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Introduction

The starting point in this work 15 the following fact: Assume that C = Spec ¢
is an irreducible algebroid curve over an algebraically closed field of
characteristic zero, and consider the absolute saturation & of the local ring ¢
(see [11], [10] and [3] for three equivalent definitions of saturation). Then
the semigroup of values S of ¢ has the following arithmetical property

(A) If y, y,..., €S, y= %, and e=gcd.(y,, ..., ) (e = 0) then y
+eeS.

In fact, as seen in any of the quoted references, § is the minimum
semigroup of Z, = {ne Z| n > 0} having the property (A) and containing
the characteristic exponents f,, f;,...,f, of the Puiseux expansion
corresponding to a general plane projection of C.

In the sequel we will use the definition of saturation introduced in our
previous work [3] and in [9], which is given in the following terms: Let A4
be a commutative ring with unit, F its quotient field, 4 the integral closure
of A in F, and D the set of nonzero divisors in A. The ring A is said to be
saturated with respect to a subset T < D if the following property holds for it.

(Py) If zeA, zy, ..., z,, Wy, ..., wse D are such that either zz7'e A4 or
z;e T (resp. either zw; 'e A or w;eT) and (z; ... 2,)(w, ... w)~ '€ A then
z(zy ... z)(wy ... w) e A ,

If T=@, A will simply said to be saturated. The saturation of a ring A
with respect to a subset T — D is the minimum saturated ring with respect to
S’ between A and A, and it will be denoted by A;. If T = @, we will only
set A for A,.

If A= C( is a one dimensional complete local domain and if T = \w!,.
where w is a nonzero element in the maximal ideal of ¢, then, associated to
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¢ we have its semigroup of values S = {v(z)| ze C,z#£ 0} = Z,, (v is the
valuation associated with ). If ¢ is saturated with respect to 7 and if m
= v(w), then i1t follows from Bezout’s theorem that S verifies

(A If y€S, y4, ..., 7;€8 are such that either y > y;, or y; = m (for each
i) then one has y+ecS, where e =gcd.(y,, ..., 7), €= 0.

Note that if S verifies (A,,) for a certain element me S, then S determines
m and it is determined by the elements B;, B;, ..., given inductively by

Bo=m, Bi.y =min{yeS| gcd.(Bo, By, ..., Bi, ) <ged.(Bo, ..., B))}-

In fact, S is the minimum semigroup verifying (A,) which contains the
clements B;, and any element of S is of type f;+ Aej, where AeZ, and ¢;
=g.cd.(B5, ..., Bi). In the case that m = min(S — |0}), to say that € (resp. S)
verifies (Py) (resp. (A,)) is equivalent to say that O (resp. S) verifies (Py) (resp.
(A)). This 1s the connection of the saturation with our starting point, and in
this setting, above definition of saturation looks as an arithmetical one and it
seems to be adequate for arithmetical purposes.

In this paper, we will indicate how above definitions provide elementary
technics to approach some arithmetical questions. In Section 1 we consider
the case in which  is the local ring of a plane branch of curve over an
algebraically closed field of any characteristic. If S is the semigroup of values
of the (absolute) saturation €, we introduce the set of characteristic
exponents f, ..., B, of (' to be the elements B,, B, ..., B, generating S in
the above sense (relative to property (A)), and we show that these elements
are equivalent data to the sequence of multiplicities of the successive blowing
ups. So these characteristic exponents are seen to be the same that those
introduced in [2] and [9], but our actual introduction seems to be more
natural and provides more simple developments and manipulations.

To 1llustrate this, we obtain in Section 2 the neccessary conditions on a
set of characteristic exponents given in [4] in order that this set be the set of
characteristic exponents of a strange curve. This proof seems to be more
direct and more natural than that given in our pravious work.

In Section 3, we analyze the case of characteristic zero or multiplicities
prime to the characteristic and we show as the characteristic exponents are
given by means of Puiseux’s series. To illustrate the philosophy in our paper,
we include the elementary proof of the invariance and inversion of
characteristic exponents obtained in [8], which improves very much that
given by Abhyankar in [1].

In Sections 4 and 5 we consider the case of non algebraically closed
fields and the case of algebroid curves with several branches, showing that
our approach 1s also adequate for these situations.

I would like to express my thanks to Professor Lojasiewicz for inviting
me to the Semester and to lecture at the Banach Center.
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1. Characteristic exponents of plane branches and saturation

In this section we give an approach, via saturation, to the characteristic
exponents of an irreducible plane algebroid curve C over an algebraically closed
field k of any characteristic. This approach will result equivalent to that
given in [2] and [7] in view of the Theorem 1 below.

For an irreducible algebroid curve over k (or branch in short) we will
mean the scheme C = Spec ¢’ where ( is an equicharacteristic complete local
ring of dimension 1 such that ¢/m = k, m being the maximal ideal of .. The
branch is said to be plane if dim, (m/m?) < 2. Since ( is equicharacteristic, it
follows from Cohen's theorem that (¢ has coefficient fields, ie., ring
homomorphisms k — ¢ such that the induced map k— (¢/m is an
isomorphism. The integral closure (" of (- in its quotient field is a complete
discrete valuation ring, and since k is algebraically closed, every coefficient
field k — (" for ¢ provides a coefficient field k — € for ¢ by composing with
the ring inclusion ¢ < €. The normalized valuation associated to ¢ will be
denoted by v, and semigroups of subrings of (" are defined as above. Each
choice of a coefficient field and of a set of generators !x,...,x.}
of m provides a ring homomorphism &: k[[X, ..., X,]] = ¢, given
by X,—x;, which geometrically corresponds to the embedding
C <Speck[[X,,..., X,]]. The kernel of & 1s the ideal defining the
equations for this embedding. If the branch is plane and r =2, Ker® is
a principal ideal (f), and each generator f provides an equation for the
embedding in Speck[[X,, X,5]].

DeriniTioN 1. The characteristic exponents of the plane branch C
= Spec ¢ are the numbers B, f,. ..., B, determined by the semigroup S of
the ring G, ie,

fo = min(S—{0}), B;+, =min{yeS| gcd.(Bo, ..., Bi, ) <gcd.(Bo, ..., B)}.
Note that the characteristic exponents only depend on the ring structure

of (¢, and so, in particular, they are independent on the coefficient field.
Now, let us examine the behaviour of the characteristic exponents by a

blow up of C. For it, take a branch C = Spec ¢' and consider the ring €.

Lemma 1. O is an _Arf ring (see [6]), (-9 vertﬁes the followmg

property: If z, z7e 0, we @, w # 0, and zw ‘,zw Lle @ then zz’w™ 'e 0.

Proof. It is trivial from the definition of saturation since either zz' "' e @
or zz el O

From the Lemma 1, it follows that if we @& w # 0, then the set @(w)
= ze 0| zwe (” is a subring of ¢ containing €.

LEMMA 2. Let k be a field, k' a finite extension of k and (V' a subring of
k'[[t]], t an indeterminate, containing k [[x]] for some xek'[[t]] such that O
<ord,(x) < 0. Then (7 is an l-dimensional complete local ring.
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Proof. First of all, the ring extension k[[x]] < k'[[¢]] is integral. In
fact, from the finiteness of k'/k it is obvious that k[[x]] < k'[[x]] is integral.
On the other hand, from Weierstrass preparation theorem if x =a,t™
+ans ™1+ ... then

()
X=(@n T 48y T" '+ ) = VX, THT "+ b (X)T" '+ ... +bo(X))

with V' a unit, so ¢ is integral over k'[[x]]. Moreover, since b;(0) =0, it
follows that k'[[t]] = k'[[x]][t] since from (%) one has

t! = Ca_o(X)‘{"C!'l(X)t'i" +C,_,,,_1(x)t"'_1

where ord ¢, ; — o0 as @ — oo. Thus, the extension is integral and hence 7 1s
one dimensional, and moreover, each maximal ideal of ¢ is forced to be
m N @ (m the maximal ideal of k'[[]]), so (7 is local. ¢/ is Noetherian since
k'[[x]]is a k[[x]]-module of finite type and hence ¢ is finitely generated as
module over k[[x]]. Finally ¢ is complete: in fact, ¢ is a k [[x]]-module of
finite type (since it is torsion free), so it is complete for the g-adic topology (g
the maximal ideal of k[[x]]), and since g is primary for the maximal ideal
of (" it follows that (' is complete. ' O

CoROLLARY 1. With notations as in Lemma 1, for each w the ring C(w) is
again the ring of an irreducible algebroid curve. Moreover, the ring O(w) is
again saturated and it only depends on the value m = v(w), so it can be
represented by ((m).

Proof. The first part follows from Lemma 2. For the second part, it is
clear that (’(w) is saturated (in fact saturated with respect to {w}), and if
w' e (¢ verifies v(w) = v(w’), then

zel(w) < zw el < w HWw Hel < 2w el « zel(w).
So O(w) = O(w). 0

Now, take a plane branch C = Spec ¢, a coefficient field k < € for it
(identify k to the corresponding subfield of (), and a set of two generators x,
y of m. Assume n = v(x) < v(y) = m. Consider the Euclid algorithm to find
the greatest common divisor r, of m, and n,

m=hn+r,,
n=hry+r,,



SATURATION OF SINGULARITIES 125
and set M =m-r; !, =n-r; ! Since gcd(m, n') = 1, take o, 1€ Z such that
tm'—on’ =1, and set x' = y*-x % ¥y =y" x™™, and «a = Res(y" -x~ ™). Then
our main proposition states as below.

ProposiTION 1. One has ((m) = k[[x,y—alls.

Proof. The complete local ring ('(m) contains k and both x’, y', since
yx' =yy'x el yy =yy"-x "el, and it i1s obviously saturated with
respect to x’, so one has k[[x, y—all; = O(m).

To see the converse consider the set A =k[[x]]+yk{[x', y—a]ls-

t
. . m X .o
Since if ! > [v] one has x' =y -—eyk[[x, y'—a]]l>, as it is clear that y
n y
=x"™y "% x=x"y "implies x'y~ ek [[x, y'—a]]s. It follows that 4 is a
ring containing k [[x]] and such that any element in 4 can be wrnitten in the
form p(x)+ yz where zek [[x’, y—a]]s and p(x) a polynomial of degree less

m : . . :
than [—] So since A contains k, x and y, if we prove that A is saturated
n

then one would have that ¢ < A and, hence, by above remark ((m) c A(m)
=k[[x', y—a]]: as required.

To see that A4 1s saturated take zeA, z,,..., 2z, w;,..., wg,e€D such
that zz7!, zw;', (z;...z)(w,...w) 'ed=C. We claim that w
=z(zy...2,)(w; ... w) 'e A. We shall distinguish two cases: 1) If v(z) < m.

2) If v(z) = m. In the first case set z = x"e(x)(1 +yz), z; = x" &, (x) (1 +yz}), w;

_ x?je}(x)(l +yw)) where 3, §; <y < [%] and ¢, ¢;, ¢; units in k[[x]]. Then

w=x"(1+yz2)(1+yz}) ... 1 +yz) A +yw)) ... (1 +yw) e (x),

where Y = v+ 3,—).8;, (1 +yz)) = (1+yw) 'ek+yk[[x, y1]s and &'(x) is
a unit in k[[x]]. So w can be written in the form w = x” ¢'(x)(1 + yz') with
Zek[[x', y—a]]ls. so we A. In the second case write z = yz' and either z;

= yz; or z; = x"'6,(x) (1 + yz)) (resp. cither w; = yw) or w; = x"¢;(x)(1+ yw))
where z', z;, wiek[[x', y—a]], and ¢, ¢; are units in k[[x]]. As above

-+ A 4.
w=y-Z- *
1

e () (14 2Y),

where £(x) is a unit in k[[x]], z*ek[[x, y']] and either z* = z{ or z* = x”
(resp. w¥ = w) or w¥ = x™). Since x = x y'™%, y is a unit in k[[x, Y —aJ];

it follows that z'(z¥ ... z¥)}(w¥ ... w¥) 'ek[[x, y—a]]l;, and hence we A.
This completes the proof of the proposition.

CoROLLARY 2. Let ¢ =k[[x, y]] as above with n=v(x) <v(y)=m.
Then one has

Z’)y =k+xO(m).
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Proof. The set at right hand side member is a ring containing k [[x]].
Moreover, it also contains y since y = xy~ 'z, where z = y>x "' €, and it is
saturated with respect to 1y}, so by Lemma 2 one has (7/,, c ki-x(?‘(m). On
the other hand, “(m) =k[[x', y—a]], and x-x"=x-y"-x" "€, and x-)’
= xy" x"™ €@, so @(m) = &,(n) and hence k+ C(m) < C,. 0

CorOLLARY 3. Let (¢ be the local ring of a plane branch, x a transversal

parameter for it, and (' the quadratic transform of ¢. Then (., = C(n) where n
= v(x) is the multiplicity of 0.

Proof. Take another transversal parameter y, such that {x, y! be a
system of generators of m. Then, since v(y) = v(x), one has m = n and so m’

=n=1s0otaked=—1,7=0 Onehas X =xand y =y-x" !, hence €'(n)
=k[[x, yx™'—alls = C,. O

TueoreM 1. The characteristic exponents of (' given in Definition | are
the characteristic exponents introduced in [2], Chapter 3.

Proof. Above results allow us to write down the characteristic
exponents of ¢ in terms that those of (. In fact, if the multiplicity of " is
that of ¢ then ('(n) = ( and so one has

ﬁo=ﬂ;) and ﬂ;=ﬂv—_ﬁ0’ v 1.

If the multiplicity n, of ¢’ is less than those of ¢ one has (with notations as
in Corollary 3) that C(n+n,) = @.(n,) = &(n) so B, = (). (It is a
simple matter to check that f, = n+n;). We shall distinguish two cases
according as n, |n or n, /n. In the first case is clear that S, =n, = g, —fo

and ﬁ’v =(ﬁv+l_ﬂl)+ﬂ0a vzl O

Note that above formulas coincide with those given in [2], 2.2.11, so the
characteristic exponenets given here are the same than those given there.

Remark 1. The main Proposition | is also true if we do not ussume
that x is transversal. Thus if [x, y} is a system of generators for nt and if x,
y' are defined in the same way, then one can prove k[[x, y]]; (m)
= k[[x y']];-- The proof is just that given before, taking into account the
easy fact that the ring A is saturated with respect to x.

Using this formula one can deduce the Theorem 1 in [3]. The proof
given in [3] has a gap because for the various considered elements x;, y; it is
assumed that v(x;) < v(y;) which can not be true. To fill this gap one would
need relative saturation. Note that

k (Lx;, Yi]];,- Bis1—B) =kl[xi+1, )’.'+1]];,-+1

so the Theorem 1 in [3] follows directly from this fact.
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2. Characteristic exponents of sirange branches

According to [4], a plane branch over k, Spec (" — Speck, will be said to be
strange (of type I) if there exists ze mjm2 such that Dz =0 for any
DeDer, (€, €). If t is a uniformizing for €, we have ¢ = k[[t]], so above

e : : . d
condition is equivalent to the single on Dz =0 for the particular D = ar

If C = Spec € is strange, and p = charac(k) > 0, then z can be taken in
such a way that v(z) # kny for all kez,, k# 0 (modp), ny, being the
multiplicity of .. In [4] is proved that if z is as above then v(z) = m, where
the integer m, only depends on the k-algebra ¢. We will not use this fact in
the sequel, so we refer to the quoted paper for its proof. Take a particular z
and call m, to the corresponding v(z), my # kn, for all k # 0 (mod p).

We shall distinguish two cases: In m, > n,, take a basis {x, y} of m
such that y =z (so one has v(x) = ng, v(y) = mg). If mg = n,y, take a basis
{x, y} of m such that x ==z and v(y) = §,.

Now set n = v(x), m = v(y) and consider the Euclid’s algorithm for n, m
as in Section 1. Set, in particular, m' = m-r; ', n' = n-r;', r, being the g.cd.
of n, m.

In case that m’ # 0 (mod p) take an element ue  such that 4™ =y. In
the same way, if n' # 0 (mod p), take an element we (7 such that w" = x. In
the first case set (* = k[[x, u]] and, in the second one, set ¢** = k[[y, w]].
Note that ¢* and (** are both defined if m" # 0, n’ # 0 (mod p). We have the
following result:

ProposITION 2. Denote by () the j-th successive quadratic blow up of €.
Then, one has

in case that (* (resp. (°**) be defined.

Proof. Choosing ¢, T appropriately, it is seen in [2], 3.4.11 that

. (%%
= 0%,

0(h+h1 +..+k—1)

= k[[x', X' y]]

(with notations as in Section 1).
Assume, first, that m' # 0 (mod p), and consider (*. One has

'

X' =u-u" x"%el*,
xfy/ — xlyn'x—m' — xi(un',x— l)"l'E (f,:,

h+hy+  +k-1)~

\( 7z
so (" < (%*. Conversely, one has

C e, (h+hy+..+k—1)~

x=x"(xy) " x‘el@ ,

(hthy+.  +k—1)"
M

-1, n

u=x"x"(x-x"u") el
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. _ : (h+hy+. . +k=-1)~ . . . .

since x'x 'u"e ! (in fact, this is equivalent to say
— ' (h+hy +...+k—1)" . . .

x tue@" ™ (x), which is true since m #0 and

_ ! B TESS TR | T )
(x "y =ye@ ! (x), so the conclusion follows from the

Hensel lemma applied to the polynomial 7™ —y’ over the complete local ring

T (x). Thus, the other containtement is a consequence from the

Tht kT U s saturated with respect to x (this follows

hthy+. . . +k=1)~

fact that the ring "

from the above expression for x); so (* = ¢!
Now, if 7’ # 0 (mod p), one has

x =w-(yw ™) e Z()y**,
y=x(yw "y ey,

h+hi+...+k-1~

o ¢ < (;*. Conversely, one has

rm’ ;o= ’ (h+hl+...+k—l)~
y=x"(x'y) - x"el ,

o\ — (h+hy+...+k— 1)~
w=x x"(x"yw ™) e@ !

since, as above, x' -y-w ™ e T T oTNT
CoroLLARY 4. The ring O* depends only on the ring C.
CoroLLARY 5. With notations as above, one has

0¥(n) = G(m) and  O**(m) = C(m).

Proof. Let e denote the greatest common divisor of n and m. Then one
has

O*(n) = CF () = k[[x', X' y'1)™ (&) = k[[¥, y' =]y = E(m),

the above equalities being a consequence of Corollaries 2 and 3 and
Proposition 2. In the same way, one has

C¥*im) = Cy*(e) = k[[x', X' y11"(0) = k[[x, y'—allg = C(m). O

CoroLLary 6. If {Bo, ..., B,} denote the set of characteristic exponents
of O and {B, ..., ,B:,} (resp. {B¥*, ..., ,B::}) the set of characteristic exponents
of (% (resp. ("**) then one has

If n|m, then

g* =g, PBS=e Pr=B-—m+P,, vzl
g** =g, f8*=e, Pr=p, v=1
If nkym, then
g*=g—1, PBS=e Br=Bs1—m+fy, v2=Ll

g** =g—1, Bl=e B*=P11, v21
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THeEOREM 2 (see [4], Theorem 4). If ( is the local ring a strange (of

type 1) branch with characteristic exponents B, ..., B,} then one has either
Bo#0 (modp) and B, =, =...=p,=0 (modp), or fo=...=§=0
(modp) and By, = ... =f,=c#0 (modp) for some i, 0<i<g—1, and

some ¢, 1l <c < p-—1.

Proof. First note that of ¢ is strange of type I then (™* (resp. ("**) is
again strange of type I, when it is defined. Thus, to prove the theorem we will
use induction on the number of quadratic transformations needed tlo
desingularize ¢. If ¢ is regular the statement is evident, since ¢ =0 and S,
= 1% 0 (mod p).

In the inductive step we shall distinguish several cases: If 5 # 0 (mod p)
then n" 20, e # 0, m = my =0 (mod p), so B%* # 0 (mod p). By the induction
hypothesis one has f¥* = 0 (mod p), which implies §, = ... = , = 0 (mod p),
in the two possible cases n{m or nkm in Corollary 6.

If B, =0, B, #0 (mod p), we have my = kfy, with k# 0 (modp). If
k > 1, we have m = my, so from Corollary 6, the characteristic exponents of
* are B§ =B, and B¥ =p,—(k—1)B, with g* =g. By the induction
hypothesis, since f§ = 0 (mod p) and B} # 0 (mod p), it follows that ¥ = ...
=By =0 (modp) and hence B, = ... =8, #0 (modp). If k=1, then m
= f§,, so e # 0 (mod p). Since n ¥m, the characteristic exponents of (* are f¥
=e, PB¥=pB,+.1—B1+Bo with g* =g—1. By the induction hypothesis one
has ff = ... =8;_, =0 (modp). Thus, , = ... = §, # 0 (mod p).

Finally, if By = B; = 0 (mod p), then, always, one has n = m = 0 (mod p)
so according to Corollary 6, by applying the induction hypothesis to ¢* or
¢** one concludes Bo=...=§,=0 (modp), and B;,,=... =, #0
(mod p) for some i > 1. W

Remark 2. In [4], it is also considered the case of type Il stranges
branchs, i.e., branches corresponding to projective plane curves centered at a
point (" throughout which every tangent line to the projective curve passes.
It is clear that by making one quadratic transformation, a type II strange
branch one obtains a type I strange branch, so characteristic exponents of
type Hl branches can be studied from the above result. In [4] it is also
indicated how the arithmetical conditions on B, ..., B, in Theorem 2 are not
sufficient in order that to guarantee the existence of a strange branch
having f,, ..., B, as characteristic exponents. However, it is clear that the
technique in the above proof based in the formulae in Corollary 6, provides
an algorithm which says us if a set §,, ..., B, corresponds or not to a strange
branch. This algorithm will be analyzed in a forthcoming paper.

3. The characteristic zero case

Let ¢ be the ring of an irreducible algebroid curve over the algebraically
closed field k. Take wem, w # 0, and denote by m the value of w, ie,

9 — Banach Center t. 20
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m = v(w). Assume that m # 0 (mod p), p being the characteristic of k. (If p = 0,
we mean that any m verifies this condition). Finally take an uniformizing ¢ in
¢ such that w = t™. The results and comments in this section will follow from
the following result.

ProrosiTION 3 (see [9] and [8]). If € is saturated relative to w and S is
the semigroup of values of €, then one has

C=1 a,r"| a,ek VyeS},
veS

1.e, (" is the monomial curve corresponding to the semigroup S.

Proof. Take yeS. We claim t?¢ €. In fact, take z¢€ ¢ such that v(z) = v
and z ="+ higher order terms. The statement t’e (¢ 1is equivalent to
t'z 'e @(z). Now 'z ! is a root of the polynomial

Yr—pmzTm=Y"—w'z™"m,
This polynomial has coefficients in ('(z) since z-w'z™™e , as ( is saturated
relative w. The residual polynomial in ¢/m[Y] is Y™ —1 and it has all its
roots distinct and in k. since m # 0 (mod p). So the roots of Y™ — ¢z ™™ exist
and they are in ((z). In particular r’z"'e (*(z) as required.

Since (7 is complete, (" contains all the elements of type ) a,r’, so ¢
contains the monomial curve given by S. Since both ¢ and the monomial

curve have the same semigroup, ‘they must be equal. This completes the
proof of the proposition. |

ProrosiTioN 4 (see [81]). If S is a subsemigroup of Z, which verifies
property (A,) with meS (see the Introduction) and if Z, —S is finite, then the
monomial ring

0s=1{Y a,1"| a,ek VyeS}
yeS

is saturated with respect to w = t™.

Proof. Take z,z,,...,z,, W, ..., w, nonzero elements in (s and leZ

- - - ¥j
such that z-z7 ', z-w; ! zy ...z, (w, ... w)" - wels. Set z=10"u, z; =t"u,

w; = %) uj, u, w;, u; being units in the monomial rings sy, Csy,» Osyps
where for each S €S, the set S(&) is defined by

S() = (oeS| o =64, for some & =&, §€S).

Note that from property (A,) it follows that S(d) is a semigroup of a finite
complement in Z .
Now one has

2*=z(zy ... z)(wy ..o w) W =1y (wy )T

Since each u; (resp. uj"') is a sum of terms of type a,t° with ceS(y)



SATURATION OF SINGULARITIES 131

(resp. o €S(y?), it follows from property (A,) that z* is a sum of terms of
type a,t° with o€ 8§, so z%e 05 and (g is saturated relative to w, and the
proposition is proved. O

Now, consider a system of generators of m of type w;, w,, ..., wy,
where w, = w =™ is as above with m £ 0 (mod p). This system of generators
needs not be minimal and m needs not be the minimum among the v(w,)’s.
Then, one has a Puiseux’s type parametrization '

() =t
w=Ydt (j=2,..,N
i>0

Consider the set A formed by m and the indices i such that 4 # 0 for
some j. Denote by §' the minimum subsemigroup of Z, containing 4 and
verifying property (A,).

ProOPOSITION 5 (see [8]). The saturated ring O, is the monomial ring (.
corresponding to the semigroup §'.

Proof. (s is saturated with respect to w =1t™ in view of the above
proposition, and, since w,, ..., wy € 0., it is clear that 6, (s.. Conversely,
if § is the semigroup of values of (', one has ¢, = (s and, since w;e (, it
follows that me S and i€ S for every i such that a’ ¢ 0. Thus, one has 4 = §
and, hence, ' — § as § verifies (A,). So (s < 05 = ¢, which completes the
proof of the proposition. O

For a set of parametric equations as (I), one can define the sets of
numbers f,, ... f, (Puiseux’s characteristic exponents) as follows:
ﬂO =m,

B,.;, =min{ieZ,| a % 0 for some j and

ged. (Bo, ..., By, 1) <ged. (Bo, ..., B},
ged. (Bo, ..., B)=1.

It follows from Proposition 5 that the data {8, ..., B,} is equivalent to
the data (S, m).

CoroLLARY 7 (invariance of characteristics exponents). Let ¢ be a
plane branch with multiplicity n, n# 0 (mod p). Then, the characteristic
exponents of O defined in Section 1 are the same than the characteristic
exponents associated with every Puiseux parametrization of type (1), with m
= n, for C.

This result shows us that the characteristic exponents of Puiseux series
only depend on the ring structure of ¢ (compare with [1]). Next, we will
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derive the formulae for the inversion of characteristic exponents, also
included in [1].

THeoreM 3 (inversion of characteristic exponents) (see [8]). Let ¢ be a
plane branch and {x, y} a system of generators of m such that v(x) =n, v(y)
=m with n# 0, m # 0 (mod p), and n < m. Take uniformizing parameters t, t*
in @ such that x =t", y = t*™ and set

x=1t"
M )
y= 3 at,
X = Z th*",
(1 ="
y =t*".
If \Bo, ..., B, (resp. \B%. ..., Bk}) are the characteristic exponents of the

Puiseux parametrization (1) (resp. (Il)), then one has
(l) g=g*_la :BO=,B’1‘l and ﬂ\'=ﬂ7+l+m_n’ v?l,ifnlm;
() g=g* Bo=pf and B, =p¥, +m—n, v21, if nfm.

Proof. Proposition 5 shows us the semigroups of @, and @= ¢, in
terms of the Puiseux characteristic exponents of (I) and (II), and from
Corollary 2 one has EC}, = k+ x((m), so by identifying the semigroups of both
sides in this equalities one obtains the formulae (i) and (1). O

Remark 3. As said in the Introduction, the results in this section are
taken from [8]. There, the equality (7/y = k+ x@(m) is directly proved for the
case of multiplicities prime to the characteristic. In this way, the actual proof
in [8] is even shorter than our proof of Proposition 2.

4. The case of several branches

In this section we will assume that Spec ¢ — Speck is a reduced algebroid
curve over the algebraically closed field k. Then one has € = 0, x ... x @, (r
the number of branches) and ¢; =k [[1;]] for each i. If v;: ¢ > Z, U {ol, is
the function given by v;(zy, ..., z) = ord, z;; to the subring € of € one can
associate its semigroup of values S given by

S={v,(2),....0()eZ| ze (" and z is not a zero divisor}.

The set S is in fact an additive subsemigroup of Z’,, and as for r =1 its
structure can be determined in a simple way as indicate below.
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For each ye S and ze @ such that v(z) = (v1 (2), ..., v(2)) =y set ((z)
= {we Cf)l w'ze 0} As in Section 1 one has that &(z) is a complete semilocal
ring which only depends on y. The maximal ideals of @(z) = @(y) correspond
bijectively to the cosets of the equivalence relation on {1, 2, ..., r} given by

i~j <« If 6>y and §; =y then §; =7;.

(Here 6 =(64, ..., 96,), Y =(y1,..-, 7,) and é = y means &; = y; Vi).

On the other hand, since @ is local, there exists an element pe$ such
that 0 #0=(0,...,0) and pu<y VyeS—1{0}. Let L denote the set of
elements in § Wthh lie on the line passing through 0 and u. For each yeS
set S(y)=1{6eS| =7} and So(y)={6—7| 6eS(y)}. Since € has a
conductor, i.c., (rf‘) X .. x(rf’) < ( for some values of dy, ..., 0,, it follows
that the set I, = {yeS| S =« LuS(y)} is finite and, of course, it is totally
ordered by <. Finally, set y° = maxI,. The following result sums up the
arithmetical properties of S, and indicates the recursive possibilities for
studying S.

THEOREM 4 (see [3], Sect. 3). (a) The equivalence relation associated
to v° has at least two cosets.
(b) IfJ,,...,J,are the cosets corresponding to the relation associated to
0
then

S - LU {?0+Sl X ... XSI},

where So(y =8, x ... x 8, and the S;'s are the semigroups of saturated local
rings @, ..., @ such that (% =0, x ... xC,.

(c} Foréachi, 1 <i<r, pr;S < Z, is the semigroup of the saturation of
the i-th branch of (.

Proof. (a) Set y° =(y,,...,7,) and u=(y,,..., 4) and order the
coordinates in such a way that y,/u, = y,/u; = ... = 3,/4,.

Take elements x, y such that v(x)=pu and v(y)=79° Then one
has y* = y-y"" x ""e @ since, by construction, one has y*"x e €. Now, if
v%e L, it is clear that the relation has more than one coset since y° is the
maximum of I,. If y°¢ L then y,/u, > 7,/u,, so the index 1 is not equivalent
to r since 6% = v( *)>y and 6% >y, but &F = 4,.

(b) The rings @, are nothing but the localizations of (3%, at its
maximal ideals. It is clear that each ¢ is again saturated. The result follows
from this fact.

(c) For each J c {1, 2, ..., r} denote by &, the element in {0, 1}" given
by prie; =0 if i¢J and prig; =1 if ieJ. If J is a coset for the relation
associated to y° and if we choose elements x,, X,, ..., X,,, y€ ¢ such that
v(xp) € v(x;) < ... <v(x,) <v(y) are the values in I,, then one has

O =kxo+kx;+ ... +kx,+y0, x ... x0),
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so it is clear that (e, = kxge;+ ... +kx,, e;+ ye; 0, is a saturated subring of
Z2' (€, corresponds to the coset J), and in fact foc_, is the saturation of (g,.
Making induction on r, it becames clear that Sey, = pr; S is the sermgroup of
values of the saturation of the ith branch of Spec (. O

Remark 4. In [9] it is determined the arithmetical conditions on a
subsemigroup S < Z’, in order that S be the semigroup of values of the
saturation of same algebroid curve, proving the above theorem directly from
these conditions. It is also proved, in this paper, that, for such a S, there
exists a “monomial algebroid curve” having S as semigroup, and that,
conversely, if charack =0, and @ is a saturated curve over k then ¢ is
isomorphic to a monomial one. This result connects with those given in
Section 3 for the case r = 1.

In [3] it 1s also proved that if Spec ¢’ is an algebroid plane curve, then
the equisingularity type of Spec ¢ determines and it is determined by the
semigroup of values S of the saturation €. Thus, in particular, intersection
multiplicities for two branches can be computed from §.

5. Nonalgebraically closed base fields

In this section we will assume that y: Spec ¢/ — Speck is an irreducible
algebroid branch over k, where k is not assumed to be algebraically closed.
The complete local k-algebra € is excelent, so C is again a complete discrete
valuation ring with normalized valuation denoted also by v. If k' denotes the
residue field of €, then k' is a finite extension of ¢/ m = k, but although (¢ has
coefficient fields, which are isomorphic to k', it is not true in general that one
has a commutative diagram

for some ring homomorphism u', where i, i* are the natural inclusions and u
the homomorphism corresponding to y. However, if k'/k is separable there
exist a unique ¢’ making the diagram commutative. In fact, F = {ze (| z is
integral over Im u} is a subfield of €, so it is sufficient to see that the (injective)
composing map F — @ — ()/in = k' is onto. Take a €k’, and let p(Y) ek [Y] beiits
irreducible polynomial over k. Denote by p*(Y)e®[Y] the polynomial
obtaining by changing the coefficients of p(Y) by its images by u. Since € is
henselian and the residual polynomial of p*(Y) is p(Y) =(Y—a)q(Y) and
q(Y)ek'[Y], q(a) # 0, it follows that p*(Y) has a root z €@ whose residue
(module m) is 2. It is clear that - e F and that it is mapped to 2. Now 4 is the
inverse of the above isomorphism F —k’, and it is clear that u' is unique.



SATURATION OF SINGULARITIES 135

We will assume in the sequel that k'/k is separable. So if ¢t is a
uniformizing for ¢ and !x,, ..., xy! a system of generators for m < &, one
has the identifications ¢ = k’ [[t]] and O =k[[x,, ..., xy]] € k'[[t]] where
x; is identified to its image x; = x,(f) in k' [[t]]. The saturation @ of @ is, in
view of Lemma 2, an irreducible algebroid curve over the same k (see also
[3], Prop. 1.5).

To a saturated ring (- as above one can associate its semigroup of values
S ='v(z)| ze (', z # O1 and to each ye S one can associate the residue field
k(y) if the local ring 0(')}) Denote by d(y) the degree [k(y):k]. Since C(y) is
again complete (Lemma 2) and k(y)/k is separable since k(y) < k', a similar
argument than above shows that there exists a unique ring homomorphism
k(y) = ((y) making commutative the diagram

k(y) - i’

]

¢ S —

-Note, finally, that if y <9, then k(y) = k(y'), so d(y)|d(¥).

Now, assume that ¢ is an irreducible algebroid plane curve over k and
let {x, y! be a system of generators of the maximal ideal m of. (., Then ¢
=k[[x(0), y(]], € =k’ [[t]] and the coefficients of the power series x(t),
y(t)e k' [[r]] generate k’ over k. Let f(X, Y)ek[[X, Y]] be a generator of
the principal ideal Ker(P), where P: k[[X, Y]]—=Kk'[[t]] 1is the
homomorphism given by P(X)= x(¢), P(Y)=y(t). In the same way, let
g(X, Y)ek'[[X, Y]] be a generator of ker(P) where P'=k'[[X, Y]]
—k’[[¢]] is also given by P'(X) =x'(t), P'(Y)=y'(v).

Since k'/k is a separable extension, take the minimum Galois extension
k" of k containing k' and set H= Hom,(k', k"), G = Gal(k"/k). For each
oc H (resp. @€ G) and each power series s with coefficients in k' (resp. k")
denote by s° (resp. s¥) the corresponding power series obtained by replacing
the coefficients by its images by o (resp. ¢). Then, since g|f, one has g°|f° =f
Voec H and the g° are pairwise different irreducible factors, since they

correspond to different parametric equations {x°(t), y°(r)}. Thus, g* = [] ¢°
oecH

divides f and, since ¢g*® = g* VpeG, one has g*ck[[X, Y]], and hence f
=u-'g* u a unit in kK[[X, Y]].

It follows that the algebroid curve € ®,k=k[[X, Y])/(f) (k an
algebraic closure of k) has #H =h irreducible components which
correspond to the g° and to the parametrization {x°(¢), y°(¢)}. The group G
acts transitively on the components, so in particular, all the components have
the same set of characteristic exponents. Using the same techniques than in
Section 1, it is possible to proof a similar expression for @ than in [3],
Theorem 1, and deduce the following
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THEOREM S. (@) The semigroup of values S of € is the semigroup of
values of the saturation of each irreducible component of ¢ ®, k.

(b) The semigroup of values § = Z" of (0 ®, k)~ determines S and it is
determined by S and by the map S — [1, h] given by y—d(y).

(c) The action of G on S induced by the action of G on the components
determines and it is determined by the mapping sending each y to the field k(y).

Proof. As said before one can deduces a formula for @ similar to that
of [3], Theorem 1. With notations as in [3] for a Hamburger-Noether
expansion associated to {x(f), y(t)}, this formula looks as follows

@=k+k(ﬂo)xo+k(2ﬂo)xé+ co. k(B yo+k(By+e)yox,+ .

From this formula (a) directly follows, and also (b) and (c) since the
Hamburger—Noether expansions and the saturations of the branches can be
described using H and G, and hence the intersection multiplicities. We omit
details for the sake of simplicity in the exposition of this paper. O

Remark 4. 1. An analogous result to Theorem 5 is obtained in the
Dissertation by A. Granja [5], using the semigroup of values of ¢ ®,k
instead that of (" ®, k)~.

2. If Spec " — Speck is reducible but reduced, then the situation is
similar to Section 4, since we have as main invariants the semigroup S of @
in Z', (r the number of irreducible components over k) and a ring k(y)
=k () x ... xk.(y) ckj x ... xk, and multidegree d(y) =(d,(y), ..., d. ()
for each yeS.

3. Note that even if k'/k is inseparable, the above data § and k(y) are
well defined.
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