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We give a short proof of the formulas for symmetric and antisymmetric
degeneracy loci. We use a presentation of those loci as the image of a proper
morphism with a nontrivial generic fibre. A generalization for twisted symmet-
ric and antisymmetric morphisms is also given.

Introduction

Formulas for degeneracy loci are among the most useful tools of intersection
theory. Let E and F be vector bundles of ranks ¢ and f on a scheme X and
let ¢: F—E be a bundle map between them. The locus of points in
X where the rank of ¢ does not exceed a given integer r is called the
degeneracy locus of ¢, denoted by D, (¢) (or for short D,). It was R. Thom
who observed in [16] that the cohomology class of the degeneracy locus of
a “general” map ¢: F — E should be a polynomial in the Chern classes of
E and F. The corresponding polynomial, generalizing Giambelli’s formula
for the degree of determinantal varieties, was found by Porteous in [14]:

[Dr]=Det[ce—r—p+q(E—F)]a 1 <P,q$f—r

In [7] and {6] the following variant was investigated: F = E¥ and ¢: E¥ - E
1s symmetric or antisymmetric (in the latter case we assume that r is even).
More precisely, if ¢ is symmetric and genera! enough, then

[Dr] :ze_rDet[Ce—r—2p+q+1(E)]’ l sp’qse_rv

This paper is in final form and no version of it will be submitted for publication
clsewhere.
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and for a sufficiently general antisymmetric morphism,
[Dr] =Det[ce—r—-2p+q(E)]’ 1 €P,q$e—r—l.

The usual method to compute such formulas is first to “simplify” the

equations of a degeneracy locus by constructing a commutative diagram of
varieties

Z s G (=a Grassmannian bundle)
In 1=
D. g X

such that Z is the subscheme of zeros of a section of a vector bundle H on
G, codim; Z = rank H, and the morphism #: Z — D, is proper and biratio-
nal. Then using Grothendieck’s fundamental formula [Z] = ¢, (H) N [G]
{(see [5], Théoreme 2), we push forward the class of Z via m to get the
desired class of D,.

The purpose of this paper is to show how certain geometric construc-
tions with a nontrivial generic fibre can be applied to get the formulas for
degeneracy loci. We illustrate this method in the situation of the degeneracy
loci associated with maps with symmetries. In order to do this we use
a geometric construction invented in [15] (see also [8]). This gives us
a short proof of the formulas established previously in [7] and [6] by rather
complicated combinatorial arguments. Moreover, we give a generalization of
those formulas for twisted maps.

The results presented here were announced in [3], p. 52.

This paper is dedicated with gratitude to the mathematician whose
works introduced me several years ago into the mysteries of intersection
theory.

1. Notations, conventions and preliminaries

We will use the notations and conventions of [2]. If X is an algebraic
scheme over a field K, then 4 (X) denotes the Chow group of cycles modulo
rational equivalence. If X is smooth, then A (X) is a commutative ring with
the multiplicative structure given by intersection theory. If D — X is a purely
dimensional subscheme then [D]e 4 (X) is the class of the fundamental cycle
associated with D, 1e. if D =D, u...uD, is a mimmal decomposition into
irreducible components then '

[D] = i (length O, , ) [ D]

i=1

where O, 1s the local ring of D along D;.
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If E is a vector bundle over X then c,(E), the Chern classes of E, and s, (E),
the Segre classes of E, as well as polynomials in them are treated as operators
acting on A (X). Let I = (i, ..., i,)e Z* be an arbitrary sequence of integers.
We will use the following Schur polynomials:

5;(E): = det [5;, 1 g (EV]y < prgi-

Recall that if f: X — Y is a proper morphism then it induces an additive
map f,.: A.(X) = A (Y) such that f_ [V] = deg(fI,) [f(V)] if dimf(V) = dim V,
and O otherwise. In particular, if f establishes a birational isomorphism of
Vand f(V) then [f(V)] =/, [V] If X and Y are nonsingular then a morphism
fS: X - Y induces a ring homomorphism f* A4 (Y)-> A (X). If X, Y are
possibly singular and f: X — Y is flat or a regular imbedding, then there
exists an (additive) Gysin morphism f*: A (Y)—> A4 (X). In particular,
such a morphism exists if / is a section of a vector bundle (see [2], Corol-
lary 6.5).

In general it is difficult to compute f*[W] for W< Y. Butif W< Y is
irreducible, Cohen-Macaulay and codim,f ™' W= codim, W, then f*[W]
= [f~' W], where f ! W stands for the schematic preimage of W in X (see
{10], Lemma 9).

The following formuia was proved in [7]. Let E - X be a vector bundle
over X and let n: G,(E) — X be the Grassmannian bundle of r-subbundles of
E endowed with the tautological sequence 0 - R —» E; - Q —» 0 of vector
bundles on G = G, (E).

LemMma 1.1. For ae A (X),

where IeZ’, JeZ? and q = rank (E)—r.

By a partition we mean a sequence [/ = (i, ..., i) of integers where
i, 2...2 10, 20. With every partition I one associates its Ferrers' diagram
D,={(a,b)eZxZ, 1<b<k 1<a<i). For given two partitions
I=(,,i5..)J=4{,j; ...) we will write I < J if D; < D, (or equivalently,
if i, <j, for every h). Moreover, for a given partition I, denote by I~ the
conjugate partition of I defined by the condition: (a, b)e D;~ < (b, a)e D,.

CoroLLary 1.2, Let I be a partition such that I < (q, ..., q) (r times). Let
T (r,...,r)(q times) be the partition for which Dj is the complement of D~ in
(4, --.., q) (r times). Then in the above notations m,(s;(R) s;(Q)nn*a) = ta if
J =1, and = 0 otherwise. In particular, if X = Spec K is a point, we see that
+57(Q) is the Poincaré-dual cycle of s, (R) in the Chow ring of the Grassmannian
G,(K™"9).

CoroLLarY 1.3. If J = (i, ..., j,) is a partition, then n,(s,(Q)) # O only if
Jor, ..., r) (g times).



192 P. PRAGAC/

2. Use of constructions with a nontrivial generic fiber
Assume that we have a commutative diagram of schemes over a field K
Wls Wao G
Lo,
D°s D s X
with the following properties:

1° D is a closed, irreducible subscheme of a smooth scheme X, D° is an
open subscheme of D. Let W° =x~'(D°).

2° 7 is proper and n(W)=D.

3° There is an open covering {U,}! of X such that for every a,
n YU, ~ U,xG, where G is a smooth variety and A_(G) satisfies
the Poincaré duality.

4°  There exists a closed subscheme F < G such that for every o,
(DN U)=(D°nU)xF in U,xG.

5°  There exists a cycle F in G such that for every «, the restriction of
[(F] to A(n"'U)=A(U,xG) is [U,xF?] where [F’] is the
Poincaré-dual of [F] in A (G).

ProposiTiON 2.1. Under the above assumptions, the following equality holds
in A (X):

[D] = =n, ([W]-[F]).

Proof. Let y = [W]-[F‘]e A (G), x = [D] in A (D). We have to check that
iy(x)=m,(». Let G®* =n~"(X—(D—D") and n° = n|go: G° - X —(D—D°).
Let k: G° 5 G be the inclusion. Moreover, denote by i{® the inclusion
D° X —(D~— D). Then it suffices to prove that the following equality holds in
A(X —(D-DO%):

(%) (3% (x) = ng k* ().

Indeed, this implies that the image of i, (x)—n, (y) in A(X —(D—D) is zero,
i.e. is represented by a cycle on D— D°. Since dim(D —D°) < dim D and both
i,(x) and m_(y) are in Ay p(X), i,(x) =7, (y) in A(X). The equality () is
equivalent to

(%) [D°] = mg ((W°]- k* [F]).

To prove (%) take U = U, such that D° n U # @. Then using a dimension
argument as above, together with 4° 5° we can reduce our problem to the
situation where G = XxG, W=DxF and n: XxG—-> X, n: DxF—F are
the projections. Then the assertion follows from the following

CrLAIM. Let G, D, F, F? be as above and let n,: D x G — D be the projection.
Then the following equality holds in A (D):

(mp), ([P x F1-[D x F']) = [D].
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To prove the claim consider the map p: D — pt = Spec K. It follows from
the cartesian square
DxG 3D
px1}| i
ptxG 5 pt
and [2], Proposition 1.7, that
(), ([D x F1-[D x F']) = (mp), ((p x 1)* [pt x F]-(p x 1)* [pt x F])

= (mp), (p x 1)* ([pt x F]-[pt x F¥]) = p* 7, (pt x pt) = p*(pt) = [D]

as needed. m

3. A new proof of the formulas for symmetric
degeneracy loci

Let ¢: E— EY be a symmetric (resp. antisymmetric) morphism of vector
bundles over a purely dimensional scheme X over a field K. Let p be
a natural number such that 2p < e=rankE. Let n: G ='Ge_p(E)—>X be
the Grassmannian bundle of (e—p)-subbundles of E. Let R g E; be the
tautological bundle on G. We define W< G as the subscheme of zeros of
the composite morphism

Rc Eg iq’»Eé —» RY.

Let D= D,,. Let D° = {xe X|rank ¢, = 2p} and define W° = n~ (D). We
get a diagram

0
WieW o G =G, ,(E)

l ln=nlw ln
D°sD < X

in which n(W) = D, because if ¢, has an isotropic subspace of dimension
e—p then rank ¢, < 2p. The construction from Chap. 14.1 in [2] gives the
localized top Chern class We A, (W), where m =dimG—(*"5"!) (resp.
m = dim G —(°37)). Let U be a vector space of dimension e. The fibre of n is
G,-,(U). By construction the generic fiber of x|y, is

G2 ,(U)={L < U|L is an (e—p)-dimensional subspace which is
isotropic with respect to a symmetric (resp. antisym-
metric) form of rank 2p on U}.

To define the determinantal class D€ A,,_gimes (D) (F? is the dual cycle to
F in G,_,(U)) we need the expression of the class [F] in 4 (G,_,(U)) in
terms of the Schur polynomials applied to the tautological vector bundles on
G,_,(U).

{3 — Banach Center t. 26, cz. 2
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LeMMA 3.1. The dimension of G*° (U) is (p>—p)/2 (resp. (p*+p)/2).

e—p

This can be calculated by applying the above construction to X being the
affine space of e x ¢ symmetric (respectively antisymmetric) matrices endowed
with the canonical (tautological) morphism ¢. We have codimg (W)
= (°"8"1) (resp. codim (W) = (°37)) (see [15], [8]). Then, using the formulas
for dim D (see [9], (11]) we compute the dimension of the generic fiber which is
G:2 (V).

Lei g, denote the partition (k, k—1, ..., 2, 1).

ProrosITION 3.2. Let 0 = R = U, — Q — 0 be the tautological sequence on
G = G,_,(U). Then

() 2°[F] =5, ,(R*) (resp. [F] =5, (R")),

(i) 2°[F) =e(p—1)s,,.,(Q") (resp. [F]1=2¢(p)s,, (Q")), where &(p)
— (_ 1)1+2+...+p.

Proof. Assume first that e = 2p, ie., that the corresponding form is
nondegenerate. Then by Grothendieck’s formula [F] is the top Chern class of

the bundle S, R™ (resp. A% R") (see [5], Théoréme 2). Using the formulas from
[12] (see also [13], 1.10) we get

[F1=2"s, (RY} (resp. [F]=s,, _, (RY))

To prove (i) in this case, we recall that the Poincaré-dual cycle of s,(R") in
A(G,(UY)) = A (G, (L)) is 5,(R") where D, is the complement of D, in the
square p x p (see [2], Proposition 14.6.3). On the other hand, the assertion (ii)
follows in this case from another description of the Poincaré-dual cycle with
the help of the s,(Q")s, which is given in Corollary 1.2.

In general let U be a vector space endowed with a symmetric (resp.
antisymmetric) form of rank 2p. Then we can find subspaces U' and A of
dimensions 2p and e —2p such that U = U’'® A4 and the form restricted to U’ is
nondegenerate. Then we have a (closed) imbedding i: G'=G,(U)s G
= G,_,(U) defined by L—L&® A for LeG,(U’). One sees easily (with the
help of Lemma 3.1) that i [G°(U)] = (G¥2 ,(U)]. Observe that the restri-
ction of the tautological sequence 0 - R—->U;—-Q -0 on G to G is
0-R@A; - U @A, — Q -0 where R, Q' denote the tautological bundles
of rank p on G'. Therefore if Z(R") (resp. Z(Q ")) is a polynomial in the Chern
classes of RY (resp. of QV), then *(#(RY))=2(R") (resp. *(Z(Q"))
= #(Q')). Write [F'] =27"s, _ (R") (resp. [F’] =5, (R")) in case (i), and
[Fl=2"%e(p—1)s,,_,(Q") (resp. [F'] =e(p)s,,(Q")) in case (ii). We con-
clude that

[pt] =i, [pt] =i, ([G¥°(U')]-i* {F’]) (by the preliminary step)
=i, [GE°(U')]-[F‘] (by the projection formula for i)
=[G, (U)) - [F],

which i1s the desired equality. m



CYCLES OF ISOTROPIC SUBSPACIES 195

We define the determinantal class De A, _gimryy(D) by 2PD =
Ny (s, ,(RINW), resp. D=pn,(s, (R')nW). It follows easily from the
formula for the top Chern class of the second symmetric power (see [12], [13],
1.10) that this definition makes sense. It is easy to see that the formation
(X, E, p)~»D(p: E— EY) commutes with Gysin maps and proper push
forward in the sense of [2], Theorem 14.3 (d). Now we are ready to give a short
proof of the degeneracy loci formulas for maps with symmetries.

THeorcM 3.3, (a) The image of D in Agimx-.(X) is equal to
227205, JAEY)N[X] (resp. s,,_,  (EY)n[X] in the antisymmetric case).
Here ¢ = (C~H" 1Y) (resp. ¢ = (°,2P)).

(b) Each irreducible component of D has codimension at most ¢ in X. If
codimy, D = ¢, then D is a positive cycle whose support is D.

(c) If codimy D = ¢ and X is Cohen—Macaulay, then D is Cohen—Macaulay
and [D] = D.

Proof. (a) We give two proofs. By definition we have
W=, (S,R")N[G] (resp. W =c¢, (4>RY)n[G]). Therefore, using the
formulas for the top Chern classes of the corresponding tensor operations (see
[12], [13], 1.10), we obtain

D= 29‘2"71*(3%_1(RV)-sDe_p(R")m [G]),

resp. D = 7'5*(sQ_U(RV)-sQe_p_I (R¥)n [G]).
Consider, for example, the latter case. By the Littlewood—Richardson rule
(see [13], 1.9) we know that the product sep(RV)-sge_r:(R") IS a sum

Y oy s(RY) where |I| =g, |+, , ,I(*) and «, #0 only if I >¢, ,_;.
There exists only one partition J among such I's for which J o (p, ..., p) (e—p
times), namely the partition

J=(e—p—1,e—p—2,....,p+1,p,..., D).
Pictorially:

e-p -1

(") For a partition J we denote by |J| the sum of its parts.
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The Littlewood—Richardson rule implies that s,(RY) appears in the above
product with multiplicity 1. Finally, by Corollary 1.3 and Lemma 1.1 applied to
the Grassmannian G,(E") =~ G (with the tautological quotient E¥ - RY), the
image of D in Agimx-c 15 s,, (EX)n[X].

-2p-1

The second proof is even more elementary. It uses only Lemma 1.1 and
does not use the Littlewood-Richardson rule. We have

D=n[e(ps,, (Q%)s,,_, (R')N[G]] (by Proposition 3.2 (ii))
:E(p)se~2p—1,e—2p—2,...,1,0,~1 ..... -p+1,—-p,p,p—1,..., Z‘I(EV)('\[X]
(by Lemma 1.1 applied to the Grassmannian G,(EY)~ G
endowed with the tautological sequence 0 > Q¥ - E¢ 5 RY = 0)

= S¢—2p-1.e-2p-2..., 21 (EY)n[X].
Indeed, if we reorder the last segment of length 2p through the rule

S0 (EY)= — S’ —1.i+1,...) (E)

we see that
E(P)S(....—1.—2.....—p.p.p—1 ..... 2.1)(EV):S(,...0 ..... 0)(EV)-

To prove (b) and (c) we should pass to the “generic case”. For a given
symmetric (resp. antisymmetric) morphism of vector bundles on X we define
X =8,E" (resp. X = A*E") treated as a scheme. Observe that ¢ induces
a section s: X — X. There exists a canonical (tautological) bundle map ¢:
E - EY on X, where E = E,, such that s*(¢) = ¢. If X is Cohen-Macaulay,
then it was proved in [9] and [11] that D(p) is also Cohen—-Macaulay.
Therefore, if D is of codimension ¢ in X, then from Lemma 9 in [10] we infer
that D is Cohen—Macaulay. Now since the formation (X, E, ¢)» D(o:
E — EY) commutes with Gysin maps and proper push forward, it suffices to
prove the remaining assertions locally on X. Therefore we can assume that X is
the affine space of e x e symmetric (resp. antisymmetric) matrices over the field
K. 1t follows from [15], [8] that the degeneracy locus under consideration is
defined by the vanishing of the (2p+ 1)th order minors (resp. (2p+ 2)th order
pfaffians) and it is an irreducible variety of codimension c. Moreover, in this
case the equality [D] =D is a consequence of Proposition 2.1. m

Let us notice that the class of D, with odd r = 2p—1, say, can be easily
derived from the above formula. Namely, writing 1 for the trivial line bundie on
X, consider the symmetric morphism ¢’ =@ 1: E@Q1->EY @1 of vector
bundles on X. Then the ideals defined by (2p — 1)th order minors of ¢ and the
2pth order minors of ¢ are equal. In particular, the codimension of D, ,(¢') is
(¢~ %P*1). Using the hinearity formula (see [13], .5.9) and writing ¢ = ¢e—2p+1
we get

[D3p-1(@)] = [D3,(@)] = 2*s,, (E¥ @) " [X] = 295, (E¥) n [X].



CYCLES OF ISOTROPIC SUBSPACES 197

So summing up we have proved the following formulas:

THeoreM 34. (a) Let ¢: EY - E be symmetric and let O, =
Coker (A 1" 1g: A" 'EY®A*9*1'EY - 0,). Then under the above
assumptions

[D] = 275, (E)n [X].
(b) Let ¢: E¥ — E be antisymmetric and let D be the subscheme defined by
vanishing of the (2p+2)th order pfaffians of ¢. Let q = e—2p. Then
[D]=s,,_ . (E)n[X].

(A passage from the above formulas to the formulas stated in the Introduction
follows from [13], 1.(3.4), (3.5))

4. A generalization for twisted morphisms with symmetries

In this section we will work with more general morphisms ¢: E¥Y - EQ@ L of
vector bundles on X, where L stands for a line bundle. Let us call ¢ symmetric
(resp. antisymmetric) ff ¢¥ ®id;, = ¢ (resp. ¢’ ®id, = —¢). Our goal is to
describe the class of D,(¢) as a polynomial in the Chern classes of E and
A =c,(L). We need the following equality for the Schur polynomials in the
variables x,, ..., x, (see [12], [13], 1.10):

(%) st + 1, x, + ) =) dy s, (e, ., X)),
Jjer

 teo—
d“=Det[(l_” ¢ p)], 1<p g<e.
Jete—q

THEOREM 4.1. Under the assumptions of Theorem 3.3, the following formulas
hold:

(a) If @ is symmetric, then

where

0, N =2"D 5 214, 5,8 2 ).

J<cog

(b) If ¢ is antisymmetric and e—q is even, then

D, 1=2"0 5 24 5@ P VA
Jeeg-1
In order to prove these formulas we recall that the universal formula in
question is the same as in the topological situation, i.e. when we replace X by
a complex manifold, E by a C®-vector bundle on X and A (X) by the
cohomology groups H' (X, Z). Now, by the “squaring principle” (see [6],
Proposition 9) we can take formally the square root M of the line bundle L,
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ie. L= M®2 and reduce the problem of calculating {D,(¢: EY - E®L)] to

the same problem about [D,(p®idy: (E®@M)” - E® M)]. The final for-
mulas follow easily from Theorem 3.4 and (x).

Remark 4.2. The formulas stated in Theorem 4.1 generalize Giambelli’s
formuias for the degree of projective symmetric and antisymmetric determinan-
tal varieties given in [4].

ExamprLe 4.3. If ¢ 1s symmetric, g = 2, then

. 1
[D,_,(p)] = 4(c1c2—c3)+4c2-£+2(e—l)c%-).+(e2—1)c1-,1"“+(e-; )-.1.3

where ¢; = ¢;(E). This formula has an application to counting the nodes of the
discriminant_surface. More precisely, let 4 = P? be a hypersurface of degree
e given by the vanishing of the determinant of the symmetric matrix
[a;(zo:2,:2,:25)], 1<1i,j<e which corresponds to a morphism g:
08¢ — 053 (1)®. For sufficiently general [a;;] the number of nodes on A4 is
[D,_,(p)]€ 4, (P?) = Z. By the above formula this number is (°3") (see [1] for
details).
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