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Introduction

Let H, denote the hyperoctahedral group on »n symbols, i.e. the wreath product
of Z5:=7Z,x ... xZ, and §, where Z, is the cyclic group of order 2 and S, is
the symmetric group on n symbols acting on Z3 by the formula sb, = b, for
generators b, ..., b, of 25 and any se<§,.

It is well known (see [5]) that H*(H,,, C¥) ~ Z, x Z, x Z, for n > 4 where
H, acts trivially on C*. We are concerned in this article with projective
representations of H, asscciated with the cocycle of type (i, 1, —1) (in the
notation of [9]). Projective representations mentioned above are related with
a class of linear representations of a double cover H, of H,.

To define H, let us denote by G, the group generated by a, ..., a, subject
to relations af =a3=...=a7 =z, z° =1, a,a,=za,a, for pg=1,...,n,
p#q. G, is a finite group of order 2"*! and is a double cover of Z3; the
projectioP sends a, into b,. The symmetric group §, acts on G, by sa, = a,.
We set H, to be the semidirect product of G, and S, defined by means of the
above action. Obviously, we have an epimorphism of groups 6,: H, = H, such
that 8,(a,) = b,, 0,(s) = s for se 5, and Ker 0, = {1, z}. A linear representation
of H, (or an H -module) is called negative (see [2]) if z acts as multiplication by
—1. The assignment T T8, establishes a 1-1 correspondence between
equivalence classes of projective representations of H, associated with the
cocycle of type {1, 1, —1) and equivalence classes of negative representations
of H, (or negative H,-modules).

The aim of this paper is to give a description of the ring of negative
A, -supermodules for all n in terms of Schur Q-functions along the lines
presented in [7] for projective representations of S,. The basic novelty in [7]

s(p}

This paper is in final form and no version of it will be submitted for publication elsewhere.

[317]



318 T. JOZEFIAK

is an application of the theory of semisimple superalgebras (see [6]) and we use
the same approach in the present paper. The relationship between negative
H -supermodules and Q-functions was sketched in [11] by Sergeev and our
article contains an elaboration and extension of his ideas.

One can extract information about simple negative H,-modules from that
on simple negative H, -supermodules in a way presented in § 5 of [7].
A comparison of this approach with more standard description of simple
H -modules using the semidirect product structure of H, will be given
elsewhere.

Another approach to problems considered in this paper can be found in
[3] and [4].

§ 1. Split conjugacy classes of H,

Conjugacy classes of H, are of the form 8, ! (C) where C is a conjugacy class of
H, or 0, (C) splits into two conjugacy classes of H, (see [6]). From the point
of view of negative representations only the second type of conjugacy classes is
interesting (see [7] § 3C). We call them split conjugacy classes. First of all we
recall the well-known description of conjugacy classes of H, which comes from
[12] (see also [8]).

Let by = [[ie; i€ Z5 for I = {1, ..., n}; by the support supp ¢ of the cycle

t = (i, ..., i) we mean the set {i;, ..., i,}. Every element b,s of H, can be
uniquely written (up to order) as a product
(1) bIS:(bllsl)"'(prSp)

where s eS,, b, eZ3, s=s,...5, is a product of disjoint cycles and
I, csupps, fork=1,..., p.If I —suppsand s is a cycle then the type of b, s is
defined as the ordered pair ((—1)*‘", length s). The type of an element of the
form (1) is a sequence of types of indicated factors, i.e. {((—1)*", length s,)}.
Two elements of H, are in the same conjugacy class if and only if they have the
same type. Hence conjugacy classes of H, are indexed by pairs of partitions
(o, B) such that |a| +|B| = n. The partition « corresponds to all factors of type
(1, #) and B corresponds to all factors of type (—1, *). We write C,; for the
corresponding conjugacy class. We recall (see [8]) that

2"n!
2 #(Cop) = W
where [(o) is the length of a, « contains «; parts equal to i and
Z, = 1"a,12%2a,!. ..
We denote by (H,), the subgroup of H, consisting of all elements b, s with
# (I) even. It is of index 2 in H,. The conjugacy class C,; is called even if
C,; < (H,), and odd otherwise. Let D, ;= 6, '(C, ).
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LeMMA 1 ([9]). D, splits into two conjugacy classes of H, if and only if:

1) for D, even we have § = and o€ OP(n),
2) for D, odd we have « =3 and BeSP_(n).

Here OP (n) is the set of all partitions of n with odd parts, SP (n) is the set of all
partitions of n with all parts distinct (so-called strict partitions) and SP, (n),
SP_ (n) denote all partitions from SP (n) of even and odd length, respectively.

For e OP(n) we define D, to be the conjugacy class of A contained in
D, » and containing an element of S, of cycle type «; then the other conjugacy
class contained in D, , is equal to zD; and we denote it by D, . From (2) it
follows that

3) # (D)= #(Dg)=2""""z"n!

Let (H,), = 6, ' ((H,)o) and (H,); = 6; ' (H,\(H,),). We have H, = (H,), v
v (H,), and this decomposition allows us to define a Z,-grading on the group
algebra of H, or a structure of a superalgebra. Consequently, we can consider
Z,-graded modules over H, or H,-supermodules. There are two kinds of simple
ﬁn-supermodules: of type M and of type Q (see {6]). There exists a close
relationship between the number of simple negative H -supermodules and

number of split conjugacy classes, see [6], Proposition 4.14. Hence we get

CoroLLARY 1. 1) The number of non-isomorphic simple negative
H,-supermodules of type M is equal to # (SP., (n)).

2} The number of non-isomorphic simple negative H ,-supermodules of type
Q is equal to # (SP, (n).

3) The number of non-isomorphic simple negative H, -supermodules is equal
to # (SP(n).

Proof follows from Lemma 1, Proposition 4.14 of [6] and the classical
fact that # (OP(n)) = # (SP(n)); see [1].

§ 2. Character ring of negative H -supermodules

The group superalgebra of (H,, (I—T,,)O) over C is a semisimple superalgebra. We
consider the category of all H, -supermodules and their H -homomorphisms
(morphisms of degree 1 are allowed) and its full subcategory of negative
H -supermodules (see [6] for details). We write 7,~ for the Grothendieck group
of the category of negative H, -supermodules, n > 1. The group T, is a free
abelian group with a basis consisting of classes of simple negative
H -supermodules. By Corollary 1 the rank of 7, is equal to the number
# (SP(n)) of strict partitions of n. There exists a scalar product [,] on
T,” defined by [P, N} = dimi HOMp, (P, N) for negative H -supermodules P,
N (see [6], § 4). We quote from [6] the characterization of simple negative
H -supermodules.
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LemMa 2. If P, N are simple negative B -supermodules, then

1 if P~ N is of type M,
[P, N]=<2 if P~ N is of type Q,
0 if PxN.

We consider the direct sum T~ = @, 7, assuming that T, = Z. We
are going to define a ring structure on T .

To this end notice that G, xG,~ G,,,, where x is the operation of
twisted product introduced in [Z] (see alsc [7], § 4). Here G,, is generated by
ay, ..., a4 and G, bya,,, ..., a,,,subject to the defining relations. Informal-
ly, the operation x reflects the fact that the a’s of G,, and the a’s of G,
aniicommute with each other (where the rcie of -1 is played by z). The
isomorphism G, x G, = G,,., induces an injection t(m, n): H,xH, > H, ..
stch that lint(m, n} = 8,1, (H, % H,) where we idenufy H_ x H, with a sub-
group of H_,, i3 the cbviocus way.

Let P be a negative A _-supermodule and N a negative & -supermoduie.
Then H, xH, acts on P® N by the formula

(2, b)(x @ v) = (— 1)eePdee™ 4y @ by

for homogeneous ke f,, xeP. An easy calculation shows that this formula
defines the structure of a negative H, x H -supermodule on P® N.

If [P] and [ N] denote classes of P and N in T, T, , respectively, then we
define their product by the formula

[P_] {N] = [ﬁm+n ®ﬂ’.,,?_<1-1n(P® Nr)]

where the tensor product is in the sense of supermodules (i.e. graded) and the
structure of the right H, x H -supermodule on H,, ., comes from the embed-
ding t(m, n). Obviously [P][N]e T,,+,. This defines a multiplication on T~
which is commutative and associative as 1s easily seen.

As in the usual (non-graded) case one can replace classes of supermodules
by their characters (see [6], Theorem 4.12). This means that we can consider
T,” as a free abelian group with a basis consisting of characters of simple
negative H -supermodules. Therefore we call elements of T,” negative (virtual)
characters of H_. If peT,” then we write ¢, = ¢(x) for xe D}, xc OP (n);
consequently ¢ (y) = — ¢, for ye D7 . The character ¢ vanishes on all remain-
ing conjugacy classes of H,. If also Y eT,”, then

1 1
4 , = -1 - 24 (DS
( ) [(P '10] # (Hn) x‘§7"¢(x )lll(X) 2n+! n!aeé(”) *:( )(Pa. ‘pa,
1 S
=gy 2 YTztnle .= ) 2792 ey,
. cOP(m) 2eOP(n)

by (3) and the fact that xe DI implies x " 'eD}.
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We are going to describe multiplication in T~ in terms of negative
characters.

For ¢eT,, yeT,” we have a negative character ¢ xy of H xH,
defined by

where (x, v) is the residue class of (x, v) in H_ % H,. If y¥, ¥V are characters
corresponding to H_-supermodule P and H -supermodule N, respectively, then
obviously y* X ¥V = y*®N,

The correspuidence between supermodules and characters gives the
following formula for multiplication in T ":

¥ = Indfii, o Xy
where ¢e T, .Y eT,” and Ind means the operation of taking the induced
character. To compute this product explicitly we need the following

LEMMA 3. Let ye OP (m+n) and let us identify H_ % H, with its image under
the injection t(m, n). Then

Dy n(H,xH)= ) D xDj

aufi=y
Dy n{H,%xH)= |) D;%D;j = |) DS %D,
avf=y aufi=y

is a partition of the left hand sides into the conjugacy classes of H, % H_ where
the summation runs through all e e OP (m), p € OP (n) and a U B is the partition of
m+n consisting of all parts of « and B. Moreover,

D; kD =D; %Dy, z(DF %Dj)=Dgy xDj =Dj %xDy;.
Proof is similar to that of Lemma 4.2 in [7].
LemMa 4. Let o€ T, , yeT,” and yeOP(m+n). Then

4

(@ ¥),= Y T o.¥

auf=y~“a“p

Proof. From the definition of the induced character and L.emma 3 we get

. — =H:(f?m+n) .
2m+n+l(m+n)! . .
= 2,,.+n+1 m!n!2m+n—t(y)z}}—1 (m+n)| Z fPa "/Iﬂ # (Da ) # (Dﬁ )

faup=y

VA
—_ Y m—l(a) ,— 1 yan=I(f) ,—1
= ST ] ﬁg 2 zZy "ml2 zg nlo, Y,
¢ rauf=y

z

= Z L (Pa‘//ﬁ

aup=y2aZ2p

since {(y) = (o) +1(P).

21 — Banach Center t. 26, cz. 2
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§ 3. The characteristic map

We are going to describe the ring structure of T~ in terms of certain functions
introduced by Schur in [10] and now called Schur Q-functions. For updated
account of Q-functions and notation, see [7], § 4B.

LetI' = Z[q,, 4,, ---]1 where the symmetric functions g; in indeterminates

X, X5, ... are defined by the formula
(5) Q(t):= Z qktk = ]—l (1+x,0)(1 _xit)—l-
k20 i21

One knows that I'a =T ®,Q = Ql[p,, p;,...] where p, =3, x} is the
power series function ([7], § 4B).

The ring I is a graded ring and deggq, = degp, = k. We write I, for the
subgroup of all homogeneous elements ol degree n. We denote b” =Py, Py -
for pe OP(n). Notice that {p,;, ue OP(n), is a basis of I', ® Q over Q.

The ring I'c:=1I ®,C (and hence I') 1s equipped with a scalar product
[, ] such that

(6) [P Pl =27""2,8,.
We define the characteristic map ch: T~ —» I'c by the formula
(7) ch(p)= ) z '@.,p, for peT, .
acOP(n)

ProposiTioN 1. The characteristic map is an isometric homomorphism of
rings.

Proof. Let ¢, yeT, ; we have
[ch(p),ch)]= Y z'z;'[P. PRl @Y,

a,feQP(n)

= Y z227'®z 0.4, =[e, V]

aeOP(n)

by (4) and (6).

By Lemma 4 we have ch(p-y) =ch(p)ch(y) for oeT,, veT, .

Now we are going to define explicitly a negative H -supermodule which
corresponds in a sense to the basic spin representation of the symmetric group
S, (see [7], § 2C).

Let L, be the Clifford algebra over C of a quadratic form of rank n. There
exists an algebra basis y,, ..., y, of L, such that y2 = —1 and YoVg= —VoVp
for p # q. Hence the monomials {y, = [[.;»;}. I = {1, ..., n}, form a linear
basis of L, over C (we abuse the notation here since y, is determined by [ up to
sign). The structure of H,-module on L, is given by

a,y; =y,y;» a, generators of G,,

SV = ys(l)’ SESn.
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If we define a grading on L_ by setting (L,), to be spanned by y, with # (I) even
and (L), by y; with # (I) odd, then L, becomes an H, -supermodule. We have
zy,=aly,=yiy, = —y, so that L, is a negative H,-supermodule.

LEMMA 5. If &" is the character of L,, then &% =2"? for ae OP (n).

Proof. Let « =(2,..., o, be an odd partition of length m and let
$=35,...5, be an element from S, expressed as a product of disjoint cycles, s,
a cycle of length «,; moreover let I, = supps,. An easy calculation shows that

sy, = Yr ifI:UIp, pe{l,...,m},
YIZ= 14y, K#1, otherwise.

Hence the trace of the action of s on L, is 2™ as required.

LEmMMa 6. We have ch({")=gq,, [£" &1 =2 and L, is a simple
H -supermodule of type Q.

Proof.- By definition (7), Lemma 5 and Lemma 4.5 of [7] we have
ch(¢= Y 2™z 'p,=q,.

acOP(n)
By (4) and Lemma 4.5 of [7] we have
[grn’ f"] _ Z 21(1)2;1 = q”(], 0, 0, )
xsOP(n)
Since by (5) ¢,(1,0,0,...)=2 we are done.
Let us recall (see [6] or [7], § 2A) that L_ is a simple H -supermodule if it
is isomorphic to M, ® M, as an H -module and M,, M, are associate simple

H,-modules, ie. M,, M, are isomorphic as abelian groups and b.y in
M, corresponds to (—1)%*" b y in M, beH,_, ve M,,.

Let ¢, =i(\/m ™ '(y;+ ... +¥,)€L,, i* = —1; notice that ¢ =1 and
s¢, = ¢, for seS,. We define

M, = {w+wc,; we(L,),}, M,={w—wc,; we(L,),}.

A straightforward computation shows that M,, M, are H -submodules of L,.
Moreover, o: M, — M, defined by o(w+wc,) =w—wc,, we(l),, is an
isomorphism of abelian groups and

o(b(w+wc,)) = a(bw+bwe,) = (—1)¥¥® b (w+wc,).

This gives the required decomposition of L, as an H -module. Obviously, M,
and M, are simple H,-modules by [&", &"] = 2.

LemMa 7. If L(t) = ¥, &" 1", then L(t)L(—1) = 1.

The same arguments as in the proof of Lemma 4.16 of [7] apply here.
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The Schur Q-functions are polynomials in the g, and are defined as
pfaffians of certain skew-symmetric matrices thanks to the property
Q) Q(—1) =1 of the generating function of the g, (see [7], § 4B). By Lemma
7 the same procedure applies when the ¢, are replaced by the & and the
operations are performed in the character ring T~ instead of the ring I'. In
other terms for each partition v from SPn) there exist elements Q eI and
&'eT™ such that degQ, = |vi and Q,=g,. We have explicit recurrence
relations for &' (as well as for Q):

(8) EM=EE A2 Y (=1L v v, >0
i=1
k . A
9) =Y (=1yerigeiem for k=I[(v) even, k> 2,
i=2
(10) ﬁv — Z (—l)‘i_l 6\-,-8;...9,-...\-:. for k = l(\’) Odd, k>2.
i=1

LemMMa 8. 1) ch(&) = Q, for veSP(nj,
2) [&, &4 =2, v, ueSP(n).

Proof. Part 1) follows from the construction of @, " and Proposition 1.
Part 2) is an immediate consequence of Proposition 1 and the formula
[0..Q,1=2""6,, see (7], Theorem 4.8.

ProOPOSITION 2. For every veSP(n) the element (¥ := 27 U2 EY polongs to
T QLY &3, ... where [ ] denotes the integral part symbol.

Proof. For I(v) =1 we have {* = &' and the assertion is obvious. For
I{v) = 2 we use the formula

EmE =20™"  for some n™"eT"

which follows from Proposition 5.1 of [7] since L, is a simple negative
H -supermodule of type Q by Lemma 6. Now by (8} it follows that &2 is
divisible by 2 in T~ and belengs to Q[{Y, {%,...]. For i(v) > 2 the assertion of
thé lemma follows from formulas (9) and (10) by induction on [(v).

CoROLLARY 2. For strict partitions v, u we have
v v (1 for 1(v) even,
&5 &= {2 for 1(v) odd,
[, =0 for v # u.
Proof follows from Proposition 2 and Lemma 8.

CoroLLARY 3. For any veSP(n) we have

Yy 1(v)i2] ,— 1 v
Qv - Z 2[ J Zy /s; Pa-
azOP(n)
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Proof foilows from Lemma 8, Proposition 2 and (7).

CoroLLary 4. For any e OP(n) we have

. = ([H(v) + 1)/ 2]+ an pv
pa - z 2 ! Ca Qv‘
veSP(n)

Proof. By Corollary 4 and (6) we have [p,, Q,] = 2U/2171@ 7. hence the
result by [Q,, Q,] =2""5,,, see Theorem 4.8 of [7].

Coroirary 5. The set {{'}, ve SP(n), forms the basis of T~ consisting of
characters corresponding to simple negative H -supermodules.

v

Proof. By Corollary 1 the number of {%, /(v) even, is the same as the
number of simple negative H -supermoduies of type M, and the number of
£*, 1(v) odd, is the same as the number of simple negative H -supermodules of
type Q. Hence, by Lemma 2 and Corollary 2, {{*} is, up to sign, the basis
comsisting of classes of simple negative H -supermodules. We have to show that
' and not —{" is the character corresponding to a simple negative
H -supermodule. To this end we need to know that {*(1) = {{1m > 0; this,

however, follows from Corollary 3 and Proposition 4.13 of [7].

CoroLLARY 6. If veSP (n). [(v) = m, then the degree of the character [* is
equal to

Vi—;

(vi+ ... +v)! Tl

n—[m/2] ‘
P T B 7

Proof follows from Corollary 3 and Proposition 4.13 of [7] since the
degree of (" is equal to ({in).

CoroiLArY 7. Tqg = Q[ ¢34, ... 1.

Proof. The inclusion < follows from Proposition 2 and Corollary 5, the
opposite inclusion is obvious.

CoroLLARrY 8. The homomorphism ch: T~ — I'¢ is an injection and ch(T ™)
is a subring of I spanned linearly over Z by {27V"/21Q % where v runs through
all strict partitions.

Proof. ch is an injection by Corollary 5, Proposition 2, Lemma 8 and the
fact that {Q,}, veSP(n), is a linear basis of I', over Z for each n (see
Proposition 4.4 of [7]). The remaining assertions follow from the formula
ch(¢®) = 27021 g  which holds true by Lemma 8 and Proposition 2.

CoroLLaRY 9. The map ch induces an isomorphism of rings Tq =~ Iq.

Proof. We have rank T, = #% (SP(n)) = rank I, by Corollary ! and
Proposition 4.3 of [7]. Hence the result follows from Corollary 8.
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CoroLLARY 10. The set of all monomials {{**(**...} indexed by strict
partitions v is a Q-linear basis of Ty .

Proof. Since ch({") = g, for all n and {q, gq,,...}, v running through strict
partitions, is a Z-linear basis of I' (see Proposition 4.3 of [7]) the result follows
from Corollary 9.
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