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The vanishing theorem for the intersection homology of a singular Stein
space depends in particular on the local vanishing invariant b(p, g)
introduced in [FiKp] for perversities p and q. Hence, we give an estimate
for this number, and also for the other invariant a,(p, q), which came up in
the local duality theory for intersection homology, in terms of holomorphic
data of the pure dimensional complex space X; the general properties of
these invariants, like monotony, and their significance in duality theory have
been studied in [FiKp]. The case of a complex space that is a set-theoretic
complete intersection at every point turns out to be particularly simple. In
the general case we have to measure how much a germ X, differs from a
complete intersection: for xe X set

t, : = min {r; X, is homeomorphic to a germ V(CY;f;, ..., fu-nss))-
Hence, 1, = 0 means that X, is homeomorphic to a complete intersection.
Furthermore, for dim¢X = m, set

t; = max {t,; x€8Sy,_»} and tab(X):= max{r.; xeX).
The main estimate is this: let

b:= mn(@—t,-2),

d<i

where 4 is the complex codimension of the analytic subset of X, in which X
is not a2 homology manifold; then, for arbitrary perversities p < q (cf. {KpFj,
Sect. 2]), the invariants aq(p, q) and b(p, q) are at least b. Moreover, if p is
any perversity, and X the normalization of X, then

m—1—tab(X) = p = m+1+tab(X).
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That means in pértic'ular: if X is a local complete intersection, then all
perversities p < m—1 resp. p = m+1 are dualizing and quasi-isomorphic to o
resp. to ¢.

In the second section we study in detail the intersection homology of
cones over a smooth hypersurface in a projective space P, for fairly general
coelficients. The results have been used in [FiKp, Sect. 4].

1. An estimate for the vanishing invariants

Throughout the paper, X denotes a complex space of pure complex dimen-
sion m,
X=(X=X3,222 ... Xm-0y> -+ @ Xm0 > # Xopm-u—1, = D)

a complex Whitney stratification satisfying condition 4 and B, R a PID, L a
locally constant sheaf on X with finitely generated stalks and 4 the maximal
natural number i such that U, : = X\ X,,,_; is an R-homology manifold.
We use the notation of [Bo, V] and [FiKp], which differs a little bit from
that in the basic articles [GoMPh,] and [GoMPh,].

1.1. DeriNmmion. Let S* be a complex of sheaves on X, assume that S°
1s X-cc. For an open subset W — X set

aw(S) : = supfa: H'S |y =0,j<a},
by (S) - = sup (b; HIS |55, =0, j>2i—1-b,d<i<u}.
For a family of supports ¢ on X set
a,(S) : = max {ay (S); E(¢) <« W c X},
by(S) : = max {by (S); E(¢) =« W < X},

4y (S) : = as(S), if H**'§" is torsionfree for a : = a(S’),
¢ ay(8)~1  otherwise.

If p =g are two perversities and

Bl ——glL

N

QgL

is the associated distinguished triangle (for the definition of the relation
“c” cf. [FiKp, 2.3]), then we set in particular

a(p, q) : = ag(p, q) : = a(Qy L),
b(p, q) : = bs(p, q) : = b(Q,, L),
ao(p, q) : = ag,(p, q) : = min {a(Q,,(Tors L)), ao(Q,,(L/Tors L))}.
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The properties of these invariants have been discussed in [FiKp]. We have
to use Lemma 0.1 in [Kp,] in this form:

(LL1)  H/DyR[-2m]|s, _, = #%

zm_jISerl—Zi:O for]>l+t‘+1

As a consequence we obtain this result:

1.2. THEOREM. Set b:= min {i—t;—2). If p < gq, then
d<i<u

ag(p,q)=b and b(p,q)=b

Proof. Let us first prove a,(p) = ap(0, p) = b for L = R. By [FiKp, 3.6]
we may assume p=1¢. If i>d, then H'DyR[- 2m}ls,, _, =0 for
j=2i—-b-1 by (1.1.1). Now consider the distinguished triangle

gt o Al-2m)

N4

where ¢: P, = Dy R[ — 2m] denotes the canonical morphism, cf. [Bo, V.9.4]. We
obtain HIQ |s,,_,; =0forj>2i—b—1 and every i; thus, by [FiKp, 3.8] and

biduality, the sheaves H'DQ [ —-2m] vanish for j < b+1 and H**2DQ [ —2m]
is torsionfree. Since a,(t) = 0, we may assume b > 0. Then the dual triangle

Zm]i— 'l
m\ /

yields: H/ P, = Ofor 1 <j < b, and H**! P, is torsionfree. Since, by [KpFi, 6.5
(iiiy], a” (p) = a®(p) for a torsion module T, we obtain a5(p) = al(p) > b. By
2.6, 3.6, and 3.7 of [FiKp], this implies that

aO(p, Q) 2 00(0, Q) 2 aO(O’ t) = aO(t) 2 b
and
b(p, q) = blo, 1) = ag(o, 1) = ag(t) 2 b. O
In the special case that b = d 2 the situation is particularly simple for

sufficiently large perversities: we say that a normal space X is of type E with
respect to L if

0, if j=>1,j+#d,

i p: =
H’ P,(L/Tors L)|sz(,,,-4) - {nonzero torsion, if Jj= d.

Set ¢ :=d, if X i1s of type E, and ¢ : = d—1 otherwise.
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1.3. CoroLiary. Let o+¢ < p, let X be normal and L be locally free.
Assume that d = min(i—1;) and d = 2, then ag(p) =d—2 < b(p)<d—1, and

d<i

b(pp=d—-1 iff X is not of type E and p(2d) =d—1.
Proof. While Theorem 1.2 implies that
as(p)=2d—2 and b(p)=d-—2,
[KpFi, 3.5] and [KpFi, 3.7] yield

b(p) =2 b(1) = ao(1) = ap(p) < a(p) s c—1.

Since a(p)+b(p)+3 < k, = 2d by [FiKp, 3.3], we obtain d—2 < b(p) < d—1.
If X is not of type E, then ¢ =d—1 and thus aq(p) =d—2;if X is of type E,
then a,(p) = d— 2 follows from the very definition. For the rest we consider a
point x€S;,_4; then Poincaré duality for the link L of x yields

R'®T, ifj=d,
H P, =< R, if j=d-—1,
0, if j£0,d-1,d.

Hence, b(p) =d—2 if p(2d) > d. That holds in particular if X is of type E.
Finally, for p(2d) =d—1, we obtain by [FiKp, 3.12] that b(p) > 2d -2
—p(2d) =d—1 and thus b(p) =d—1. dd

The invariant b(—) is of “real nature”, i.e., it compares the vanishing of
the local intersection homology on a stratum S with the real codimension of
S: the significant line, above which all local intersection homology groups
vanish, is a line parallel to the graph of the perversity t. In the complex case
the naturally arising (local) vanishing conditions depend on the complex
codimension of S: the characteristic line is a line parallel to that defined by

the middle perversity m. Here is an example, which generalizes [GoMPh,
5.6.2]:

1.4. ProrposiTioN. If p is an arbitrary perversity, then
m—tab(X)—1 c pc m+tab(X)+1.
In particular, a perversity q is dualizing on X if g cm—tab(X)—1 or if
m+tab(X)+1 cq.

Proof. Since “c” is an antisymmetric relation, it is easy to see that the
first statement is equivalent to this:

t=m+tab(X)+1 and o ==~m—tab(X)—1.

We may assume that X = X and thus

_ ) L
H P, =HDyR[-2m]® L = x-”"lz‘m—j’
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since HyP, = n,H3P, as in the proof of [KpFi, 2.1]. Then, for p =t and
g = m+tab(X)+1, condition (iii) of [FiKp, 1.3] is satisfied by (1.1.1);
consequently ¢t = m+tab(X)+1, and in particular It < m+tab(X)+1.

Now [FiKp, 1.7] with p=1t yields

o=t*=()*>=(m+tab(X)+1)* =m—tab(X)—1L

For the second part it suffices to consider the case that m+tab(X)+1 < ¢, as
we may go over to the complementary perversities, by [FiKp, 1.6 v)]. In that
situation It < ¢, and [FiKp, 1.8] applies with p=1t. O

2. Intersection homology of iterated projective cones

We want to illustrate the results of the first section by considering a special
class of singular varieties, which is also of interest in connection with the
theorems of Lefschetz type in intersection homology. Let Z denote a smooth
hypersurface Z = V(P,; f) in some projective space P,. Up to homeomorphy,
Z is known to depend only on the degree g of f, since the complex manifolds
of this type form a smooth holomorphic family over a Zariski-open subset of
some complex number space (of course the polynomial f has to be
irreducible). The proof of that fact can be extended to the corresponding

family of iterated cones of a fixed dimension over Z. Since a typical such
d

manifold Z is the hypersurface Z : = V(P,;; Y, z{), in complex dimension m
Jj=0

such an iterated projective cone is homeomorphic to the projective

algebraic variety

d
mX§ 1= V(Ppey; D 29).
j=0
In the case of isolated singularities (d = m) and rational coefficients the
intersection homology has been calculated in [Bo, 1.5.4].

We use these notations: For re N set Z, : = Z/rZ, in particular Z, = Z;
the endomorphism of Z, determined by the multiplication with a natural
number g is indicated by “-g”; the abstract abelian group H/(P,, Z,) is
written as H’.

2.1. THeoReM. Let the m-dimensional complex space X be an iterated
projective cone over a smooth hypersurface of degree g in P, with d, g = 2, and

set b= ‘(%1((9—1)"—(—1)").

Then, for d<m or p=m, X has the following hypercohomology
H/ (X, P,Z):
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j P 0 Lhm m o t 1he
<d-2 = Hi ~ H/ ~
d—1 direct o HaezZ! | = |HezZb| dret o
d<j<2m-d, d+j=0() | H - gH | o '

g
d<j€2m—d, d+j=1 (2 direct = | H'@Zb | —» ”
2m—d+1 Hi®Z? = HazZb | — .
22m—d+2 H = H = =

For d =m+1 we have H'(X, P,) = H/(x, P,,) for every perversity p.
d

Proof. We may assume that X = V(P,.; > z{). We obviously have
i=0

d < m+1. Since d = 2, the hypersurface X 1s a normal variety; its singular
locus 2 = V{(P,,y:20,...,249) = P,_4 1s of (complex) codimension 4. In
particular, X is a manifold iff m = d+ 1. We shall prove Theorem 2.1 in three
steps. First of all we investigate the homomorphisms pZ,. In a second step we
use them to calculate the local intersection homology of X. Eventually we
describe the global intersection homology data that concern the perversity m.
Denote with ¢: X < P_,;, the canonical inclusion, moreover, set
P,.=P,Z,.

(a) The calculation of the groups H/(X, P,) = H/(X, Z,) and
H/(X, P) = H,,_;(X, Z,) follows by means of universal coefficient formulas
from the corresponding result for r = 0 in [Kp,, Beispiel 3.1]. By Theorem
1.2, all invariants a,(p, q) and b(p, q) are at least d — 2, since X is a complete
intersection. An application of the Main Lemma now yields the desired
properties of u’, except that u% ! is a direct inclusion (we shall prove that in
part (c)) and that g, is multiplication by g in the middle dimensions. There
exists a commutative diagram

H(x.p) = HX) <——”j——H"(Pm.1)

P

2m

(2.1.1) uep Lo i

The homomorphism y is multiplication by g, since [X] is homologous to
g[P,] in P, ... The missing description of i, follows in particular if we can
prove:

the homomorphisms ; and ¢’ are

bijective for j < 2m—d,
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multiplication by g for j > 2m—d+2;

Wam-a+, 18 surjective and Y™ 9! is injective.

For the properties of y; we shall consider the exact homology sequence
of the pair (P,+,, X). Since P, .\ X is the total space of a complex vector
bundle of rank m—d+1 over the d-dimensional Stein manifold
W:= P,\,-,X3, the vanishing theorem for singular cohomology of Stein
manifolds [AnFr] yields

H(P,... X\)=H™ 24P \X)=H™ 2" (W) =0 for 2m+2—i=d+1.

An analogous argument applies to /. In order to show that y; is
multiplication by g for j = 2m—d+ 2, note that / and p, are isomorphisms
for j <d—2 in diagram (2.1.1).
d
(b) Near X the variety X is of the form C" 4 x V(C?*!; Y zf); hence,

i=0
X =(X, Z) is a topological stratification.

We start with the computation of H' P, in the special case that r = 0.
Then, by the Kiinneth formula, 1t suffices to consider the case m = d and to
compute the local homology x 7, for the vertex v : = [0, ..., 0, 1] of the
projective cone X = ;X9§. Since then X is nothing but the Thom space of the
complex line bundle

E : X\ L - },d L= d—ngS [20,...,Zd]—'[20, ey 24_1],

we obtain y#7Z, =~ H<_ | (E,), where E, : = E\V(X; z,) is the complement of
the zero section. The Gysin sequence associated to the bundle E over Y, is of
the following form:

Hjo (Y2l Hym (X)) = HS(Eq) — Hy(Y) i H~ 5 (Y)).

Since E — Y, is the pullback of the bundle F : = P,,,\ v} — P;, we obtain
the following commutative diagram

The Chern class ¢, (F) generates H?(P,), consequently the right vertical
arrow ts an isomorphism for 2 < j < 2d. The properties of y; in (a) yield (set
m = d—1): the homomorphism y; is

bijective for 2 <j<d—-2,

surjective with kernel = Z° for j =d—1,

injective with cokernel = T for j =d, where

Z,, if d=0(2),
T: =
0, if d=1(2).
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Thus, for the link L of X at v we obtain
0, il j<d-2,
Z2'eT, fj=d-1.

Finally, by Poincaré duality for the compact manifold L of real dimension
2d—1, we obtain for j>d

H;(L) = H;(Eo) = {

Z’ for j=d,

Hj(L)EHZd_l_j(L)EHom(HZd—l_j(L)’ Z)E{O if d+1<]<2d—2

We now can calculate H’ P, , = H/(L) = H,4_,_,(L) for arbitrary r and
xe X2 the universal coefficient formula for local homology yiclds

Z2®Tor(T, Z,), ifj=d-1,
(2.1.2) HPZ =1 2'®TRZ, if j=d,
0, if j#0,d-1,d.
Note that for d even
Tor(T, Z)=Z,, =T®Z, for r #0.

There is only one nontrivial stratum; hence, P, : = P, Z, =1 _,,, P/ Z..
By Proposition 14, there exist at most three different classes of quasi-
tsomorphic perversities, which may be represented by o, m and t. For b # 0
these classes are indeed all different, while for b =0 (i.e, g = 2 and d = 0(2))
the situation is as follows: if r =0, then o =m & ¢t; if r #0, r =0(2), then
oEmEt:if r=1(2), then 0 = m =t. Combining this with Proposition 1.4
and [FiKp, 1.6 (iv)] we easily obtain Corollary 2.2 below.

We now consider the complexes (again with coefficients in Z,)

M ~ z1 * * A~ 2d .
Om=1""17¢4q1+ P, and Q. =1t7"P,.

From (2.1.2) we derive for xe 2

Qom.x = 0 otherwise,
. 2PeoT®Z,, . if j=4d,

HOQ,, .= )
O {0 otherwise.

Consequently, a(m, t) and b(o, m) are at least 41, while a(o, m) and b(m, t)
are at least d —2. Equality holds in all cases if 0 & m % t, thus in particular if
b#0. The complexes Q,, and @, are particularly simple, since their
cohomology sheaves are different from zero in at most one degree; moreover,
these cohomology sheaves are locally constant and thus constant since X is
simply connected.

(c) For the computation of H' (X, P,) we first calculate the modules
H(X,Q,,) and H(X, Q,,). Since these complexes have nonvanishing
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cohomology in at most one dimension, a simple spectral sequence argument
yields

H(X,Q,,)=H Y (Z H Q)
_[Z:@Tor(T, Z), ifd-1<j<2m—d-1,d+j=1(2),
=)o, otherwise.

In the same way we obtain

OTR®EZ, fd<j<2m-d, d+j=0(),
0, otherwise.

H (X, Q) ={

Since i ! and p2n are bijective, the results obtained so far cover the

statements of Theorem 2.1 except for d < j < 2m—d (and the (act that the
inclusion x4, "' is direct, which we shall show as the final point of the proof);
hence, we now restrict to the case d <j < 2m—d:

(1) For d+j =0(2) there is an exact commutative diagram

2m-d+1

H X, =0
Hix.R) ——=H(xP) —-»H(xQ, )=0
~.
u ‘a N l
ot \ ‘
H/(x F)

in particular. H/(X, P,) is isomorphic to Im y/,.
(1) For d+j = 1(2) there exists an exact sequence

H (x.Q;,) ———= Hx R}) —— Hx.5) —— HI(xq,,) —Ker ufy, ——=0
1% [\ % I (by i)
0 HY Zie Tor(rz,) Tor {1 Z)

If d is odd or r =0, then T is zero and the sequence reduces to a short split
exact sequence of free Z,-modules. If d is even and r # 0, then H/(X, P,) is
isomorphic to the kernel of a surjective homomorphism Z!@Tor(T, Z,)
— Tor (T, Z,). Consequently, H(X, P,) contains exactly r* elements for r # 0
and it suffices to show that H/(X, P,) includes a free module Z}. To that end
consider the distinguished triangle

pzéz—° spz

(2.1.3) R yd

of [KpFi, 5.15]. For the induced exact sequence in hypercohomology
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H mr) Hix.gz8z) — (x5 2)

I [xeFi . 5.13.1]
Hixez)ez,

it remains to show that H'~!(X, M) vanishes, if j is odd and d even. Since
H'(P,, Z)is torsionfree, the universal coefficient formula [KpFi, (5.13.1)] yields
L
H (P,Z®Z)=H (P,2)®Z..
As a consequence of (2.1.3) and [KpFi, 5.15] since a(t) >d—2, we
obtain for xeX

HJMx= TOF(T; Z,), lf.]:d-_l,
0, otherwise.

As usual the global hypercohomology results as
H~'(X, M) = B~ 176" D(Z, Tor(T, Z,)),

and this module vanishes, since j—d 1s odd.

We finally have to show that u/, is a direct inclusion for d—1 <j <
2m—d and d+j odd. For j odd this is again obvious, thus we may assume that
j is even and d is odd. In the case r = 0 the statement follows immediately
from the fact that H (X, Q,, Z) is a free abelian group. Since the perversity
m is dualizing, the morphism g in (2.1.3) is a quasi-isomorphism, and, by the
universal coefficient formula [KpFi, (5.13.1)], the splitting carries over from
Z to Z,. 0

22. CoroLLARY. There exist precisely three different classes of
perversities on X, which can be represented by o, m and t, except in the
following cases:

g=2,dis even and r is odd (then 0o =m = 1),

r=20 (then o =2m %1).

The perversity m is dualizing for R = Z iff d is odd; all other perversities
are dualizing in any case.
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