularly reflects the molecules, we have

(4.27) RE —E:x, 1) = 5(&'~&+2n(n-E)).

In general, R must satisfy some restrictions, which is discussed in paper
[1]. The only restriction to be presently considered is the one related to the
assumption that no molecules are captured by the walls; this means that any
molecule impinging upon the wall eventually re-emerges with some velocity §
and consequently the “sum” of the elementary probabilities R(E — &)dE over
all possible values of £ must be unity:

(4.28) | RE —E:x, 0dE=1 (xeér, & n<0)

En>0

Hence Eq. (4.26) gives, after integration over &; and using Eq. (4.28):
(4.29)

[ 1&g m|Pyde;= | Pylg;-n|dg;= | P& njdg,

gj-nj>0 g","llj<0 §Jn1<0
(XJ-G@R).

where the third expression comes from replacing &; by E;. Equation (4.29)
can be rewritien as follows:

430) J€;'m; PydE; =0 (x;€ 2R),

where E; unrestrictedly varies throughout both the half-spaces §;-n; 2 0.
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Finally, by integrating Eq. (4.30) with respect to dA4; and the coordmates and
velocities of N—s—1 molecules (other than the jth one), we obtain
(4.31) [&;m PRV dE;dA; =0

which proves that the last term in Eq. (4.5) is indeed zero, under our
assumptions.

5. The Boltzmann equation for rigid spheres
The previous section was devoted to deriving the equations satishied by
O(s=1, ..., N), Eq. (4.22). In particular, for s = 1, we have:

PO apD
1 ik -
(- o TS A,

=(N-1)o* j[P‘NZ"— PY1IV, -nldndg,.

This equation shows that the time evolution of the one-particle distribution
function, PY’, depends upon the two-particle distribution function, P{. In
order to have a closed form equation for P4, it is necessary to express P§?
in terms of P{’; a simple intuitive way of doing this is to assume the absence
of correlation, 1.e, to write:

(52) H’N’Z)(xl, gls x*s E_;*, [) = Fl\!)(xl’ gl’ I)P‘;”(x*a E_.*, [)-

This relation was obtained in the case of thermal equilibrium for N
— oo. If we accept it even in the case of non-equilibrium and insert Eq. (5.2)
into Eq. (5.1), and equation involving Py’ alone is found. This is essentially
the “stosszahlansarz” used by Boltzmann (1872) to derive the equation for
P, which is accordingly called the Boltzmann equation.

We have no right, however, to postulate Eq. (5.2) because P{’ is
determined by another equation (Eq. (4.2) with s = 2) involving Py, and the
latter in turn, by another equation, Eq. (4.2) with s = 3, involving P, etc.
The least requirement is, therefore, to show that Eq. (5.2) is not in contrast
with the equation regulating the time evolution of P§'(s = 2). Now, we
cannot prove this statement, at least if we take it literally.

In fact: Equation (5.2) means that the states of the two molecules
considered are statistically uncorrelated. Now, this makes sense for any two
randomly chosen molecules of the gas since they do not interact when they
are far apart, and therefore behave independently. In particular, this seems
true for two molecules which are going to collide, because they are just two
random molecules whose paths happen to cross; but the same statistical
independence is far from being true for two molecules which have just
collided. We note, however, that Eq. (5.1) involves P{? for molecules that are
entering a collision, because we used Eq. (4.14) to eliminate the values of
Pyt Y corresponding to after-collision states. This remark is important, but
problems still arise because Eq. (4.2) for P is valid provided x; (i=1, ..., s)
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is outside the sets [x;,—x;/ <o (j=1,....5:j# i), the volume of these sets
grows linearly with s, being proportional to so®. These sets are, however,
negligible in the limit 6 - 0, N - o for a fixed s (or even if we let s grow
with N (s €< N), provided No® -0 as is the case for a perfect gas). We
conclude that Boltzmann's ansaiz, Eq. (5.2), is not true in a literal sense, but
could become true for N - x, ¢ = 0 provided we specify that Eq. (3.2) is
valid almost everywhere, i.e., ceases to be valid in exceptional sets of zero
measure (among which the set of aftercollision states).

Accordingly, we must prove that Eq. (5.2) (for N - x, 6 —»0) is not in
contrast with the equations governing the time evolution of Py (s = 2). We
shall prove more, i.e., that the factorization property:

(5.3) n PY(x;, &, 1)

(where

(54) P¥ = lim Py
N -«

is not in contrast with Egs (4.2) provided ¢ — 0 in such a way that N¢? is
bounded (hence No* — 0). In order to prove this, we shall assume that the
limit shown in Eq. (5.4) exists for any finite s and the resulting function P is
sufficiently smooth.

Then, is we fix s and let N - oc, ¢ =0 in Eq. (4.2), in such 4 way that
Ne? is bounded, we obtain:

PO & P ,
aar +LEo ~(Naz)z j[P‘””—P‘””]lV,--nldndg,,,
i=1

s=1,2,3,..)

where the arguments in P**!" and P“*" are the same as above, except for
the fact that x, = x,, = x;, in agreement with Eq. (4.21) for ¢ —» 0. Eqs (3.5)
give a complete description of the time evolution of a Boltzmann gas,
provided the initial value problems is well set for this system of equations.

A particular solution of Eqs (5.5) can be found in the form given by Eq.
(5.3) provided the one-particle distribution function satisfies

(5.5)

(5.6) (‘JP g -— = (No?) j(P’ P,—PP,)|V -nldndg,

where we wrote & and x in place of &, and x,, P in place of P’ while P_,
P, P, denote that the argument § appearing in P is to be replaced by §,, £,
E,, respectively. The above statement is straightlorwardly verified by sub-
stituting Eq. (5.3) into Eq. (5.5), provided Leibniz’s rule for differentiating a
product is used when evaluating the time derivative of P,
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Hence, if the system of Eqs (5.5) admits a unique solution for a given
initial datum, we conclude that the solution corresponding to a datum
satisfying the *“chaos assumption™:

(5.7) PO =T] PV (x:, 8,00 (t=0)

i=1
will remain factored for all subsequent times and the one-particle distribution
[unctign P = P will satisfy the Boltzmann equation. Therefore the factoriz-
ation assumption, Eq. (5.3), 1s not inconsistent with the dynamics ol rigid
spheres in the limit N—x, ¢ -0 (No’ bounded) and leads to the
Boltzmann equation.

The integral in the right-hand side of Eq. (5.6), which is called the
collision term, is extended to all the values of £, and the hemisphere |n| = 1,
V-n > 0. We observe that it could be equivalently extended to the whole
unit sphere and divide the result by 2, because changing n into —n does not
alter the integrand.

Frequently, when dealing with the Boltzmann equation, one introduces
a different unknown f which is related to P by:

(5.8) f=NmP=MP,

where N is the number of molecules, m the mass of a molecule and M the
total mass. The meaning of f is an (expected) mass density in the phase
space ol a single particle, i.c., the (expected) “mass per unit volume” in the
six-dimensional space described by (x, ). We note that because of the
normalization condition

(5.9) f Pdxdg = 1
we have
(5.10) _[fdxdg =M.

It is clear that in terms of /' we have:

of o e [ . _

6.1 = UiV hdnd,
where f, =f(&,). fi =f(E,), f/"=f(). This is the form of the Boltzmann
equation for a gas of rigid spheres which will be used in the following.

The above considerations could be repeated if an external force per unit
mass, X, acts on the molecules, the only influence of this force being that one
should add a term X-df/d€ to the left-hand side of Eq. (5.11). Since we shall
usually consider cases where the external action on the gas is exerted
through solid boundaries (surface forces), we shall not usually write the
above mentioned term describing body forces; it should be kept in mind,
however, that such simplification implies neglecting, inter alia, gravity.



112 C. CERCIGNANI

6. Generalizations

In the previous section, following a paper of the author it was shown that,
under certain assumptions, the Boltzmann equation follows from the Liou-
ville equation for a gas of identical rigid spheres in the Boltzmann limit,
defined by N » o, ¢ -0, No? finite. Three possible generalizations suggest
themselves: 1) molecules interacting with at-distance force, 2) systems com-
posed of several species of molecules, i.e, a mixture of gases, 3) polyatomic
gases, 4) dense gases (N —» o, ¢ » 0, No* finite).

At first sight, the case of molecules interacting with at-distance force
seems to yield equations completely different from the Boltzmann equation.
In fact, the Liouville equation, Eq. (2.8), can be written as follows:

i NPy X P
(6.1) il Zg‘—” Y X, =Y =0.

i=1 Xi  ij=1 %,

Here we assume that the force per unit mass acting on the ith molecule,
X;, is the resultant of N—1 two-body forces X;; (X; =0) due to the
interaction with remaining molecules and such that X;; = X(x;, x;) depends
on the coordinates x; and x; alone.
If we integrate Eq. (6.1) with respect to the coordinates and velocities of
N —s molecules and use Eq. (1.3) defining the s-particle distribution function
%, we obtain

oPy 3 508 GP“’
6.2 + X
©2 ot |'=Zl .Zl ng / 6@,

+(N—S) Z % F)\S,+“xidx.d§‘ = 0,
i=1 i

where X; = X(x;, x,,). In order to obtain Eq. (4.2), it is sufficient to observe
that the terms of the last sum in Eq. (6.2) with i > s+ 1 integrate to zero,
because they can be transformed into a surface integral at infinity in the
velocity space of the ith molecule (we assume that P —» 0 when E; - «© while
the terms with j > s+ 1 give identical contributions; finally, terms involving
space derivatives with respect to x; (i = s+ 1) are transformed into surface
integrals extended to the physical boundary of the system, which are
assumed to be zero by the same kind of arguments used in Section 2.
Equations (6.2) constitute the so-called BBGK Y-hyerarchy (from the
names of Bogoliubov, Born and Green, Kirkwood, Yvon). It is not obvious
how to handle these equations in the Boltzmann limit. There is another limit,
however, in which Eq. (6.2) lends itself to deriving a simple result. If each of
the forces X;; is uniformly small, of order ¢, in such a way that we may let N
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— o and ¢ —» 0 and keep N¢ finite (i, the order of magmtude of the total
force 1s finite), then we obtain from Eg. (6.2):

ﬂp(vi Ys‘ ('1 s) 5 ¢ .
6.3 —— e Ny o PSTUX X dE, =0
(6.3) T L ETA '_:ZI i J idx, dE,

where P = lim P{, as above. This system of equations, however, possesses
N -+

a particular solution having the factorization property expressed by Eq. (6.3),
as 1s verified by direct substitution; the one-particle probability density P
= P satisfies:

(6.4) E-Jr& (’§+XE€ = 0.

Here

(6.5) X(x) = N{P(x,. &, ) X(x. x,)dx, d&,
= {n(x,, DX{(x, x,)dx,

where

(6.6) n(x,. 1) = N [P(x,. E,, 0)dE,

is the number density in physical space, i.e., the number of molecules per unit
volume, in a neighborhood of x, at time t.

Equation (6.4) is a remarkable equation, called the Vlasov equation. It is
completely different from the Boltzmann equation and is unseful to describe
the short time behavior of a system of weakly interacting mass points; this is
the case of a rarefied gas whose particles interact with relatively weak, long
range lorces, such as the electrons of an ionized gas (Coulomb force) ot the
stars of a stellar system (gravitational force). In a ordinary gas, however, the
intermolecular force is extremely weak when the molecules are close to each
other; hence the model of hard collisions, though extremely crude, is closer
to a significant description of the state of affairs than the model of a
continuously distributed, weak force.

In the kinetic theory of gases, it is customary to consider some mol-
ecular models which take the molecular interaction into account in a more or
less accurate fashion. One of these is the hard sphere model which was
discussed in detail before; the other models are based on mass points
interacting with central, hence conservative, forces and differ from each other
only for the expression of the potential U of these forces. The simplest
assumption is U (g) = xg' =" where g is the distance between two interacting
molecules and the force X = —grad U is assumed to be repulsive (x > 0).
A great use, especially in the computation of transport coefficients, has been
made of the model of Lennard—Jones, which includes both a repulsive and
an attractive part

(6.7) Us—m—— o

— . (n>n
"' 0!

8 — Banach Center Publications 15
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with the typical choice n = 13, n" = 7. Other models replace the first of these
terms by an exponential in r or by a rigid sphere potential, i.e., 0 for ¢ > o,
oo for ¢ <e. The force corresponding to a potential of the Lennard-Jones
type, Eq. (6.7), is well approximated by a power law potential for short
distances (r < (x/x’)"~ ") and may be replaced by a cutoff force with potential:

U xe' ™", o¢<a,

(6.8) (o) = 't >0

If we adopt such a cutoff potential, it is possible to derive the
Boltzmann equation under the assumption ¢ -0, N — x, No¢? finite, pro-
vided U(o) is small of the order of the molecular mass m =~ o> Ml/V
(V volume, ! mean free path). The latter circumstance is reasonably well
verified for monatomic gases, since U (o)/(mR) (where R is the gas constant) is
of the order of magnitude of a typical temperature (ranging from 10 K to
230 K).

In order to prove what we asserted, we introduce the truncated distribu-
tion functions: :

(6.9) P = \ Py ﬂ dx, dg,,
D, I=x+1
where the domain of integration excludes those regions, where Py would be
zero by definition if the molecules were rigid spheres of radius a/2.

We can then repeat the derivation given in Sections 2 and 3 except for
two facts:

{(a) Multiple collisions are not a set of zero measure in the set of all
collisions, because now collisions are replaced by finite duration interactions.
If we let No® — 0, however, as is correct for a Boltzmann gas, the measure
tends to zero, because the probability of a triple collision is small with
Na?/V (V volume). Hence, for a Boltzmann gas, it is sale to neglect multiple
collisions, and treat each collision as a two-body problem, even if we are not
dealing with a gas of rigid spheres.

(b) A molecules leaves the protection sphere (¢ = ¢) of another molecule
at a point different from the one at which the molecule entered the same
sphere. The law of scattering can be written in the form given by Eq. (4.14)
provided n; is directed as the apse line of the orbit of the ,,bullet” molecule
with respect to the “target” molecule (see: the apse line is the line through
the target molecule and the point of closes t approach) and x;, x,, t in the
right-hand side are replaced by some x;, x, (' differing from x;, x,, ¢ by
terms small with ¢. The latter correction disappears when o — 0. There is an
additional point, however, which will be presently considered. Let n™ and
n°* be the normal unit vectors at the points where the “bullet molecules
reaches and leaves the protection sphere; then

(6.10) a? [V’ - 0™ "™ = 62 |V -]
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because the trajectories are fully simmetrical with respect to the apse line and
V' = V. But, in general,

Ivt . nlinpl dﬂl”” 3 lv . nlounl dnmun

(6.1h) IV-mjldn [V -nldn

will not be unity. Accordingly, if we want to use m throughout, we must
compute this ratio. We note that an elementary geometrical argument gives

(6.12) o2 |V -] dn® = Vrdr de,

where V is the relative speed and r, ¢ the polar coordinates in a plane
orthogonal to V so that rdrde is the surface element into which the surface
element o2 dn"" of the protection sphere is projected. When on described the
protection sphere, the point (r, ¢) describes the corresponding disk twice, but
only once is the image of a point in the “plus™ hemisphere (V-n>0) r is
nothing else than the impact parameter, i.e., the distance of closest approach
of the two particles, had they continued their motion without interacting.
The problem is to compute r as a function of V' and 8 where 6 is the angle
between n and V; in fact, dn = sin 0dfide, and consequently:

(6.13) |V o dn® = Vr%d()da = B(0, V)d0de
= V¥5(0, V)dn,
where
.
(6.14) B, V)=V 0
6.15 8, V)= ﬂ
(6.15) SOV =Gno " a0

s(0, V) is called differential scattering cross-section, since is has the dimension
of an area; for rigid spheres r = ¢ sin 0, B(0, V) = Vo? sin 0 cos 0, s(8, V)
= 6% cos 8. Details of the computation of B(6, V) or, equivalently, s(0, V)
for a given potential U(g) will be given in the next section.

If we take into account these remarks, the Boltzmann equation follows
in the limit N — oo, 0 —» 0, Na? finite, exactly as for the case of rigid spheres,
provided |V -n®"|dn°" = B(0, V)d0dc replaces |V-n|dn. Accordingly, the
Boltzmann equation for mass points interacting with a central force can be
written as follows:

(6.16) +8:5 -ﬁf f j (f'fi—1f) BO, V)dO ds d,.
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7. Details of the collision term

In order to specify completely the right-hand side of the Boltzmann
equation:

of o 1
(7.1) oS -

ot 5 X n
we have to find the expression of B(0, V) defined by Eq. (6.14). To this end it
is necessary to study the two-body problem for a given potential U (g). Let
m, m, be the masses of the two molecules; then it is well known that the
relative motion takes place as il one of the molecules (the “target” molecule)
were at rest and the other (the “bullet™ molecule) had a mass equal to the
reduced mass

j U fa =11 B, V)d0de dE,

(72) po=——to

(in particular, if m=m,, u=m/2). If o, ¢ are the radial and angular
coordinates in the plane of motion, then conservation of energy and angular
momentum (with respect to a pole located at the position of the target
molecule) give:

e’ +0* ¢ )+ U =3puV?+U0) (e <o),
(7.3)
e’ =rV,

where r is the impact parameter and V the relative speed; the right-hand
sides of these equations are evaluated when the bullet molecule is outside the
sphere of interaction and the kinetic energy is constant and equal to uV?/2,
potential energy is also constant and equal to U(¢) and angular momentum
equals the product of linear momentum and impact parameter. We could
omit U(o) in Eq. (7.3) by stipulating U(g) =0 as is always possible; it is
more instructive, however, to retain the constant explicitly. Also, we shall
restrict our considerations to repulsive potentials, which is the important
case for close interactions between molecules in a gas, as we saw before.

Now we can easily integrate the above equations (one can eliminate time
derivatives by using ¢ as independent variable); the orbit is, as we antici-
pated in Section 6, symmetric with respect to the apse line. The angle 6 can
easily be evaluated since it is the angle between V and the apse line (directed
along n) and the solution of Eqs (7.3) gives:

(7.4)

1/2 2 -1/2 ’
0= (“) 7 JQ—Z[E p2 (1 —%)—U(QHU(a)J do+sin~ ! (i)
2 2 0 o
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where go 1s the distance of closest approach which satisfies:

u rt
(7.5) V2(1 ——2) = U(go)— U (o).
2 _ )

We note that g, < o (otherwise no deflection arises, since the molecules
do not enter into an interaction); it is also clear that r < o as follows from
2o < o and the assumption of repulsive potential [which implies U (go)—
—U{o) 2 0}.

What one should now do is to ivert Eq. (5.4) to give r =r(0) (the
assumption of repulsive potential guarantees that 0 = #(r) 18 a monotonic
function) and insert it into Eq. (6.14) to obtain B(0, V).

It 1s seen that all the complicated details of the two-body interactions
are summarized by the quantity B(f, V) giwing the (unnormalized) prob-
ability density of a relative deflection equal to n— 20 for a pair of molecules
having relative speed V. B(#, V) cannot be expressed in terms of elementary
functions even for such simple potentials as inverse power potentials (U
=xp' ™", n# 2, 3); the cases of inverse-squarc and inverse-cube force laws
are amenable to an analytic treatment, but describe too soft an interaction at
small distances to be realistic for a neutral gas. In spite of these ncgative
remarks, it is worth-while to consider the case of power law potentials in
more detail. Equation (7.4) becomes

(7.6)
1/2 2 . -1/2 -
T} e ! % % o
0= (i) Wr f@ 2[5 I/z (1 —b—z)—é"——“}‘a"j?;l dQ +SIin 1 (5).
2o
where g, satisfies
2
u r x %
7.7 ~VHl— )= —+--— =0.
( ) 2 ( Q%) Q'(.)kl +O'"_l
If we now put
H(n- 1)
u x
b=rl— V24—
r(Zx a"“‘) ’
2 1/2

(7.8) x =5(1 +—2—"—:1~> ,

e uV-o"

r 2% 112

A=—-1+—5—
a( +,uV26"”)

Equation (5.13) becomces

X0

(719) 0= j N +sin"(-r—),
: J1=x2=(x/b)""! Y
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where x, satisfies
(7.10) 1 —x3—=(xo/by" ! = 0.

It is clear that the computation of ¢ = ¢(r, V) is a rather complicated
task. Arn essential simplification occurs in the limiting case ¢ — o, i.e, when
we analyse a many-body interaction as a sequence of grazing binary colli-
sions. Since all the standard work on the computation of viscosity and heat
conduction coefficients is based on this assumption, we give the relevant
formulas:

. X0
1 dx
(7.11) 0=J S .,
J v 1—=x*—(x/b)
g\ D
(7.12) b= r(—-) -1,
2%

where x, satisfiecs Eq. (7.10). Equations (7.11) and (7.12) give ¢ = 0(b) and,
inverting, b = b(?). Hence Eq. (7.12) gives

2 1/tn— 1)
(7.13) r= (—x) p o= Dpg),
H
Equation (7.13) shows that the dependence of r upon V and 0 factorizes and
consequently, Eq. (6.14) gives:
2 \¥"= V) dp

— n=S5)n- 1) T - = L
(7.14) BW, V)=V (ﬂ) 5= VB0,

where y = (n—5)/(n—1) and
2\H=D g
ro-(3)" o

The relevant simplification for inverse-power laws without cutoff dis-
tance is therefore that B(#, V) becomes the product of a function of 6 alone
times a fractional power of V. A particularly noticeable simplification arises
when n =5, because then V disappears. This simplification was discovered
by Maxwell and the fictious molecules interacting in this way are usually
called Maxwell molecules. Although actual molecules are not Maxwell mol-
ecules, yet the concept is useful, because the assumption of an inverse fifth-
power law frequently simplifies the calculations in a considerable fashion and
gives satisfaclory answers or, at least, first approximations to satisfactory
answers.

We note that g(#) has the following behavior:

Bo)=0(9) 0-0),

(7.15) B(0) = O [(n/2—0)" "+ Vin=D] (9 > /),
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where O (x) denotes a quantity of the order of x. The first of these relations is
easily obtained by noting that when 0 - 0, x, — 0 from Eq. (7.11), and hence
b ~ x, =0 from Eq. (7.10), while Eq. (7.11) becomes
b 1
d d
0= ———’xn—T =b J‘—T’ iqu‘
8\/1~(x/b) O\/l—u

ie, b~ KO where K # 0, bdb ~ »*0d0, f(0) = 0(6). When 0 - /2, b> o
(as is seen by letting b — = in Eq. (7.11)). Hence x5 ~ 1 —b'"" as follows
from Eq. (7.10) and:

(7.16)
1 1
dy i dy
0= xoj 2.2 4 e e B I y— o2 ons 1y

s V1=xgp?—(xo/b)" 1y Y L—vo (1" Dy —y"
1
S dy [1 | (YZ—Y"I)'I

=X | T om0
: dl=y __y /o
6‘1 yL | ,

LT l__l 1 -Vz(l ¥ ) dy

) 22bn—1 2bn—l (1_}2)3/-

0

Hence

T ~1/tn+ 1) db 'n —i{n+ 1)(n-1)
7.17 = ——0 = ——f
am neof(Fo) U ol (o) T

and Eq. (7.23) follows.

8. Elementary properties of the collision operator.
Collision invariants

The right-hand side of Eq. (7.1) contains a quadratic expression Q(/f, f)
defined by:

1
(8.1) QMD=Eﬁﬂﬁ%mBMVMg@M.

The operator Q acts on the velocity-dependence of f; il describes the effect of
interactions, and is accordingly called the collision operator. Q(/, f). t.e., the
integral in Eq. (8.1), is called the collision integral or, simply, the collision
term. In this section we shall study some properties which make the
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manipulation of Q possible in many problems of basic character in spite of
its complicated form. Actually, we shall study here a slightly more general
expression, the bilinear quantity

1 , . : : .
(8.2) Q(f, g) = - J(./ Gt d —SGe =L g) B V) dE, dedl.

It is clear that when g =/. Eq. (8.2) reduces to Eq. (8.1): in addition,
(8.3) 0. 9)=0Qlg, /).

Our first aim is to study some manipulations of the eightfold integral

(.4)

\ . l o ' ’ : ' ’

Q(f. 9B dE = - J(./ g tSad —Jd =L ) &) B(O, V) dT, dU dx,
where the integrals with respect to & ure extended to the whole velocity space
and @(€) is any function of £ such that the indicated integrals exist.

We now perform the interchange of variables & ~E,, &, — & (which
implies also & —&,, E, — & because of Egs (4.11)). Then, since both B((), V)
and the quantity within parentheses transform into themselves, and the
Jacobian of the transformation is obviously unit, we have

(8.5)
- 1 ~r ’ T ’ p N
J.Q(f, GoeEdy = j(f GutSad =19~ 9) @ (&) B(O, V)dE dE, dOde.

This equation is identical to Eq. (8.4) except for having ¢(E,) in place of
®(E). Now we consider another transformation of variables in Eq. (8.4): €
— & and &, — &, (here, as above, the unit vecter nin Eq. (3.11) is considered
as fixed). As we know (Sect. 3), the absolute value of the Jacobian of this
transformation is unity, ie., d§dg, = d§' d§, and Egq. (8.5) becomes

(8.6)
: I : _ .
f QUL gl w B = - fu'g; Hag —Jos =)o) 0 (©) BIU, V)dE' dE, do ds.

where now. since & and £, are integration variables. we must express £ and
E, by means ol the relations inverting Eqs. (4.12), which are

(8.7) E=E-n(@n-V), E,=E,+nnV).
where V' =& &, is related to V=E—E, by Eq. (3.7) and consequently
(88) . V’-nz_-v-n

and the hemisphere Y -n > 0 corresponds to V'-n < 0; we may change, how-
ever, m into —n, without altering the expressions of & &, and integrate
over the hemisphere V'-n > (0. We can also change the names of integration
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variables and call & &, what we called &, £, before. Then, because ol Eqgs
(4.12) and (8.7), we can consistently call & and §, what we called € and &,
before. and write Eq. (8.8) as follows:

(8.9)
I | .
[Q(f, g) @ (E)dE = o J(fg* +ed—f ' de—Jey) @ (&) B(U, V)dEdE, d0de

where B(f), V) is not affected by the change, since Eq. (4.12) implies V' = V.
We can rewrite Eq. (8.9) as follows:

/

(8.10) Q(f. y)ot8)dE

o

= -5 j (g +1ed —190—fo8) 0 (&) B(O. V)dEdE, df de.

This equation is identical to Eq. (6.4) except for a minus sign and having
@(§) in place of ¢(E).

Finally, let us interchange £ and &, in Eq. (8.10) as we did in Eq. (8.4) to
obtain Eq. (8.5). The result is:

(8.11)

' i ‘ : .
QU 9o @)dE = —5- j(f'g; thad —f9.—f2 9 0 (5,) B(O, V)dEAE, dO de

which is identical to Eq. (8.4) except for a minus sign and for having ¢(E,) in
place of @(&).

We have thus obtained four different expressions for the same quantity:
Eqgs (8.4). (8.5), (8.10). (8.11). We can now obtain more expressions by taking
appropriate linear combinations of the four basic ones: we are particularly
interested in the combination which is obtained by adding the above four
expressions and dividing by four. The result is:

~

(8.12) Q(/. P o&)dt

(Y

.

| o . , ,
ZSI;}J(I dethed —Jax—Teg) @+ 0, — 0 — ) B(0, V)dE dE, d0 de.

This equation expresses a basic property of the collision term, which will

be frequently .used in the following. In the particular case of g =f Eq. (8.12)
reads:

(8.13)

) 1
JQ(J;f)tp(%)dE.. = Eﬁfﬂ —ff ) e+o,— 0 —@,)B(O, V)d& dE, dfdc.
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We now observe that the integral appearing in Eq. (8.12) is zero,
independent of the particular f and ¢, if
(8.14) P+, =0+ 0,
is valid almost everywhere in velocity space. Since the integral appearing in
the left-hand side of Eq. (6.11) is the average change of the function ¢(§) in
unit time by the effect of the collisions, the {functions satisfying Eq. (8.14) are
usually called “collision invariants”. We now have the property that, if ¢(£)
is assumed to be continuous, then Eq. (8.14) is satishied if and only if
(8.15) pE)=a+b-E+c?
where a and ¢ are constant scalars and b a constant vector. The functions
=1, (Y,, ¥y, ¥3) =&, ¥, =& are usually called the elemenrary collision

invariants; thus a general collision invariant i1s a linear combination ol the
five Y's.

9. Solution of the equation Q(/f,f)=0

In this section we investigate the existence of positive functions f which give
a vanishing collision integral:

(9.1) QULS) =" fa—=ff) B, V)dE, d0de = 0.
We want to show that such functions exist and are all given by
(9.2) (&) =exp(a+b-E+cc?),

where a, b, ¢ have the same meaning as in Eq. (6.15). In order to show that
this statement is true, we prove a preliminary result which will also be
important later, 1.e, that no matter what the distribution function 1s, the
following inequality (Boltzmann’s inequality) holds:

(93) |log fQ(f.f)dE <O,

and the equality sign applies if and only if f is given by Eq. (9.2). Now it is
seen that the first statement is a simple corollary of the second one: in fact, if
Eq. (9.1) is satisfied then multiplying it by log f and integrating gives Eq. (9.3)
with the equality sign, which implies Eq. (9.2) if the second statement applies.
Vice versa, if Eq. (9.2) holds, then, because of the results of the previous
section applied to ¢ =logf, f'f, =ff, and Eq. (9.1) is satisfied.

Let us prove, therefore, that Eq. (7.3) always holds for f > 0 and the
equality sign implies, and is implied by, Eq. (9.2). If we use Eq. (8.13) with ¢
= log f we have

B | et
04) |lo8 S QU= oo |\ =110 108 (1 1y 1) BO. V) & de, do e

1
= J_/"_/;(l —4) log 7 B(0, V)d& d&, dO de,
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where
(9.5) =111

Now f'f, > 0, B = 0 (the equality sign applying only at 6 = 0); also, for
any / 2 0 we have
(9.6) (1—4)log 2 <0.
and the equality sign applies if and only if 4 =1 (note that (1—4) and
—log 4 are negative and positive together and both are zero if and only if 4

= 1). If we use Eq. (9.6), Eq. (9.4) imphies Eq. (9.3) and the equality sign
applies if and only if 2 =1, 1e.

(9.7 ff* =j"j;

applies almost everywhere. But taking the logarithms of both sides of this
equatton, we obtain that ¢ = log f satisfics Eq. (8.14), 1.e., ¢ = log f Is given
by Eq. (8.15); hence f is given by Eq. (9.2), as ‘was to be shown.

We note that in Eq. (9.2) ¢ must be negative sincc f must be integrable

over the whole velocity space. If we put ¢ = —a, b = 2av, where v is another
constant vector, Eq. (9.2) can be written as follows:
(9.8) f(E)=Aexp[—2(E—v)],

where 4 is a constant related to a, a, t? (2, v, A constitute a new set of
arbitrary constants). Equation (9.8) is the familiar Maxwellian distribution.

Chapter 11

LINEAR TRANSPORT

1. The linearized collision operator

Because of the nonhnear nature of the collision term, the Boltzmann
equation is very difficult to solve and to analyse. In Chapter I, Section 9 we
met a very particular class of solutions, 1.c., Maxwellians. The meaning of a
Maxwellian distribution is clear: it describes equilibrium states (or slight
generalizations of them, characterized by the fact that neither heat flux nor
stresses other than isotropic pressure are present). If we want to describe
more realistic nonequilibrium situations, when oblique stresses are present
and heat transfers take places, we have to rely upon approximation methods.

Some of the most uscful methods of solution are based upon perturb-
ation techniques: we choose a paramater ¢ which can be small in some
situations and expand f in a series of powers of ¢ [or, more generally, of

functions a,(g), such that lim o,.,(¢)/o,(¢) = 0]. The resulting expansion,
=0
which in general cannot be expected to be convergent but only asymptotic to
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a solution of the Boltzmann equation, gives useful information for a certain
range of small values of ¢ (sometimes larger than would be expected).

There are many different perturbation methods correspondings to differ-
ent choices of ¢; however, in this section we want to study the general
features of any perturbation method with respect to the collision operator
Q(f,f). We shall restrict ourselves to power series in €:

(1) f= % &
n=0

If we insert this expansion into Q(/, f) and take into account both the
quadratic nature of the collision operator and the Cauchy rule for the
product ol two series, we find

(12) Q)= &Y QUi fu-s).
n=0 k=0

where Q (/. g) is the bilincar operator defined by Eq. (1.8.2). The presence of a
symmetrized expression is related to the fact that we can combine the terms
with k =k, and k = n—k, (for any kq, 0 < ky < n).

Equation (1.2) shows that expanding f into a power series in the
parameter ¢ implies an analogous expansion of the collision term the
coefficients being as [ollows:

(13) 0, = T QUi So-s).

A significant number of perturbation expansions which are used in
connection with the Boltzmann equation have the following feature: either as
a consequence of the zeroth-order equation, or becausc of the assumptions
underlying the perturbation method, the zeroth-order term in the expansion
is a Maxwellian. We shall restrict our attention to this case at present: we
note, however, that the parameters appearing in the Maxwellian (density,
mass velocity, temperature) can depend arbitrarily upon the time and space
variables (the Maxwellian is, in general, not required to satisfy the
Boltzmann equation), but this will not concern us insofar as we deal with the
collision operator which does not act on the space-time dependence of f.

Under the present assumptions we have (Chapter I. Sect. 9):

(1.4) Q(fo.f0)=0. e, Qp=0.

We observe now that Q, (n > 1} as given by Eq. (1.3) splits as follows:

n=1

(1.5) Q. =20(fo, S+ 3 QUi fu-) (n>1),

k=1
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where the first term arises from k = 0, k = n in Eq. (1.3) and the second term
involves f, with k < n and is accordingly known at the nth step of pertur-
bation procedure (in particular, it is zero for n = 1). As a consequence, the
relevant operator to be considered is the linear operator 2Q(f,, f,) acting
upon the unknown f;, while the remainder can be written as a source term,
say f,S,. It is usual to put f, = f,h, and consider h, as unknown: then we
can wnite Eq. (1.5) as follows:

(1.6) Qn=1aLh,+fo S,

where, by definition, the linearized collision operator L is given by

(L7) Lh=25"0f, fsh =%jfo*(h;ﬁuh’—h*—h)B((), V)dE, de do.

In order to obtain the second expression of Lh in Eq. (1.7) we used Eq.
(1.8.2) and the fact that f,, being Maxwellian, satisfies Eq. (1.9.7).

We can use now the propertics of Q(f, g) and the definition of L to
deduce some basic properties of the latter. If we consider Eq. (1.8.12) with f
=fo. g =foh and ¢ = §, we have:

(1.8)  VfogLhdg =2 J.GQ(foJ'o hydg

l ‘ ) ’ ’ — — — _
= —4—mjf010*(h*+h ——l1*—h)(q*+¢} __g_g*)B(O, V)dg*d?,dsdf)

The last expression shows that interchange of h and ¢ changes the
integral into its complex conjugate (hence leaves the integral unchanged if g
and h are real valued). This suggests the introduction of a Hilbert space .#
where the scalar product (g, h) and the norm |/h|| are defined by

(1.9) (g, 1) = [fo (&) H(E)dE:  {IH|* = (h, h).
Equation (1.8) then shows that
(1.10) (g, Lh) = (Lg, h),

1.e,, L is self-adjoint (here both g and  belong the domain of the operator L).
If we put ¢ =h in Eq. (1.8) we obtain

1
(1.11) (h Ly =~ ﬁh;-i—h'—h* —H2B(B, V)dEdE, dedb

and since B(0, V) > 0, we have
(1.12) (h, Lh) <0

and the equality sign holds if and only if the quantity which appears squared
in Eq. (1.11) is zero, i.e., if h is a collision invariant. Eq. (1.11) says that Lis a
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nonpositive operator in .# . We note that when the equality sign holds in Eq.
(1.11), ie.. h is a collision invariant, then Eq. (1.7) gives

(1.13) Lh=0

and, conversely, if we scalarly multiply this equation by h, according to the
scalar product in .# defined above, we obtain

(1.14) (h, Lh)y =0

which implies that /i is a collision invariant. Therefore the collision invariants
¥, are eigenfunctions of L corresponding to the eigenvalue 4 = 0, and are the
only eigenfunctions corresponding to such eigenvalue; all the other
eigenvalues, if any, must be negative, because of Eq. (1.12). It can be verified
that the latter equation is the linearized version of Eq. (I1.9.3); in fact, if we
write f =f,(1+h) in the latter equation and neglect terms higher than
second (zeroth- and first-order terms cancel). we obtain Eq. (1.12). We note a
further property of L which is a trivial consequence of the fact that the y,'s
satisfy:

(1.15) Ly,=0 (x=0,1,2,3,4)

and of Eq. (1.10) (with g = y,):

(1.16) (Yq, Lh) =

which is the linearized version of the following consequence of Eq. (1.8.13)
(1.17) (0. 0(f. ) =

2. The linearized Boltzmann equation

As we mentioned in Section 1, a significant number of perturbation expan-
sions which are used in connection with the Boltzmann equation have the
form shown in Eq. (1.1). The result of inserting such expansion into the
Boltzmann equation

(2.1) +&- g =Q,\)

depends upon the meaning of ¢. If ¢ does not appear directly in Eq. (2.1),
then we must equate the coefficients of the various powers to obtain

%

(2.2) o +8&--] ('fo = Q(fo. fo),
at

(2.3) 0{"+ -i =0,
ol




KINETIC THEORY OF GASES 127

where Q, is given by Eq. (1.3). Equation {2.3) shows that f, must be a
solution of the Boltzmann equation. Since we do not know any solutions
except Maxwellians (with some irrelevant exceptions), we are practically
forced to choose f, to be a Maxwellian; otherwise, making the zeroth-order
step of the approximation procedure would be as hard as solving the original
equation. Although there are Maxwellians with variable density, velocity and
temperature which solve the Boltzmann equation, they are of limited use;
accordingly, we shall choose our Maxwellian f, to have constant parameiers.
This choice is sufficiently broad for our purposes. Physically, it means that
we study a situation in which there is little departure from an overall
equilibrium.
We can put f, =/, h, (n > 1) and write Eq. (2.3) as follows

ch oh
. "+E-—" = Lh,+S
24 B = LhytS,
where, according to Egs. (1.5) and (1.6},
n—1
(2.5) S, =0, S =fo—l Z Q(fo hk,fohn—k)'
k=1

The sequence of Eqs (2.4) describes a successive approximation pro-
cedure for solving the Boltzmann equation. What is interesting is that at
each step we have to solve the same equation, the only change being in the
source term, which has to be evaluated in terms of the previous approxima-
tions. The equations to be solved involve a complicated integrodifferential
operator and have a shape almost as complicated as that of the original
Boltzmann equation, except for the fact that we got rid of the nonlinearity.
The fact that the same operator appears at each step allows us to concen-
trate on the first step, 1e, to study the following equation:

oh ch
(7r+ ox
which is called the linearized Boltzmann equation.

The presence of a source term in the subsequent steps is hardly a
complication in solving the equations, since well-known procedures allow us
to solve an inhomogeneous linear equation once we are able to master the
corresponding homogeneous equation. In practice, however, one usually
makes only the first step, ie, solves the linearized Boltzmann equation in
place of the nonlinear one.

The study of the linearized Boltzmann equation is important for at least
two reasons:

1. There are conditions (to be specified below) under which the results

obtained from the linearized Boltzmann equation can be retained to faith-
fully represent the physical situation.

(2.6) Lh,
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2. The fact that the linearized equation has the same structure (except
for the nonlinearity in the collision term) as the full Boltzmann equation
suggests that we can obtain a valuable insight into the features of the
solutions of the full Boltzmann equation by studying the linearized one;
these features are obviously not those related to nonlinear effects, but, e.g.
those related to the behavior in the proximity of boundaries, for which the
nonlinear nature of the collisions is expected to have little influence.

We now have to specily the conditions under which one can make use
of the lincarized Boltzmann equation to obtain physically significant results.
Since the parameter ¢ was assumed not to appear in the Boltzmann
equation, we must exarnine the initial and boundary conditions. Since we
look for a solution in the form f = f,(1+ h) with the condition that h can be
regarded, 1n some sense, as a small quantity with respect to 1, a necessary
condition is that h is small for r == 0 and at the boundaries.

As a consequence, a first condition is that the initial datum shows little
departure from the basic Maxwellian f,; this does not necessarily mean that
h is small everywhere for r = 0, but that e.g., ||h]| < 1, where ||A]| is given by
Eq. (1.9). In particular, if g, #, T are the initial density, velocity and
temperature, 0q, vy, Tp the corresponding parameters in f,. the quaniities
1@ —00i/00, |T— Tol/ Ty, |[0—volARTH)H? must be small with respect to 1.

The situation is similar but less obvious when we examine the boundary
conditions i[ we put

(2.7) I =foll+h).

3. Model equations

One of the major shortcomings in dealing with the Boltzmann equation is
the complicated structure of the collision integral, Eq. (3.1).

It is therefore not surprising that alternative, simpler expressions have
been proposed for the collision term; they are known as collision models, and
any Boltzmann-like equation where the Boltzmann collision .integral is
replaced by a collision model is called a model equation or a kinetic model.

The idea behind this replacement is that a large amount of detail of the
two-body interaction (which is contained in the collision term) is not likely
to influence significantly the values of many experimentally measured quan-
tities; i.e., unless very refined experiments are devised, it is expected that the
fine structure of the collision operator Q(/, f) can be replaced by a blurred
image, based upon a simpler operator J (f) which retains only the qualitative
and average properties of the true collision operator.

The most widely known collision model is usually called the Bhatnagar,
Gross and Krook (BGK) model, although Welander proposed it independent-
ly at about the same time as the above-mentioned authors. The idea behind
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the BGK model (retained by more sophisticated models) is that the essential
features of a collision operator are:

1) The true collision term Q(f, /) satisfes Eq. (1.17): hence the collision
model J (f) must satisfy

(3.1 (Y. J()dg =0 (x=0,1,2,3,4).
2) The collision term satisfies Eq. (7.3). Hence J(f) must satisly
(3.2) flog fJ (f)dE < 0;

equality holding if and only if f is a Maxwellian.

As shown in papers [2] and [3], this second property expresses the
tendency of the gas to a Maxwellian distribution. The simplest way of taking
this feature into account seems to assume that the average eflect of collisions
is to change the distribution function f(£) by an amount proportional to the
departure of f from a Maxwellian @(§). That is, if v is a constant with
respect to & we introduce the following collision model

(3.3) J(N)=v[®E)~-S @]

The Maxwellian @ (&) has five disposable scalar parameters (g, v, T)
according to Eq. (9.8); however, these are fixed by Eq. (3.1) which implies

34) o P(E)dE = [, f(§) dE,

i.c, at any space point and time instant ¢(E) must have exactly the density,
velocity and temperature of the gas, given by the distribution function f(E).
Since the latter will in general vary with both time and space coordinates,
the same will be true for the parameters of @(E) which 1s accordingly called
the local Maxwellian. The “collision [requency” v is not restricted at this level
and has to be fixed by means of additional considerations; we note, however,
that v can be a function of the local state of the gas and hence vary with
both time and space coordinates.

We still have to prove that the BGK model satisfies Eq. (3.2) and
equality applies if and only if f is a Maxwellian. We find

(33) flog fJ(f)dE = flog (f/#)J (f)d&+ [log ®J (f)dE
= {v@ [(1—f/®) log (f/P)]dE,

where the integral involving log @ is zero, because the latter quantity is a
linear combination of the ,’s and Eq. (3.1) applies. Equation (1.9.6) with 4
= f/&® then shows that the last integral in Eqg. (3.5) is nonpositive and equal
to zero if and only if f = &, ie, if and only if f is a Maxwellian, as required.

We observe that the nonlinearity of the proposed J(f) is much worse
than the nonlinearity of the collision term Q(/f, f);: in fact, the latter is simply
quadratic in f, while the former contains f in both the numerator and the

9 — Banach Center Publications 15
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denominator of an exponential (the v and o appearing in @ are functionals of
f, defined by Eq. (3.4)).

The main advantage in using the BGK collision term is that for any
given problem one can deduce integral equations for the macroscopic
variables A, v, a; these equations are strongly nonlinear, but simplify some
iteration procedures and make the treatment of interesting problems feasible
on a high speed computer. Another advantage of the BGK model is offered
by its linearized form (see next Section and Chapter I1I).

The BGK model contains the most basic features of the Boltzmann
collision integral, but presents some shortcomings. Some of them can be
avoided by suitable modifications, at the expense, however, of the stmplicity
of the model. A first modification can be introducted in order to allow the
collision frequency to depend on the molecular velocity instead of -being
locally constant; this modification is suggested by the circumstance that a
computation of the collision frequency for physical models of the molecules
(rigid spheres, finite range potentials) shows that v varies with the molecular
velocity and this variation is expected to be important at high molecular
velocities. Formally the modification is quite simple; we have only to allow v
to depend on £ (more precisely on the magnitude ¢ of the random velocity ¢
=E—v), while requiring that Eq. (3.1) still holds. All the basic formal
properties, including Eq. (3.2), are retained, but the density, velocity and
temperature which now appear in the Maxwellian & are not the local
density, velocity and temperature of the gas, but some fictious local par-
ameters related to five functionals of f; this follows from the fact that Eq.
(3.1) now gives

(3.6) v g, PdE = [v(c)y, fdE

instead of Eq. (3.4).

A different kind of correction to the BGK model is obtained when we
want to adjust the model to give the same Navier—Stokes equations as the
full Boltzmann equation; in fact, the BGK model gives the value Pr =1 for
the Prandtl number, a value which is not in agreement with both the true
Boltzmann equation and the experimental data for a monatomic gas (which
agree in giving Pr ~ 2/3). In order to have a correct Prandtl number, a
further adjustable parameter is required beside the already available v;
accordingly one is led to generalize the BGK model by substituting a local
anisotropic threedimensional Gaussian in place of the local Maxwellian
(which is an isotropic Gaussian):

3
o) ®=gn (et A)?exp[— ¥ A4;E—v)E—V)]
. i.j=1

A =4l =l2RTPr)é; —2(1—Pr) p/e Po)li ™"
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If we let Pr =1, we recover the BGK model. A disadvantage of this
model (called the ES, or ellipsoidal statistical model) is that it has not been
possible to prove (or disprove) that Eq. (3.2) holds. Other models with
different choices of @ have been proposed but they are not interesting, except
for linearized problems (see Chapter IIl), because they are extremely com-
plicated from the point of view ol obtaining solutions.

4. Linearized kinetic models

In the previous section we discussed the possibility of replacing the collision
term in the Boltzmann equation by a simpler expression, called a collision
model. The idea was that the large amount of detail of the two body
interactton, contained in the collision term and reflected, e.g., in the details of
the spectrum of the linearized operator is not likely to influence significantly
the values of many experimentally measured quantities. This led to the BGK
model and the variants which were discussed previously.

The same possibility arises in connection with the linearized and linear
Boltzmann equations, for which satisfactory and systematic methods for
constructing models have been devised.

The simplest model for the linearized collision operator is obtained by
linearizing the BGK model. If we let f =f; (1+h) in Eq. (3.3) and neglect
powers of It higher than first, the linearized BGK model turns out to be
given by

4
(4.1) Lh=v[} ¥.(,, h—h]

a=0
where the collision invariants y, are normalized in such a way that
(42) ('/Iai wﬂ) = 6uﬂ (a> B =01 17 2v 3v 4)

and ( , ) denotes the scalar product in .#, defined by Eq. (1.9). It is obvious
that Eq. (4.1) exhibits an operator with a structure definitely simpler than the
true linearized operator.

We remark that Eq. (4.1) can also be written as follows:
4.3) Lh=v(ITh—h) = —v(I-II)h
where IT is the projection operator onto the five dimensional space #
spanned by the y’s, and I the identity operator (accordingly, I —1IT is the
projector onto ¥, the orthogonal complement of .# in ). Equation (4.1),
or (4.2), implies that the properties expressed by Egs (1.10), (1.12), (1.15) and,
consequently, (1.16) are satisfied by the linearized BGK operator. This is
almost evident for Eqs (1.10), (1.15) and (1.16) while Eq. (1.12) follows from
Eq. (4.2), by noticing that

(h, Lh) = —v(h, (I—H)h) = —v|(I-IH|*<0,
where equality obviously holds if and only if (/—IT)h =0 or h=} c,¢,.
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A systematic procedure for improving the linearized BGK model and
characterizing the latter as the first step in a hierarchy of models ap-
proximating the collision operator for Maxwell molecules with arbitrary
accuracy (in a suitable norm) was proposed by Gross and Jackson. The idea
is to start from and expansion of h into a series of eigenfunctions of the
collision operator for Maxwell molecules, which form a complete set of
orthogonal functions:

(4.4) h= % V., h),
a=0

where a is a single label which summarizes the triplet (s, I, m) in such a way
that the collision invariants , correspond to x =0, 1, 2, 3, 4. Then, since,
for Maxwell molecules, Ly, = 4,y by definition,

(4.5) Lh=Y LW ) =Y itha(a, h).
a=0 a=0

A systematic procedure for approximating L consist in partially destroy-
ing the fine structure of the spectrum of L by collapsing all the eigenvalues
corresponding to a > N into a single eigenvalue, which we shall denote by
—vy (remember that 4, < 0).

This amounts to replacing L by an approximate operator Ly defined as
follows:

48) Loh= T Abalbe v 5 dalba,
Equation (4.4) gives

@7) é Wl = = i Ve W )
and Eq. (4.6) becomes

(438) Lyh = iou.ﬁm Vas )=y h.

In particular, f N =4, 4, =0 for 0 < o < N and, consequently, Eq. (4.8)
reduces to Eq. (4.1) (with v, = v); by taking N larger and larger, we include
more and more details of the spectrum of L into the model. If we take N =9
by including the five eigenfunctions corresponding to n =0, /=2 in Eq.
(4.10), we obtain the linearized version of the ES model, Eq. (3.7).

The above procedure applies only to the case of Maxwell's molecules.
However, a slight generalization of the expansion (4.5) is capable of produc-
ing collision models in correspondence with any kind of linearized collision
operator. In fact, nothing prevents using Eq. (4.4) even if the ¢, (eigenfunc-
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tions of the Maxwell collision operator) are not the eigenfunctions of the
operator under consideration. Applying L to both sides of Eq. (9.4) gives

ao

(4.9) Lh=Y Liy(Wy, b

8=0

but we cannot perform the second step in Eq. (4.5). We can, however, expand
the right-hand side of Eq. (4.9) into a series of the i, and obtain

N
(4.10) Lh= Y iy W,
xf=0
where
(41 1) ’%'aﬂ = (w:s pr) = )'ﬂa'
Equation (4.10) generalizes Eq. (4.5) and reduces to the latter when 4,;
= 7, 0,5. If we now introduce the approximation 4,5 = —vyd,, for a, f > N,
we obtain the model
N
(4.12) Lyh= ) (vwoag+ Aag)Wa (Y, )~ vy h
a,f=0

which generalizes Eq. (4.8) to operators other than Maxwell's. Taking N =4
gives the BGK model again.

We remark that Ly can be written in the form Ly = Ky—vy 1, where vy
is a constant, I the identity operator, and Ky maps any function onto the
finite dimensional space .#y spanned by the ¥, (x < N). If one writes the
eigenvalue equation for Ly and takes the projections of this equation onto
Ay and its orthogonal complement, one finds that the two equations are
uncoupled; it is then easy to show that the spectrum is made of N
eigenvalues between —vy and O (with polynomial eigenfunctions; in par-
ticular, the Y, in the case the model defined by Eq. (4.8)) and an eigenvalue
— vy, infinitely many times degenerate.

We remark that the collision operators for hard spheres and hard
potentials with angular cutoff are unbounded and display a continuous
spectrum; the operators for hard potentials without cutofl are also unboun-
ded. If these features of the operator have any influence on the solution ol
particular problems, this influence is lost when we adopt the models de-
scribed by Eq. (4.12) (or (4.8) as a particular case). It is therefore convenient to
introduce and investigate models which retain the abovementioned features
of the linearized collision operator; this can be done in several ways.

Conceptually, the simplest procedure is based upon exploiting the fact
that we either know (rigid spheres and angular cutoff) or conjecture (poten-
tials with finite range) that L = K —vI where the operator K* = v~ Y2 Ky 1/2
is self-adjoint and completely continuous in .#'; accordingly, the kernel of K*
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can be expanded into a series of its square summable eigenfunctions ¢, v'/?
(such that K¢, = i, ve,). In other words, we can write

ac

(4.13) Kh=v() ) M, 0u(vQy, h).

a=0
Truncating this series (degenerate kernel approximation), we obtain the
model:

N
(4.14) Lyh=v(©) Y pe@u(v0,. B=v(E)h.

This operator automatically satisfies the basic requirements, expressed
by Egs (1.10), (1.12), (1.15), (1.16). Since the first five ¢, are the collision
invariants , and correspond to g, =1 (0 <a < 4), if we take N =4 in Eq.
(9.14), we have

4
(4.15) Lih=v(&) ) Yavda, H—v()h,
a=0

where the collistion invariants are normalized according to

(4.16) (Vs VW) = Oyp.

Equation (4.15) is nothing other than the linearized version of the nonlinear
model with velocity-dependent collision frequency which was briefly dis-
cussed in Section 3.

Chapter 111

ANALYTICAL SOLUTIONS OF MODELS

1.The method of elementary solutions

The theory developed in Chapter II shows that the study of the linearized
Boltzmann equation is worthwhile undertaking and that many of the
features of its solutions can be retained by using model equations (Chapter
11, Sect. 4). We can say more, 1.€, that practically all the features are retained
by a properly chosen model. The advantages offered by the models consist
essentially in simplifying both the analytical and numerical procedures flor
solving boundary value problems of special interest.

In particular, the use of models is invaluable in those cases when the
solution of the latter is explicit (in terms ol quadratures of functions, whose
qualitative behavior can be studied by analytical means). Accordingly we
shall devote this chapter to the analytical manipulations which can be used
to obtain interesting information from the model equations. The method

used throughout is the method of separation of variables. .

i
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The first step is to construct a complete set of separated variable
solutions (“elementary solutions™) and then represent the general solution as
a superposition of the elementary solutions; the second step is to use the
boundary and initial conditions to determine the coefficients of the superpos-
ition. While the first problema can be solved for the model equations
discussed in Chapter II, Section 4, the second problem can be solved exactly
in only a few cases. The method retains its usefulness, however, even when
the second problem is not solvable, or is only approximately solvable
because it is capable of providing an analytical representation of the solution
and hence a picture of its qualitative behavior (see Sect. 5).

It must be stated that the method of separation of variables is not the
only one capable of solving these problems; transform techniques of the

Wiener-Hopf type are completely equivalent to the method of elementary
solutions.

2. Splitting of a one-dimensional model equation

We begin by considering the simplest kind of problems, i.e., steady problems
in one-dimensional geometry, and the simplest collision model, ie., the
linearized Krook model with velocity dependent frequency, given by Eq.
(IL.4.15).

Accordingly we consider the equation

oh

. -—=Lh
2. i :

where x is the Cartesian coordinate upon which h is assumed to depend, ¢,
the x component of the molecular velocity § and

(2.2) Lh=v@E[ io("%, hy=h]:  (Ya. vp) = Ogg.
The unknown h can be split as lollows
(2.3) h=h,+hy+h;,
where
hy=I1,h=5(I+P;Py)h,
(2.4) hy=M,h=5I+P)(I—P3)h,
hy =My h =Y+ P3)(I —Py)h,

P, denoting as usual the operator which reflects the kth component of &

[Psf (&, €2, £} =S (&4, &2, —&3)]. In such a way the Hilbert space .
where h can be located is split into three mutually ortogonal subspaces ¢,

H,, #5 (P} =1and P, P, = P, P, imply that the operators /1, satisfy IT, I1,
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3
= &, M1, D, M, =1). The collision frequency v will be assumed to be even
k=1
in all the components of § (usually, it depends only upon the speed &). o,
¥, Y, being linear combinations of 1, &,, &% belong to #, Y, to #,, ¥, to

# 5. Hence if we apply I1,, I1,, IT; to Eq. (2.1), we obtain

ch
(2.5) ¢ '5:’ = v[(vWo, b)) o+(py, h) W, +(vby, by —hy],

ch
26 &5 = vl h)—hal,

ch
(2.7) ¢ ‘573 =v[¥3(v3, hy)—h,y].

The remarkable fact i1s that Eqs (2.5), (2.6), (2.7) are uncoupled; in
addition, Eqgs (2.6) and (2.7) contain just one “moment”, (v, h) (k = 2, 3),
and Eqgs (2.5) contain three of such terms, instead of the five “moments” in
Eq. (2.1).

Equation (2.5) describes the heat transfer processes taking place along
the x-axis, Eq. (2.6) and (2.7) the shear effects due to motions in the y- and z-
direction, respectively. We shall begin from considering the simplest case, i.¢.,
Eq. (2.6) (or Eq. (2.5), which differs from Eq. (2.6) for the name of the axes).
By letting h, = ;Y we obtain:

' Y
(2.8) <1 —?9 =v[(w3, Y)-Y].
X

3. Elementary solutions of the simplest transport equation

According to the results of Section 2, the simplest problems of rarefied gas
dynamics lead to the following equation

oY
(3.1) &y Ea;+ v(§) Y (x, E) = v(&) [go (&) Y(x, E)dE,
whére
3.2) g0 (&) = vfo 3.
Let us use the variable w defined as follows:
(3.3) 3]

YTV &)

provided this relation is uniquely invertable by

(3.4) ¢t =26 (w, ¢, &)
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which is clearly possible if ¢[&,/v(&;, &a, &3)]1/8E, is different {rom zero for
any ¢&,, &;. In such a case, Eq. (3.1) becomes

k

(3.5) w 8—x+ Y = JZ(x, w,)dw,

-k

where

é
(3.6) Z(x,w) J.go[é w, &3, C3), 62, 3] Yi(x, w, &3, éa) 1 dCzdés

and

4

61
3.7 k= lim —
G-1) & o v(¢,, €2, ‘fs

ts assumed to be independent of &,, &; (which is the case if v = v(£)).
Let us put

¢
(3.8) Zo(w) = jgo [$1(w, &2, &a)s <2, 53] s d‘fz dEy;

multiply Eq. (3.5) by go(¢¢,/0w) and integrate with respect to &,, £;. We
obtain:

(3.9) w %%+Z(x, w) = Zy(w) J‘Z(x, wi)dw,.

Let us begin by separating the variables. Putting

(3.10) Z(x, w) = X(x)g(w) Zo(w),

it is easily seen that, either Z = A, (A, arbitrary constant) or
(3.11) Z,(x, w)=e "g,(w) Zo(w),

where g, (£) satisfies
k

(3.1 (—w/u+1)g,(w) = [ gu(w1)Zo(w,)dw,
“k

and u the separation parameter, has been used to label the elementary
solutions.

Though, a priori, u may assume any complex value it is easily seen that,
k

since | Zodw =1, u is a real number. This follows from a direct argument
-k
or from general results.
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When k < o0 it is also easy to show that there are no real eigenvalues
outside the interval (—k, k). This result can be proved by the same technique
to be employed in Section 6 for discussing the discrete spectrum in the
timedependent case.

Then the values of u must be rcal and comprised between —k and k.
This requires some care, because one cannot divide by u—w in Eq. (3.12).
This difficulty is overcome by letting g,(w) be a generalized function.

If we disregard a multiplicative constant (i.e., normalize g, in such a way
that the right-hand side of Eq. (3.12) is equal to 1) g,(w) will satisfy

(3.13) (“—_u“’)g,,(w) —1.

For w # u we find g,(w) = u/(u—w) but this has no meaning at w = u (in
particular, the integral appearing in Eq. (3.12) does not exist in the ordinary
sense). It is possible, however, to define a generalized function, e.g., as limit of
the sequence

(3.14) (W) = m* u(u—w)/[m?(u—w)>+1].

This limit, to be understood in the sense of convergence of a sequence of
generalized functions. The limit is a generalized function denoted by
m? u(u—w)

u .
e P = Tem s

where P can be read “principal part of". The integrals involving the

generalized function, which has been just defined, are to be interpreted as

Cauchy principal value integrals

(3.16) jp “_ p(wydw = P P"”‘"”
u—w

Ju—w

We can ask now whether or not P[uf{u—w)] is the only solution of Eq.
(3.13). The answer 1s no. As a matter of fact, the most general solution will be

the sum of P[u/(u—w)] and the general solution of the homogeneous
equation

(3.17) (u—w) T(w) =0.

Now, the most general solution of Eq. (3.17) is a multiple of d(u—w)
where & denotes the Dirac delta function. Therefore the general solution of
Eq. (3.13) reads as follows:

(3.18) gu(W) = P —— 4+ p(u) 8 (u—w)
u—w
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where the factor in front of the delta function can depend upon u and has
been called p(u). In order that Eq. (3.12) be satisfied by Eq. (3.18) the
normalization condition for g,(w) must be satisfied, i.e. the right-hand side of
Eq. (3.12) must be equal to 1. This condition can be satisfied for any real u
and serves for determining p(w)

k

(3.19) p(u) = [Zo(u)]"l{l -P J“Z“W) dw}

Uu—w

-k
k
- [z [*Fe

»

—k

dw
—u

k
where the fact that | Z,(w)dw has been used.

-k

The generalized eigenfunctions g, (w) have many properties of orthogo-

nality and completeness. The properties of orthogonality and completeness in
partial ranges (notably 0 < w < k) are far from trivial to prove, since they
require solving singular integral equations. However, standard techniques are
available for treating such problems and the following results can be
obtained:

THEOREM 1. The generalized functions Zy(w)g, (W) (—k <u<k) and g,
= Zy(w), complemented with g, = wZy(w), form a complete set for the func-
tions Z(w) defined on the real axis, satisfying a Holder condition in any open
interval contained in (—k, k) and such that

k
(3.20) | w2 Z(w)dw < .
-k
Also, the coefficients of the generalized expansion:
k
(3.21) Z(w)=[Ao+ A, w+ [ A(u)g,(wydu] Zy(w)
-k

are uniquely and explicitly determined by

k k
(3.22) Ag=[ | w*Zo(wydw] ! [ w?Z(w)dw,
i k
k k
(3.23) Ay =[ [ wrZo(wydw]™' | wZ(w)dw,
“x

-k

k
(3.24) Au) =[CW)] ' | wZ(w)g,(w)dw,
-k
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where
(3.25) C ) = uZo () {[p(u)]? +ru?).

THeOREM Il. The generalized eigenfunctions Z,(w}g,(w) (0 < u < k) and
4., = Zo(w) form a complete set for the functions Z(w) defined on 0 <w <k,
satisfying a Holder condition in any open interval contained in (0, k) and
integrable with respect to the weight w?. Also, the coefficients of the gen-
eralized expansions

k
(3.26) Z(w)=[Ao+ {A(u)g.(w) du] Zy(w)
0
are uniquely and explicitly determined by:
k K
(3.27 Ao =[ [ W Zo(wydw]™! [wP(w) Z(w)dw,
i 0
k
(3.28) A(w) = [Cw) P)]™' fwP(w)g,(w) Z (w)dw.
0

Here we have put
k

(3.29) P(w) = w exp { —% J‘tan_ Y[mt/p(0)] rjft;} (w > 0),

0

where the inverse tangent varies from —mn to 0 when t varies from 0 to k.

By means of the completeness property expressed by Theorem I one can
also show that the general solutton of Eq. (3.9) is given by

k
(3.30) Z(x,w)=[Ao+ A, (x—w)+ | A(we T g(w)du] Zy(w).
—k

Theorem II is equally or, perhaps, more important, because it allows us
to solve boundary value problems. This theorem shows that the generalized
eigenfunctions are orthogonal on (0, k) with respect to the weight
wZy(w) P(w). This orthogonality property is more standard than the full
range orthogonality, because the weight function is positive. The only trouble
now is the complicated expression of P(w); it is to be noted, however, that
P{w), though far from being an elementary function, satisfies two important
identities which make the manipulation of integrals involving P(w) much
easier than would be expected. These identities are:

k k

(3.31) [ Jw’Zo(w)de_l f‘z°(2 PO 4 - [P(u)]" !,

t+u
—k 0
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k k k

1 t[Z,(P(N]™ " di
(332 “—;j ‘a“_l["’/”"’]""H “'ZZ"‘“'"’W” e

0 -k 0

= P{u)
Also

k
(3.33) P(O) =[ | u?Zo(u)du]'?.
-k

Once Eq. (3.9) is solved, the general solution of Eq. (3.5), and hence (3.1)
1s easily written down since it is matter of solving an ordinary dillerential
equation with given source term. We obtain

(334) Y(x,8)=Ao+A4, x—[&/v(] +

k -
- C1 - xv(&)/E
+ A x/u u(_T)d +B l,
JAme g et Boe

where B(E) is an arbitrary function, provided only it satisfies:

(3.35) j {go(&,m@) [i [v(c)] l " )}dézdfs = 0.
13¢1wi82.43

We end this section by noticing the form taken by the previous results
in particular cases. If v({)=v is constant (BGK model) and we take
(2RT,)'"? as speed unit and (2RTp)!/2v~! = 2rn~ "2 as length unit (T, being
the unperturbed temperature, { a suitably defined mean free path), then

'/IJ = \/563’ 9o :2§§f03 w Zél, k = oo and

2

(3.36) Zow)=n~ H2e™"",
Accordingly
r we™ (
(3.37) plu) = e * j - dw=rt”2(e"2-2u jdzdt).
-z 0

Thus p{(u) can be expressed in terms of tabulated functions. Equations (3.22),
(3.23), (3.27), (3.31), (3.32), (3.33) slightly simplify since

k
(3.38) | w?Zo(w)dw = 1/2.
“k
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If v(¢) =o¢ (constant mean free path), ¥ = [3/(40)]'%, w = &, /(é0), k
= 1/o and, if we take (2RT)}'/? as speed unity, 1/o as length unity:

(3.39) Zo(w) = 3(1 —w?),
: 2
l—u w—u

3 2(3u"‘—1)+ o 1—u
T30 TR \u)
4. Application of the general method to the Kramers and Milne problems

In this section we shall apply the above results to two typical boundary
value problems of transport theory, the Kramers and Milne problems.

The Kramers problem consists in finding the molecular distribution
function of a gas in the following situation: the gas fills the half space x > 0
bounded by a physical wall in the plane x = 0 and is nonuniform because of
a gradient along the x-axis of the z-component of the mass velocity; this
gradient tends to a constant a when x goes to infinity. It is seen that this
problem can be considered as the limiting case of plane Couette flow (shear
flow between two parallel plates), when one of the plates is pushed to
infinity, while keeping a fixed ratio between the relative speed of the plates
and their mutual distance. More generally, the Kramers problem can be
interpreted as a connection problem through the kinetic boundary layer; in
this case “infinity” represents the region where the viscous gas theory holds
and the velocity gradient “at infinity” can be regarded as constant because it
does not vary sensibly on the scale of the mean free path.

Both of these interpretations of the Kramers problem suggest that a
convenient linearization is about a Maxwellian endowed with a mass velocity
ax in the z-direction. Because of the non-uniformity of the Maxwellian,
linearization gives an inhomogeneous Boltzmann equation

ch

4.1) 2ac,c3+c¢y — =Lh
ox

where ¢ = (¢,, €3, ¢3) = (&, &3, &3 —ax). Equation (4.1) can be reduced to the
homogenecous Boltzmann equation by subtracting a particular solution. One
particular solution, independent of x, is suggested by the kinetic theory of
viscosity; this solution, L™ '(2ac, ¢;) is given by —2ac, c3/v(c) for the colli-
sion model given by Eq. (2.2). Therefore we have:

4.2) h= —2ac,c3/v(c)+ 2, Y(x, ¢)
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where Y(x, §) satisfies Eq. '(3.1). The mass velocity is given by
(4.3) vy = ax+200 ' [&3 Y (x, §) fo(§) &,

the first term being the contribution from the Maxwellian fy(c).

Concerning the boundary conditions, we shall assume that the molecules
are re-emitted from the wall according to a Maxwellian distribution com-
pletely accommodated to the state of the wall. Therefore the boundary
condition for h reads as follows:

(4.4) h(0,¢)=0 (c, >0)
and this in terms of Y, becomes:

(4.5) Y(0, &) = ali/v(d).

In addition, Y must satisfy the condition of boundedness at infinity.
According to the discussion in Section 3, the general solution of Eq. (3.1)
which also satisfies the condition of boundedness at infinity is given by

k

)

(4.6) Y(x,$) = Ao+ J A(u)e g, (V—g(‘a)du+8(¢)e""‘¢”‘“,

o

where B(E) satisfies Eq. (3.39). The condition to be satisfied at the plate gives:

k

(4.7) al,/v(&) = Ao+ _[A(u)g.. (%)duﬂi'(i)-

0

Equations (4.7) and (3.35) easily give B(E) = 0. Thus solving Eq. (4.7) means
expanding Z(w) = awZ,(w) according to Theorem II of Section 3; therefore,
Ao and A(u) are immediately obtained through Eqs (3.27) and (3.28). The
result 1s as follows:

k
(4.8) Ag = —arn” ' [tan™ ! [nw/p(w)]dw,
0

k
49 AW = —alZowPw] '[P +r?u®)" " [ w? Z(w)dw,
"k

where use has been made of Eq. (3.31) which yields Eq. (4.9) directly and the
following identity by asymptotically expanding for large values of u and
comparing with Eq. (3.32) or Eq. (3.29):

k

(4.10) [ §f w*Zo(w)dw] ' [w? Zy(w) P(w)dw = -% J\tan_l [rt/p (1)} dt

Equation (4.10) yields Eq. (4.8).
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Substituting Eqs (4.8) and (4.9) into Eq. (4.6) gives the solution of the

Kramers problem. The mass velocity is readily obtained from Egs. (4.3) and
(4.6):
k

@.11) b3(x) = ax+ Ao+ [ A(w) n(u)e™ " du,
0

where

(4.12) ”(u)_’ZQo Jfoéagu (5)) dg,

and A, and A(u) are given by Eq. (4.8) and (49). From Eq. (4.11) we
recognize that A, is the macroscopic slip of the gas on the plate; it has the
form (a where { is the slip coefficient:

k
(4.13) {=—n""'[tan"! [nw/p(w)]dw
0
Thus the evaluation of the slip coefficient has been reported to quadra-

tures for an arbitrary v(¢). In particular, if v(£) = const (BGK model), use of
Eq. (3.40) and partial integration yields

(4.13a) ¢ = 0nli?

J[p(w)]zﬂ w? J[p w)]’-+n w?

Here p(w) is given by Eq. (3.37) and [ is the mean free path related to 6 = v~!
by 6 =2n""2] 2RT, =1). The integral appearing in Eq. (4.13) can be
evaluated numerically with the following result

(4.14) { =(1.01615)0 = (1.1466) .

If v(¢) is not constant, one must evaluate { through Eq. (4.13). Some
specific cases can be easily worked out numerically; thus for v(£) increasing
linearly when ¢ - oo the value of { is somewhat lower (3°) than for the
BGK model (for a fixed value of the viscosity coefficient).

Henceforth in this section we shall restrict our considerations to the case
of the BGK model (constant collision frequency). In this case, Eq. (4.11) can
be written as follows:

4.15) v3(x) = a[x+{—(n"26/2) I(x/0)]
where I(x/6) is practically zero outside the kinetic layer and can be easily -
evaluated.

A direct evaluation of the microscopic slip, i.e., the velocity of the gas at

the wall, results without any numerical integration. As a matter of fact, we
have:

o

e’ [P(w)]
[p(w)]? + 2 w?
(1]

(4.16) 03(0) =a ((;—1 dw) = (2/m)"2 al
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where the last result is obtained by letting u = 0 in Eq. (3.32) and taking into
account Eqgs. (3.33), (4.13) and (3.38).

Analogously we can evaluate the distribution function of the molecules
arriving at the plate. We obtain:

(4.17) Y(0,8) = Y(0, &) =2n"Y2alé +2n" V2 alP(—¢))
(&, <0

where Eq. (3.32) has been used. Then h(0, ¢) (the perturbation of the
Maxwellian distribution at the plate) is given by

(4.18) h(0,¢) = 4n "*aley P(lcy]) (¢, <0)

and the function P{w) (w > 0) receives a physical interpretation in terms of
the distribution function of the molecules arriving at the wall. From Egs
(3.32) it is easily inferred that

(4.19) ' le,|+0.7071 < P(icy]) < |+ 1.01615.

Hence the distribution function of the arriving molecules is rather close
to a Hilbert distribution; in fact, a Hilbert expansion would predict Eq. (4.16)
with P(|c,|) linear in |c,| (such is the distribution holding outside the kinetic
layer, see Eqs (4.2) and (4.6)). The fact that the distribution of the molecules
arriving at the plate is close to the one prevailing outside the kinetic
boundary layer is not surprising; in fact each molecules has the velocity
acquired after its last collision, which, on the average, happened a mean frec
path [rom the wall, i.e, in a region where the distribution function is of the
Hilbert type. It is interesting to note that Maxwell assumed that the
distribution function of the arriving molecules was exactly the one prevailing
far from the wall; by using this assumption and conservation of momentum,
he was able to evaluate the slip coefficient, without solving the Kramers
problem. He found { = (with an error of 159) and

(4.20) h(0, ¢) = 4n " 2 alcy (|cy| +0.8863) (¢, < 0),

i.. a good approximation to the correct result given by Eqs. (4.18) and (4.19).

5. Application to the flow between parallel plates

We have just seen that half-space problems connected with Eq. (3.1), or
equivalently Eq. (3.9), can be solved by analytical means. This is not true for
gas flows between parallel plates, like Couette and Poiseuille lows. The
method of elementary solutions, however, can be used to obtain series
solution and gain insight into the qualitative behavior of the solution.

10 -- Banach Center Publications 15
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Let us consider the flow problems first and restrict our attention to the
case of constant collision frequency v =/~ 1.
The general solution, Eq. (3.34), of Eq. (3.1) can be rewritten as follows:
e ¢

0
51 Y(x )=Ao+ A (x=0+ j A (u) CXP(—'E—"—)%(@)(/H
u 2|y

where the last term in Eq. (3.34) has been omitted because is usually absent,
¢, has been denoted by ¢ since no confusion arises and ¢ is the distance
between the plates (0 =1 and 2RT, = 1, as usual). A(u) has been redefined
by inserting a factor exp[—0/2|ul] for convenience, and the plates are
assumed to be located at x = +4/2. Equation (5.1) shows that for sufficiently
large & the picture is the following: a core, where a continuum description
(based on the Nawvier-Stokes equations) prevails, surrounded by kinetic
boundary layers, produced the interaction of the molecules with the walls
and described by the integral term in Eq. (5.1).

As o becomes smaller, however, the exponentials in the latter term are
never negligible, i.e., the kinetic layers merge with the core to form a flow
field which cannot be described in simple terms. Finally, when ¢ is negligibly
small, Y (x, £) does not depend sensibly on x, and the molecules retain the
distribution they had just after their last interaction with a boundary. In the
case of Couette flow (i.c, when there are two plates at x = +J/2 moving
with velocities + /2 in the z-direction) the situation is well described by the
above short discussion, although it is possible to’ obtain a more detailed
picture by finding approximate expressions for 4, and A(u) (A, 1s zero and
A(u) is odd in because of the antisymmetry inherent in the problem).
Accordingly we shall consider in more detail the case of Poiseuille flow
between parallel plates, which lends itself to more interesting considerations.

Plane Poiseuille flow is the flow of a fluid between two parallel plates
induced by a pressure gradient parallel to the plates. In the continuum case
no distinction is made between a pressure gradient arising from a density
gradient and one arising from a temperature gradient. This distinction, on
the contrary, is to be taken into account when a kinctic theory description is
considered. We shall restrict ourselves to the former case: similar remarks
apply to the case of a temperature gradient.

The basic linearized Boltzmann equation for Poiseuille flow in a channel
ol arbitrary cross-section (including the slab as a particular case) will now be
derived.

We assume that the walls re-emit the molecules with a Maxwellian
distribution f, with constant temperature and an unknown density ¢ = ¢(z)
(z being the coordinate parallel to the flow). If the length of the channel is
much larger than any other typical length (mean free path, distance between
the walls), then we can linearize about the above-mentioned Maxwellian f,;
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in fact, ¢(z) is slowly varying and f, would be the solution in the case of a
rigorously constant g. Accordingly we have

oh | oh oh 1dp
(5.2) ¢t 1_+€2‘—+£3 —+- =& =Lh.
X oy 0z @ 0z

Because of the assumption of a slowly varying g (long tube), we can regard
1 do

- as constant (i.e., we disregard higher order derivatives of g as well as
Q d:

1 do . )
powers of first order derivatives). If — d—g 1s constant, it follows that dh/dz = 0,
0 dz
since z does not appear explicitly in the equation nor in the boundary
conditions. The latter can be written

(5.3) hi(x,y,z,8 =0 ((x, y)eéZ; xn;+yn; > 0),

where ¢ is the contour of the cross-section and n = (n,, n,) the normal unit
vector pointing into the channel. Therefore, we can write

ch

0Xx

3 oh
(5.4) Cl +éz Fy"‘ké:@:Lh,

1d N :

where k = - ZTQ Equation (5.4) governs linearized Poiseuille flows in a very
© daz

long tube of arbitrary cross-section. If we specialize to the case of a slab and

use the BGK model, we have:

(5.5) h =283 W(x, &)

where W (x, {) satisfies
+x
aw k

(5.6) ‘fa—x+5=n_”2 J e_;‘ZW(x, Sde —Wix, &y,

o
(5.7) W(—i sgn &, é) =0,

provided x is measured in 6 units. The above equations follow from a
splitting analogous to the one considered in Section 2.

Since W(x, {) does not depend on the y and —z components of § and
v = 1, Eq. (5.6) differs from Eq. (3.1) because of the inhomogeneous term k/2. If
we find a particular solution of Eq. (5.6), then we can add it to the general
solution (5.1) of the homogeneous equation in order to have the general
solution of Eq. (5.6). By differentiation of the latter equation, we deduce that
¢W)ix satisfies Eq. (3.1) with v = 1; since the general solution of Eq. (3.1)
contains exponentials (which reproduce themselves by integration and differ-
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entiation) and a linear function of x, we try a particular solution of Eq. (5.6)
in the form of a quadratic function ol x (with coefficients depending upon &).
It is verified that solutions of this form exist and one of them is

. k|, 52 5 B
(5.8) Wolx, &) = ;| x*~—=2xE—(1-2&%) |.
2 4 i
Therefore
(59) W(X, é) = I’V()(-xs §)+ Y(x’ é)a

where Y(x, &) is given by Eq. (5.1). Equation (5.7) gives the following
boundary condition for Y(x, &):

Pe] ko
(5.10) Y(—Esgn ¢, c) [|:,|—(1+2c ’a‘J 0

Since the symmetry inherent in our problem implies that
(5.11) Y(x,8)=Y(-x, =),

A, =0 and A(u) = A(—u). If we take this into account, Eqs (5.1) and (5.10)
give

r ks L] (ud
(5.12) Ao+ jA(u)gu(é)du - —3—[6—(1 —2£2>5J— J%%’ o3
0 [4]

(€>0),

and the equation for ¢ < 0 is not requnred because A(u) = A(—u). If we call
the right-hand side of this equation n'/? 5% Z (&) and use Eq. (3.40), Eq. (5.12)
becomes Eq. (3.30) (k = oc) and we can apply Eqs (3.31) and (3.32), thus
obtaining:

1 1 2 - dlu -1 kb
(5.13) Ay = —{a+5(:+a ) — Jue [P(u)] A(u)du%——,

2
0

(5.14) A(u)=§ (u+g+0‘)e [P)] " i{p@]* +n?u? '+

1/2 ~ -1
i u? - J‘é_[f(_s_)] eg‘wA(f)dﬁ

+ et IP@] Do)+ | PR

0

(€>0

where permissible inversions of the order of integrations have been per-
formed and Eq. (3.31) used. Here a = (/6 (see Eqs {(4.13) and (4.13a). Thus the
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problem has been reduced to the task of solving an integral equation in the
unknown A(u) Eq. (5.14). This equation is a classical Fredholm equation of
the second kind with symmetrizable kernel. The corresponding Neumann-
Liouville series can be shown to converge for any given positive value of 4. It
is also obvious that the larger 4, the more rapid is the convergence. This
allows the ascertainement of some results in the near-continuum regime. In
particular, if terms of order exp [ —3(J/2)*?] are negligible, only the zero
order term of the series need be retained:

(5.15)  A(u) =§ n'? {(g+a)+u} e’ [P ([pw]*+n2u?) "t
Within the same limits of accuracy, A, is given by:

ko
5.16 Ag= — 0
(5.16) 0 5

G+ (1;(% + az)J.

We note that this zero order approximation is by far more accurate
than a continuum treatment (even if slip boundary conditions are used in the
latter). In fact, even in the zero-order approximation:

1) Kinetic boundary layers are present near the walls.

2) In the main body of the flow the mass velocity satisfies the Navier-
Stokes momentum equation; however, the corresponding extrapolated bound-
ary conditions show the presence not only of the first order slip but also of a
second order slip:

o v )
517 (+_ . (.__3 2 (_3 |
( ) Uy _2) T E )xz v z(}'-i' o ) a2 .

In order to obtain these results, we observe that the mass velocity is
given by

(5.18) vy(x) =n~ 12 j Wi(x, é)e‘§2d5

e ¥

ko2 _f_j_,-
=2 (P + Ao+ fA(u)cxpl ) 2.u|Jd“

where Eqs (5.8) and (5.9) have been taken into account. Equation (5.20) is
exact; if terms of order exp [ —3(d/2)*2] can be neglected, A, and A (u) are
given by Eqgs (5.16) and (5.15). In particular, the integral term in Eq. (5.18)
describes the space transients in the kinetic boundary layers; in the main
body of the flow the integral term is negligible and we have

(5.19) v3(x) = g— [x2=82/4—0d5—(3+6H)] (6> 1).
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It is easily checked that this expression solves the Navier-Stokes mo-
mentum equation for plane Poiseuille flow and satisfies the boundary
conditions (5.17).

We can also easily write down the distribution function in the main
body of the flow. As a matter of fact, Y (x, &) reduces here to A,, so that Eqs
(5.8) and (5.9) give

’ )
(5.20) W(x, &) = g[xz—%—bcé—(l —252)—06—(%+02)J

0> 1).
By taking Eq. (5.19) into account, Eq. (5.20) can be rewritten as [ollows:

2

‘3
(521) W H=0(0-052E+@-H0> 52 G 1)
0x cx

where general units for x have been restored (ie, we have written x/0 In
place of x). Equation (5.21) clearly shows that, in the main body ol the flow
the distribution function is the Hilbert—-Chapman-Enskog type (power series
in 0), as was to be expected. It is a truncated series, but the truncation does
not occur at the Navier-Stokes level of description. As a matter of fact, Eq.
(5.21) gives a Burnett distribution function and this explains the appearance
of a second order slip from a formal point of view. From an intuitive
standpoint, the second order slip can be attributed to the fact that molecules
with nonzero velocity in the z-direction move into a region with different
density before having any collision and there is a net transport of mass
because of the density gradient; i.e. molecules move preferentially toward
smaller densities even before suffering any collision, and, therefore, at a mean
free path from the wall an effect of additional macroscopic slip appears.

The presence of an additional slip means that, for a given pressure
gradient and plate distance, more molecules pass through a cross section
that predicted by Navier-Stokes equations with first order slip. This is easily
checked, for sufficiently large 4, by using Egs. (5.18), (5.15), (5.16), which give
for the flow rate:

df2

(522) F= J o3 (x)dx ~ —3

—-dj2

2

de
dx

2
dz{%5+a+ ? } (6> 1).

Here x and z are in general units and d = 60 is the distance between the
plates in the same units. Therefore, for given geometry and pressure gradient,
the nondimensional flow rate is

2

o

(5.23) 0(5) =%5+a+26 0> 1).



KINETIC THEORY OF GASES 151

The last term is the correction to the first order slip theory; it arises in part
from the second order slip and in part from the kinetic boundary layers. In
fact the gas near the walls moves more slowly than predicted by an
extrapolation of Eq. (5.19); this brings in a contribution to Q(J) of the same
order as the second order slip, thus reducing the effect of the latter (without
eliminating it completely, however). It is also clear that, although Eq. (5.23) is
valid for large values of J, the increase in Q(d) with respect to the prediction
of the first order slip theory persists for small values of o, because the
molecules with velocity almost parallel to the wall give a sensible contribu-
tion to the motion by travelling downstream for a mean [ree path. In
particular, in the limiting case of free molecular flow, Eq. (5.8) formally
reduces to

(5.24) EAW/ex+k/2 =0
or
(5.25) W = —(k/2)(x/E+d/2|E])

where general length units are used. Equation (5.25) clearly shows that
molecules travelling almost parallel to the wall (¢ ~ 0) cannot be in free
molecular flow. Equation (5.25) can be assumed to hold for |{| < o (recall
that || is nondimensional). Hence for 6 — 0

kd 1 kn~ V2
(5.26) vy ~ =35 n~ 12 J‘ — e~ ~ _iyi dlogd (0<1)

and
(5.27) 00~ —n" " logd (6 <1).

This approximate argument is confirmed by a study of the nearly-free
molecular regime (6 — 0). This study can be based either on iteration
procedures or on a different use of the method of elementary solutions. In
both cases the conclusion is that Eq. (5.27) is correct and this means that, for
0 — 0, higher order contributions from kinetic layers destroy the 1/0 term tn
Eq. (5.23) but leave a weaker divergence for 0 — 0O (essentially related to the
molecules travelling parallel to the plates). The behavior for large values of 4,
Eq. (5.23), and [or small values of 8, Eq. (5.27), imply the existence of at least
one minimum in the flow rate. This minimum was experimentally found a
long time ago by Knudsen and then by different authors for long tubes of
various cross-section. The above discussion gives a qualitative explanation of
the presence of the minimum, although its precise location for slabs and
more complicated geometries must be found by appropriate techniques of
solution.
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6. Unsteady solutions of kimetic models with constant collision frequency

If one considers the time dependent BGK equation in one-dimensional plane
geometry, shear effects can be separated from effects related to normal
stresses and heat transfer in the same way as for steady situations. The
relevant equation for shear flows problems is as follows:

Y cY
(61) 21—"}'6“0_(‘{"}’()(, ¢)=Tt J‘ le X. El)dgl,
[é .

-
1

1.e. the time-dependent analogue of Eq. (3.1) (when we let v =1 and assume
that Y does not depend upon &, and &;. which is usually the case). Here
both x and r are expressed in ¢ units, since we have let v=0"1=1.

The method to be employed to study Eq. (6.1) can be described as
follows. A Laplace transform is taken with respect to time and accordingly
the time-dependent problem is reduced (o a steady one. The solution of the
problem depends now on a complex parameter s. After separating the space
and velocity variables, the spectrum of values of the separation parameter u
must be studied in its dependence on s. This study is essential in order to
treat the problem of inversion.

Let us take the Laplace transform of Eq. (6.1). Without any loss of
generality, a zero initial value for Y will be assumed. In fact, a particular
solutior: of the inhomogeneous transformed equation, which would result
from a nonzero initial condition, can be constructed by using the Greens’
function and the latter can easily be obtained when the general solution of
the homogeneous equation is known. Accordingly, we shall restrict ourselves
to the homogeneous transformed equation:

X

. oY T2 .
(6.2) s+ Y+E aT =g /2 J e 4 Y(x, &)déE,,

where Y is the Laplace transform of Y. The same equation (with s = iw)
governs the state ol a gas forced to undergo steady transverse oscillations
with frequency w.

Separating the variables in Eq. (6.2) gives

(6.3) Fo(x, &5) = gu(&: 5) exp [ —(s+ 1) x/ul,
where u is the separation parameter and g¢,(C; s) satisfies

X _52
(6.4) (s+D(1=&/uyg (&) =n"""* | gu(éiss)e "1 dE;.

The right-hand side does not depend on ¢ and can be normalized to
unity. Accordingly, we are led to a typical division problem in complete
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analogy with the steady case. If the factor (u—¢£) cannot be zero, ie., u is not
a real number, g,(¢; s) is an ordinary function given by

(6.5) 9u(85 8} = ufu—&)

with the normalization condition:

u—

(6.6) w12 j“e gl =s+1.

If, on the contrary, u is a real number, g,({) must be treated as a
generalized function and Eq. (64) gives:

(67) 9u(&55) = P o=t plus 53 (u=9),

where p(u; s) fixed by Eq. (6.6), is given by
(6.8) p(u; s) = nV2 e** s+ p(u),

p(u) being given by Eq. (3.41). Equation (6.7) gives the generalized eigensol-
utions corresponding to the continuous spectrum (—oo <u < ). The
essential point, now, is to study the possible values of u which satisfy Eq.
(6.6) and therefore form the discrete spectrum. Such values coincide, accord-
ing to Eq. (6.6) with the zeroes of the following function of the complex
variable ::

ao _'2
(6.9) Miz;s)=1—-n""2(s+1)"! JZ_;ET dr.

This function is analytic in the complex z-plane with a cut along the
real axis where M (z; s) suffers a discontinuity. In fact, the Plemel) formulas
(see [2]) give the following result for the limiting values M *(u;s)

= lim M(u+ig; s) (u real, £ > 0):
£ —+0

[« &

(610)  M*(u;s)= ,_n_1,2(5+1)—1|p Jue

_2

dt + niue” "ZJ.

Equation (6.10} can also be written as follows:

(6.11) M*u:s)=e *(s+1) ' n 2 [p(u; s)+ miu).
In the limiting case of s such that:

(6.12) p(u;s)triu=0 (real u,

the discrete spectrum merges into the continuous one. Equations (6.12) are



154 C. CERCIGNANI

satisfies on a closed heart-shaped curve of the complex s-plane. We have the
following parametric representation for such curve (to be called v):

(6.13) Res= —n" e pu)

ul

Ims= —n"2ue” (-0 <u<x)

These equations are obtained from Eq. (6.12) and (6.8), taking into
account that p(u) is real. The equation M(z; s) = 0 defines a mapping {rom
the z-plane to the s-plane: in fact this equation gives unambiguously a point
in the s-plane once a point z ofl the real axis has been fixed. When - goes to
a real value u, M(z;s) =0 becomes Eq. (6.12), because of Eq. (6.11); the
double sign of course, is connected with going from above or from below.
Therefore, when u ranges through the real axis, s describes the curve 7y
counterclockwise if we think ol the real axis as the boundary of the upper
half plane, clockwise if we think of the real axis as the boundary of the lower
half plane. In both cases Eq. (6.13) establishes a one-to-one correspondence
between the curve y of the s-plane and the real axis of the z-plane. From this
fact and the argument principle it follows that both the lower and the upper
half plane are conformally mapped into the region inside y by the mapping
M(z; s) = 0 and for each half plane the mapping is one-to-one. It follows that
for any s in the region inside y there are two complex values of u which
satisfy Eq. (6.6) while there none outside. It is easily seen, from Eq. (6.6), that
these values are negatives of each other. We shall denote them by +u,(s).

It is now possible to extend the results of the steady case s = 0 and, in
particular, Theorem I and Il of Section 3. The completeness results remain
true and there are only slight changes in the equation. Thus, in the case of
full range (— oo < ¢ < oc) we can expand any function g(&) such that Z (&)
= e'ézg(é) satisfies the assumptions of theorem I as follows:

(6.14) g =A. g (ENTA_g (G 0+ | AW (S 5)du

where g,(¢; s) 18 given by Eq. (6.7) and ¢, by Eq. (6.5) with u = +uy. The
coefficients A, and A_ are zero outside y (g, and g_ do not exist there)
while are given by

oL
4 —éz

(6.15) Ay =n M2 [s(1—2ud)+1] ! z—ﬂ;u— g(&)de
2“0

for s inside y. For any s, A(u) is given by Eq. (3.28), provided that p(u) is
replaced by p(u; s) throughout, Z(w) = Z,(w)g(w) and Z,(w) is given by Eq.
{3.36). 1t is obvious that 4, and A(u) and possibly g(¢), depend upon s,
though this dependence has not been exhibited in the equations. In the case
of the half range 0 < ¢ < ¢, a function g(&) can be expanded as follows

(6.16) GUE) = Ay g2 () + [ AW g, (E; 5)du
0
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where A, is zero for s outside y and is given by

@

(617) A, =[2udsn'? P(ug)]™" [<g(S)g. (£;5) P(Zss)e ¥ de
0

for s inside y. Here

[ &)

| - e
exp{ - J tan™ " [nt/p(t; s)] t+u}
0
For any s, A(u) is given by Eq. (3.32), where Z(w) = Z,(w)g(w) and Z,(w) is
given by Eq. (3.40), while P(u) is given by Eq. (6.18) when s is inside y and by
the same equation with ug =0 when s is outside y. The [unction P(u; s)

again satisfies certain identities which make its manipulation simpler than
would be expected.

u

(6.18) P(u;s)=u T
°

7. Analytical solutions of specific problems

The theory sketched in Section 6 can be used to solve analytically problems
ol shear flows when the region filled by gas is the whole space or a half
space. One can, e.g., solve the following problem: let two half-spaces be
separated by the plane x = 0, and assume that initially the gas has the same
density g, and temperature T, in both regions, while the gas in the region
x > 0 flows uniformly in the z-direction with velocity U and the gas in the
region x < 0 flows uniformly in the same direction with velocity —U; we
want to find the evolution of the gas, i.e., the smoothing out and diffusion of
the velocity discontinuity. The problem can be solved by using the theorem
of full range completeness to construct the Laplace transform of the solution.
One can even obtain an analytic inversion of the Laplace transform and
write the solution for the mass velocity as follows:

au

(7.1)  v(x,t)=U sgn x[l —2n~ 12 j H [(u/x)—(t/)] exp { — x/(Su)+

- a

+q (u) [(x/u)—1]1/8} {e ~u? cos [n—l—/;l (t—x/u)e” "2]+

_ 172
+1u1:{/(2u) sin [n 3 e (t—x/u)e“"z]}du:l

where H is the Heaviside step function sgn x = H(x)—H(—x) and
(7.2) qw) =2 e™ p(u).

One can use the exact solution to obtain asymptotic expansions for both
short and long times and numerical tabulation of the space-time behavior of
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the gas. The solution shows that the velocity profile becomes more and more
flattened as time goes on, but a disagreement of about 10°, from the
Navier-Stokes equations 1s still present alter 12 collision times.

Half-space problems are more dilficult to solve, since they require using
the half-range completeness theorem and, consequently, equations involving
P(u; s). The solution can, however, be always reduced to a double quadra-
ture for initial value problems and a single quadrature for problems of steady
oscillations, provided the boundary conditions give an explicit expression of
the distribution function of the molecules entering the half-space (as in the
case of complete diffusion from the wall).

As an example of hall-space problem, we consider the propagation of
Rayleigh waves in a half-space: let a half-space be filled with a gas of density
0o and temperature T, and bounded by an infinite plane wall which is
oscillating in its own plane with frequency w. We shall consider the system in
a steady state when the transients have disappeared. Therefore, if the velocity
of the wall is the real part of Ue'™, U being a constant. the solution of the
linearized problem will be the real part of a function h having time
dependence ¢™' and satislying

(7.3) iwh+ &, oh/ox = Lh.

The linearized boundary condition at the wall, which is assumed to
diffuse the molecules according to the basic Maxwellian f,, can be written as
follows:

(7.4) B0, E, 1) = U &y (£, > 0).

We require also that the solution be bounded at infinity. If the BGK
model is assumed to describe collisions, we can write

(7.5) h(x, &, 1) =2Ue“ &, V(x, &),

where ¥ (x, &) satisfies Eq. (6.2) (yvilh s = iw) and the boundary condition:
(7.6) Y0,9)=1 (&>0).

We shall write s in place of iw, because the following results are valid for any
complex a (Re s = — 1) and the more general form will be useful later. Using
the boundary condition, Eq. (7.6), and half-range completeness (see Sect. 6)
together with boundedness at infinity in space, we find:

aw

(17 F(x, &= —n'?s j

0

gu (&5 s)[Pu; 5)] !
[p(u; $)]? +n” u?

exp[ —(s+1) :+ uZJdu,

when s is outside y (then P(u;s) is given by Eq. (6.18) with u, = 0).
Analogously, when s is inside y we find:
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(78) Y(x.&) = —2g,(5)exp [—(s+ D) x/up] [Plug; $)] ' —

_pgli2g ‘[P(u; 5)] 1g.&;s)exp[—(s+ ])X/U'Hfi]_ "
‘ [p(u; $)]* +nu? ’
0

where ug = ug(s) is selected between the two possible values in such a
manner that

(7.9) Re | iL

and P(u:s) i1s given by Eq. (6.18).

Let us now briefly discuss the solution. First of all, we note that there is
a limiting frequency w, (iwgey) such that for @ > w, we have only the
eigensolutions of the continuous spectrum. It seems, therelore, that for
w > @y no plane shear wave exists. However, we are able to exhibit a
discrete term for @ > w,; as a matter of fact, we can rotate the path of
integration in Eq. (7.8) downward, provided that we add the contribution
from any poles of the integrand between this half straight line and the real
semi-axis. Now, it is easily seen that, at least for frequencies larger than, but
still close to m, there is one such pole u, which satisfies

(7.10) plug; s)—miug = 0,

where p(u; s) is given by Eq. (6.8) and the second expression in Eq. (3.41),
which has a meaning for any complex u. Equation (7.10) is the analytical
continuation of Eq. (6.6) for w > @,. From this point of view, w, loses its
character of critical frequency. Another fcature of our results is that for any
fixed frequency, if we go sufficiently far [rom the wall, the contribution from
the continuous spectrum dominates the discrete term, since the former is less
than exponentially damped. This [eature is strictly related to the fact that the
spectrum of values of v extends to ¢ and would not be present if the
collision frequency increased at least linearly with molecular speed for large
values of the latter. The experimental verification of this asymptotic behavior
seems to be outside the available techniques. As a matter of fact, the
physically relevant region (say 1/10 to 10 mean free paths) appears to be
characterized by the [act that the discrete term (either the genuine one or its
analytical continuation) dominates, according to estimates made by Dorning
and Thurber for a similar problem concerning neutron waves.

Another solvable problem is the following: Let a half-space be filled
with a gas of density g, and temperature T, and bounded by a plate; the gas
is initially in absolute equilibrium and the wall is at rest; then the plate is set
impulsively into motion in its own plane with constant velocity U; the
propagation into the gas of the disturbance produced by the motion of the
plate is to be studied. This problem is known under the name of Rayleigh’s
problem; we want to solve it analytically by using the linearized BGK
model.
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The perturbed distribution function satisfies the linearized Boltzmann
equation and the following: imitial and boundary conditions:

(7.11) h(x,0,&) =0,
(1.12) h{0, 1,8 =2U¢& (&5 >0).

Also, when x — . h(x, ¢, & must be bounded for any fixed ¢ and if we use
the BGK model, we have

(7.13) hix, t,8) =2U¢ Y(x, t, &)).

where Y(x, 1, {) satisfies Eq. (6.1) and the following imtial and boundary
conditions:

(7.14) Yix,0,8) =0,
(7.15) Y(O,1,8) =1 (&>0).

By introducing the Laplace transform of Y, Y(x, s, &), Eq. (6.1) reduces
to Eq. (6.2) while the boundary condition at the wall becomes

(7.16) Y0.5,8=1/s (£>0).

Accordingly, ¥ is obtained from the equations for the oscillating wall by
multiplying the right-hand side of the equations by 1/s the same is also true
for the mass velocity and the stress. It is important to note that Y defined by
Eqgs (7.7) and (7.8) for s outside and inside y, is an analytic function of s not
only outside and inside y but also through this curve; in other words, Eq.
(7.8) is the analytic continuation of Eq. (7.7) inside y. This follows from the
fact that the expression appearing in Eq. (7.7) undergoes a discontinuity
when s crosses y and these discontinuity is equal to the limiting value of the
discrete term in Eq. (7.8). Hence, when inverting the Laplace transform, the
path of integration can be moved trough y, provided that in every region the
appropriate expression is used. On the other hand, the segment (—1, 0) of
the real axis is easily seen to be a discontinuity line because of the choice of
uy, Eq. (7.9). According to well-known theorems on the Laplace transform,
Y(x,t, &) is given by

1 st
(7.17) Y(x, r, &) = -— J. 58 P(x, s, &)ds,

where Y is given by Eq. (7.7) and the path of integration is a vertical straight
line to the right of 3. Owing to the analyticity properties of Y, the this
integration path is the s-plane can be deformed to a path indented on the
segment (—1, 0) of the real axis, and along the vertical line Re (s+1) = 0.
The resulting integrals can be put into a completely real form.
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Thus the problem is solved in terms of quadratures, which can, in
principle, be performed with any desired accuracy. But we can use our results
also for obtaining interesting information by analytical manipulations. We
can, e.g., expand our results for short and long times.

For long times, e.g., the mass velocity is given by:

(7.18) v(x, U ~ 1—(mve)” Y2uy(x), - o,

where v is the kinematic viscosity (0 = 2v if 2RT, = 1), and v, (x) the mass
velocity corresponding to a unit gradient at infinity in the Kramers problem
(Eq. (4.15) with @ = 1). Therefore the flow shows the same structure of the
kinetic boundary layer both in the steady and in the time-dependent flows
(for large values of the time variable); this is not surprising, because that the
equations which describe the kinetic layer do not depend upon the particular
problem. In particular, the slip coefficient retains, in this time-dependent flow
and for sufficiently large values of ¢, the same values as in the steady flows.

The analytical solution also leads to simple expressions of the velocity
and the stress at the plate. As an example, we quote

(719) 1’(0, f)/U — ]_l J-(u—l_ 1)1/26‘_"' du
n

where I, denotes the modified Bessel function of the first kind and order one.
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