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0. Introduction

Let R = @, R, be a graded algebra over R, = k (a field), generated as an
algebra by R, and let dim, R, =n The algebra R = R/I, where
R=k[X 1» X5, ..., X,], 1s said to have a t-linear resolution if all elements
in a minimal set of generators for I are of degree t+ and I has a minimal
R-resolution with all maps homogeneous of degree one. This is equivalent
to the fact that Torfj(R, ky=0 for j£i+t—1 and for al} i > 0. We recall
that R is 2-linear if and only if it is both a Golod and a Koszul algebra, see
[Ba-Fr, Theorem 7]. Let A be an abstract simplicial complex on the vertices
X,, X,...., X,. The Stanley—Reisner ring of 4 is k[4] = R/I, where I is
generated by {X; X, ...X,; i, <i, <...<i, {i;, iy, ..., iy} ¢ 4}. This paper
contains a characterization of those simplicial complexes 4 whose Stanley-
Reisner rings have 2-linear resolutions. For Stanley-Reisner rings with
relations only in degree two the complex A4 is in a precisc way determined
by its one-skeleton and thus the characterization i1s given graph-theoretical-
ly. This is the content of the first section and in the second section we
restrict to the Cohen-Macaulay case. The third section deals with some
numerical invariants of Stanley—Reisner rings, in particular of those with
2-linear resolutions. In the fourth section we give an easy algebraic proof of
a known characterization of the depth of a Stanley- Reisner ring.

This paper is in final form and no version of it will be submitted [(or publication
elsewhere.

[57]
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1. Stanley—Reisner rings with 2-linear resolutions

We denote the complete graph on r vertices by K,. The f-vector (f,, ..., f)
associated to a graph is a vector whose i’th coordinate f;_, is the number of
sub-K /s in G. (The reason for this indexing is that in the f-vector of a simplicial
complex f; denotes the number of faces of dimension i. We want the f~vector of
a simplicial complex to be the same as the f-vector of the graph which is its
1-skeleton.) The following inductive definition of d-trees is customary:

(1) K;,, is a d-tree.
(i) If G is a d-tree and v a new vertex, and v is adjoined to G via a sub-K,
of G (so {v} UK, is complete) then {v} UG is a d-tree.

Thus a 0-tree is a set of points and a 1-tree is a usual tree. The f-vector of
a d-tree is

() G (6 () ()

We define a generalized d-tree inductively as follows:

(i) K;,, is a generalized d-tree.

(i) If G is a generalized d-tree and we attach a K; to G in a K, where
0 <j<i<d+1 (here K, should be interpreted as the empty set), then the new
graph is a generalized d-tree.

Call a graph chordal (triangulated, rigid circuit graph, ...) if each circuit of
length >3 has a chord. Dirac shows [Di, Theorems 1 and 2] that the
generalized d-trees are exactly the chordal graphs.

Let G be a graph and let A(G) be the simplicial complex associated to G in
the following way: A(G) has the same vertices and 1-simplexes as G and
furthermore 4(G) contains every simplex (X, , X, ,..., X, ) for which the
complete graph on {X, , X, ...., X, } is a subgraph of G. It is easy to see that
if k[4] = R/I, then I is generated by elements of degree two if and only if
A = A(G(4)), where G(4) is the 1-skeleton of A.

There is a topological characterization of Stanley—Reisner rings with
2-linear resolutions, see [Fr, Theorem 9]. Namely, k[4] has a 2-linear
resolution if and only if H,(4’) = 0 for all i > 0 and all full subcomplexes A’ of
A. For such a ring k[ 4] we furthermore have that k[4] is Cohen-Macaulay if
and only if also H,(4') =0 for all full subcomplexes A’ of 4 with at most
d points removed from A, where d = dimA—1, [Fr, Lemma 7].

Tueorem 1. If G is chordal, then k{A(G)] has a 2-linear resolution.
Conversely, if k[A4] has a 2-linear resolution, then A = A(G(4)) and G(A) is
chordal.

Proof. Let G be chordal. We have to show that H,{4)=0 for all i > 0
and all full subcomplexes 4" of 4(G). We do this inductively according to the
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definition of a generalized d-tree, the induction start being trivial. Let H be
chordal and G = Hug K;. Take a full subcomplex A" of A(G) and let
M=G(4). Let MAnH=A, MnK;=B and MnK,=C. Then 4' = 4(M)
= A(A) U 445 4(C). The Mayer—Vietoris sequence

.~ H,(4(4)® H,(4(C) » H,(4 (M) » H,_, (4(B)) > ...

yields the result. Also for the converse we use the topological characterization.
Suppose k[A] has a 2-linear resolution. Then all relations are of degree two,

hence 4 = 4(G(4)). Now take a circuit (xq, X,, ..., X, = X,), k> 3. Since
H,(4") = 0 for all full subcomplexes A, in particular for the full subcomplex
generated by {x,,..., x,}, we see that this circuit must have a chord.

The following corollary is immediate and characterizes these complexes
topologically.

COROLLARY 1. The following three conditions on a simplicial complex A are
equivalent:

(1) H;(4") =0 for all full subcomplexes A’ of A and all i > 1.
(2) H,(4') =0 for all full subcomplexes A" of A.
(3) The 1-skeleton G(4) of A is chordal and 4 = A(G(4)).

A purely algebraic corollary is:

COROLLARY 2. If k[A,] and k[A4,] both have 2-linear resolutions, then their
fibre product k[4,]1[1k[4,] also has a 2-linear resolution.

Proof. The fibre product k[4,]1[[k[4,] is the Stanley-Reisner ring of the
disjoint union 4 = 4, u 4, of A4, and 4,. Then

A(G(4)) =A4(G(4)vG(4,) =A4(G(4))vda(G(4,))=4,04, =4
and G(4,u4,)=G(4,)vG(4,) is chordal.

2. The Cohen-Macaulay case

In the next section we will give an alternative way to characterize the rings with
2-linear resolutions that are Cohen—Macaulay. We choose however here an
algebraic way to get further numerical information.

Let R = @,;,, R, be a graded algebra over R, = k (a field). The Hilbert
series of R is

R(Z)= ¥ (dim,R)Z'
iz0

LEMMA 1. Suppose R is a graded Cohen—Macaulay ring of Krull dimension
d and with dim; R, = n+d. Then R has a 2-linear resolution if and only if
R(Z) = (1+n2)/(1-2Z).
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Proof. Extend, if necessary, k to an infinite field. This does not affect the
Hilbert series and the property of having a 2-linear resolution. Thus we can

suppose that there is a regular sequence y,, y,, ..., y, of elements of degree one
in R. The exact sequence
(E) 0— R/(yw A = R/(.Vl, cens yi)'_’R/(yp ces Yie) =0

gives R/, 3is )@ = (=2 Ry, -, v)(Z)  which  gives
R/(y,, ..., y)(Z) = (1—=2)*R(Z). Now R/(y,, ¥, --., ¥,) has a 2-linear resolu-
tion if and only if R has a 2-linear resolution, see e.g. [Fr-La, Section 4]. Thus
it i1s enough to show that an artinian graded ring S has a 2-linear resolution
if and omnly if S(Z)=1+nZ where dim, S, =n, ie. if and only if
S~k[X,, X,,.... X,)/(Xy, X5, ..., X,)* Let

b,

bn
(R) OaZﬁ[—mM]—»...—) R(-m; ]->R->58-0
= =

i=

be a minimal graded resolution of a graded artinian ring S over
R=k[X,, X, ..., X,] where m,, <my, <...<my,, for k=1,2,....n,
and where R[ —k]; = R;_,. The resolution is 2-linear if and only if m, , = k+1
for k-e=1,2,...,n and all i. Since the resolution i1s minimal we have
2<m; <my, <..<m, . Now Homg(R, R) is a minimal R-resolution of
Ext%(S, R), since § is artinian, which gives that Mmyy, <Myp, <.oo <M,y .
Hence, we see that the resolution is 2-linear if and only if m,, =n+1 orifand
onlyifm ,=m, ,=...=m,, =n+1. Another way to formulate this is to say
that Torf,,-(S, k}y =0 for i # n+1 (tensor (R) with k and take homology). The
usual Koszul complex is an R-resolution of k. Tensoring the Koszul complex
with § and taking homology yields TorR(S, k) >~ SocS[—n] so we see that
S has a 2-linear resolution if and only if the socle of S is in degree one only.
This is true if and only if S ~k[X,, X,,..., X,JAX,, X,, ..., X,)*. This
concludes the proof of the lemma.

We are now ready to characterize Cohen—-Macaulay Stanley—Reisner rings
with 2-linear resolutions.

THEOREM 2. Let A be a simplicial complex. Then the following are equivalent:
(i) k[4] is Cohen—Macaulay of Krull dimension d+1 and has a 2-linear
resolution.

(ii) The 1-skeleton G(4) of A is a d-tree and A = A(G(4)).
Proof. (i1) = (i): The f-vector of 4 is

f= d+1 d+1 +n d\ (d d
—_— 1 3 sy d + l O ’ l 9 vy d
(Here the ith coordinate f;_, denotes the number of faces of dimension

i—1 1n A) Thus, since

(H) k[ANZ) = V4 f, ZJ (1 = Z) + ... +£, 244 1 (1 — Z)i+!
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(see [Fr, Lemma 6]), we have

k[4)(2) = Z ((djfl)zi/u—zy)m; ((‘:)Z“‘/(l—zf“)

= (14+Z/(1 = Z)f* ' +nZ/(1—Z) (1 + Z/1 - Z)) = (1 +n2Z)[1 — Z"*"

Hence, it only remains to show that k[4] is Cohen—Macaulay. This can
certainly be done in lots of ways, we choose a purely algebraic way which also
gives information about a set of parameters of degree one. A d-tree has
a unique vertex colouring in d+1 colours C, Cy, ..., Cyyy. Let y, = Yy e, X;.
We will show that y,, y,, ..., y4,, constitutes a regular sequence in k[4]. The
exact sequence (E) shows that if we have a sequence y,, y,, ..., y,4+, in k[4],
then this sequence is regular if and only if

k(AN (1, yas - Ve D(2) = (1 =2y k[4](2).

Hence, it is enough to prove that k[41/(y,, ¥3,.--s Yo+ 1)(Z) = L +nZ, ie. that
T =k[AY Yy, ¥zs -oor Yar ) 2 k[X,, X5, ..., X, /X, X5, ..., X,)%. We have
that x; x; = 0 in T if the vertices X; and X, do not belong to a common K, in
S. We have that x? = —xin,-ec x;in T, where C is the colour class of X, hence
x? =0 in T. Finally suppose X; and X, belong to a common K,,, in § and
that X,eC,, X;€C,. Then x;x; = —X;) y,.c, X, Here we can suppose that
each X, belongs to a K,,, to which also X, belongs. Then use the relation for
x; then for all x, and so on alternatively. In this process we make a walk where
the distance from the original K,,, increases by one each time we use
a relation. Since the graph is finite we get x;x; = O after a finite number of
steps. Since we have found a regular sequence of length d+ 1 in k[A] we can
conclude that k[A] is Cohen—Macaulay and the proof of the implication
(ii) = (i) is finished.

{i) = (i1): The calculation of the Hilbert series in the first part of the proof
made backwards shows that if k[4] has a 2-linear resolution then the
1-skeleton of A has the f-vector of a d-tree where d = dimA4—1. It is well
known that dimk[A4] = dim 4 + 1 (this follows e.g. from the above mentioned
[Fr, Lemma 6]). Suppose that dimk[4] = 1, i.e. dim A4 = 0. Then 4 is a set of
points, i.e. a O-tree. Thus we can suppose dim k [4] = 2. It is well known that if
k[4] is Cohen—Macaulay then 4 is connected if dimk [4] = 2. It is also well
known that if k [4] is Cohen—Macaulay then 4 is pure, i.e. all maximal faces of
A4 have the same dimension. (These two results can also be found e.g. in [Fr].)
But a generalized d-tree which is pure and connected and has the f-vector of
a d-tree is a d-tree. (This is easily shown by induction on the number of
vertices.)

CoroLLARY. Let G be a graph. Then G is a d-tree if and only if the following
two conditions hold:
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(1) H,(4) =0 for all subcomplexes A' of A(G) and for all i > 0.
(2) H, (&) = 0 for all full subcomplexes A’ of A(G) with at most d— 1 points
removed from A(G).

3. Numerical invariants

There are lots of nonisomorphic Cohen—Macaulay k-algebras of embedding
dimension n and dimension d which have 2-linear resolutions. They have
however all the same Hilbert series (in particular multiplicity), Betti numbers
(in particular complete intersection defect) and Poincaré series. This is no
longer true if we consider the non-Cohen-Macaulay case and we will in this
section examine how these invariants can vary for Stanley—Reisner rings with
2-linear resolutions. We will see that the ones with maximal multiplicity or
Hilbert series are exactly the Cohen-~Macaulay ones. The same is true for
minimal Betti numbers, complete intersection defect or Poincaré series. We will
also identify the rings on the other extreme (i.e. the ones with minimal Hilbert
series a.s.0.).

We start with a topological characterization of the multiplicity of k [4],
true for any simplicial complex 4.

LemMma 2. For any Stanley-Reisner ring k[A] we have that the multiplicity
of k[4] equals the number of faces of maximal dimension in A.

Proof. We use the formula (H) for the Hilbert series. The multiplicity for
any graded algebra R equals lim,_, (1 —Z)*R(Z), where d = dimR.

From now on we restrict in this section to Stanley—Reisner rings with
2-linear resolutions. First we consider the depth.

The connectivity % (G) of a graph G is the number of vertices in a minimal
disconnecting set of G.

LEMMA 3. Suppose k[A] has a 2-linear resolution. Then the depth of k[ 4]
equals 1+3(G(A4)), where G(4) is the 1-skeleton of A.

Proof. We have g = depthk[4] = max {j; TorX_;(k[4], k) # 0}. Since
k[4] has a 2-linear resolution we have that Torfj (k[4]}, k) =0 for j#i+1.
From [Fr, lemma 4] it follows that these two conditions are equivalent to that
H,(4) = 0 for all i > 0 and for all full subcomplexes 4’ and H,(4') = 0 for all
full subcomplexes A" with at most g—2 points deleted from 4 but 170 4)+#0
for some A’ with g— 1 points deleted. The condition on H, is equivalent to that
all subgraphs G’ of G with at most g—2 points deleted of the 1-skeleton are
connected, but not all with g—1 points deleted. This is of course equivalent to
%x(G(4) =g—1.

Here follows the alternative proof of Theorem 2, the characterization of
2-linear Stanley—Reisner rings which are Cohen—Macaulay.
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CoRroLLARY. If G is chordal, then k[A).-is Cohen—Macaulay of dimension
d+1 if and only if G is a d-tree.

Proof. We use the definition of generalized d-trees from the beginning of
Section 1. If we delete the j points in an attaching K; we disconnect the graph
into two components, but it is not possible to disconnect the graph by deleting
fewer points. Thus x(G) = min {j; K; attaching graph}. But G is a d-tree if and
only if this minimum equals d.

Next we will consider Hilbert series. We let the dimension of a graph G (or
the clique number) be the dimension of k[4(G)], i.e. dim G = d if G contains
a sub-K, but no sub-K,, ;. We partially order the graphs so that G < Hif G is
a subgraph of H. If we restrict to chordal graphs of dimension d with n vertices
we have a unique minimal element in this partial order, namely the graph
I which is the disjoint union of a K; and n—d points.

LEMMA 4. Let G be a chordal graph of dimension d with n vertices. Then,
coefficientwise, we have

(G- () o
(G R X )

We have equality to the left if and only if G is the disjoint union of a K ; and (n—d)
points. We have equality to the right if and only if G is a (d— 1)-tree.

Proof. The left inequality follows from the fact that f(I) =
(n, %, (%), ..., 4). For the right inequality start with a K, and build up the
graph inductively. If a K, is attached to the graph in a K; (0 <j <i < d) we
increase the f-vector with

()G Gpoeo)- () () () oo-0)

In the process of building a (d — 1)-tree we increase the f-vector each time with

(- ) 0)
() G0)

Now it is enough to prove that ()—() <(i—j)(i-} if 1<k<j and
M) <(@—=H@E-1Difj < k < i. First suppose that k < j. Let k, j and d be fixed and
let f()=i@E-H—() for i=k We show that f is increasing. Now
fm+1)—f(m) = {-H—(",) = 0. Hence it is enough to prove the ineguality
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for i = j+1. But for i = j+1 the inequality is trivial. Now suppose k > j. The
same argument as above shows that it is enough to show the inequality for
i =k But (k—j)¢-}) = 1. By examining the inequalities we also see that there
is equality if and only if j+1=k=i=4d.

THEOREM 3. Let k[A] be a Stanley—Reisner ring of embedding dimension
n and dimension d and with a 2-linear resolution. Then, coefficientwise, we have

1/1=ZY+(n—d)Z/(1 - Z) < k[4](Z) < (1 +(n—d) Z)/(1 - Z)".

We have equality to the left if and only if A is the disjoint union of
a (d— 1)-simplex and (n— d) points. We have equality to the right if and only if the
1-skeleton of A is a (d—1)-tree and if and only if k[A] is Cohen—Macaulay.

Proof. Formula (H) shows that if f(4,) < f(4,) (coordinatewise) then
k[4,1(Z) € k[4,](Z). Lemma 4 gives the result together with the charac-
terization of d-trees in Theorem 2 or the corollary to Lemma 3.

CoRroLLARY. Let k[A] be a Stanley—Reisner ring of embedding dimension n,
dimension d and with a 2-linear resolution. Then the multiplicity of k[A] is at
most n—d+1 with equality if and only if k[A] is Cohen-Macaulay.

Proof. We use Lemma 2. Then Lemma 4 shows that the maximal number
of maximal faces is n—d+ 1.

We have noted that a generalized d-tree (a chordal graph) can be
constructed in the following way: Start with a K, ; and attach a finite number

N of times a K;, say G,, to the constructed graph G in a K;, say
G;.0<j,<i,<d+1 for each n=1,2,..., N. Denote the vertices in
G, —G,; by v, v,,...,v, _; and choose a K, in G, say G, of which G, is

a subgraph. Adjoin all edges form v, to G,. Then adjoin all edges from v, to
a sub-K,_,, say G,_,, of G,, all edges from v, to a sub-K,_, of G,_,; and so
on. This construction shows that we can always get a d-tree from a generalized
d-tree by adjoining edges.

Now we make the statement about Hilbert series more precise.

LeMMA 5. Let G be a chordal graph with n vertices and of dimension d.
Suppose that the connectivity of G is exactly g—1. Then, coefficientwise,

wa((5) ) (o)
10} @) (@) <o () (5)
() Co)or)
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We have equality to the left if and only if G is a K, with a finite number of
(g — 1)-trees, each one attached to it in a K,_,. We have equality to the right if
and only if G is a (d—1)-tree with a K, attached to it in a K,_,

Proof. A chordal graph as above is built up from a K, by attaching a K, to
the constructed graph in a K; where j <i <d. Since »(G)=g—1 we have
j= g—l Each time we attach a K, in such a way we increase the f-vector by

(1), (1, 0,...,0—(({), (), ..., (), 0, ..., 0). Suppose that we each time
attach a K, in a Kg_ .- Then we increase the f-vector by
(°a", 1", ..., (421, 0, ..., 0). Hence, in order to prove the left inequality, we

have to prove that

(- ()
(,‘c) >(i—j)(i:i)

if j <k <i. Then it is of course enough to prove that

(0)-()>e0(L)

Let j and k be fixed and set f(i)=()—i(2;). Then f(m+1)—f(m)
= ") —G?) > 0soitis enough to prove the inequality for i = j+ 1. But then
it is an equality. We also see that we have equality if and only if
j+1=i=g—1. In order to prove the right inequality we use the fact that
a chordal graph of dimension d has maximal f-vector if and only if it is
a (d—Il)-tree (Lemma 4). A (d—1)-tree with n—1 vertices on which a K, is
attached in a K,_, can be extended to a (d—1)-tree by adjoining d —g edges.
The reasoning above shows that this is the minimal number possible of edges
one has to adjoin to a chordal graph of connectivity g—1 to get a (d — 1)-tree.
Hence the f-vector of chordal graph G of dimension d and of connectivity g— 1
is maximal if G 1s a (d—1)-tree with a K, attached in a K,_,

if 1 <k<j and

THEOREM 4. Let k[A] be a ring with 2-linear resolution of embedding
dimension n, dimension d and depth g. Then, coefficientwise, we have

=2 +(n—d)ZJ1—Z)P
<k[41(Z) < (1 +(n—d— 1) Z)[(1 — 2+ Z/(1 - Z)%.

Proof. This follows from Lemma 5, exactly as Theorem 3 follows from
Lemma 4.

The next invariants to be considered are the Betti numbers.

§ — Banach Center t. 26, cz 2
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THEOREM 5. Let k[A4] be a Stanley—Reisner ring of embedding dimension n,

dimension d and with a 2-iinear resolution. Denote the Betti number
dim, Tor} (k[4], k) by b,. Then

n—d n—d n—1 ‘n—d
( i )("_d)_(iﬂ)gbfs( i )(n_d)_(i-i-l)

We have equality to the left if and only if G(A) is a (d— 1)-tree and if and only if
k[A] is Cohen-Macaulay. We have equality to the right if and only if A is the
disjoint union of a (d—1)-simplex and (n—d) points.

Proof. The Betti number b, is equal to ¥ dim, H,(4"), where the sum is
taken over all full subcomplexes A" on i+ 1 points of A, [Fr, Lemma 4]. The
simplicial complex I' consisting of the disjoint union of one (4 — 1)-simplex and
n—d points is as remarked above a subcomplex of all complexes of dimension
d on n points. Fix an embedding of I' in 4. Let S be the subset of (he vertices of
4 (and of I') and let A" (and I’ respectively) be the corresponding full
subcomplexes of 4 (and I'). Then obviously dim, H,(4") < dim, H,(I'"). We
have shown that k[I'] has the largest Betti numbers of all Stanley-Reisner

rings of embedding dimension n and dimension d with a 2-linear resolution.
The Hilbert series of k[I'] is

1=ZP+(n=d)Z/(1—-2)=(1+(n—d) Z(t — Z)* )1 -2
=((1=2y Y+ (n—dZ(1—Zy HY(1-2Z).

For a ring with a 2-linear resolution we have for i > 0 that b, = (— 1) ¢, ,,
where ¢;,, is the coefficient of Z'*! in the numerator of the Hilbert series
Y. ¢;Z'/(1—Z)" (e.g. [Fr-La, Section 4]). Thus the inequality to the right is
proved. We have seen that each chordal graph can be extended to a (d —1)-tree
by adjoining edges. Thus each chordal graph has at least as large Betti numbers
as some (d — 1)-tree. But'(d — 1)-trees with n vertices all have the same Hilbert
series, hence the same Betti numbers. The Hilbert series of a (d —1)-tree on
n vertices is

M+ n—ZYN-ZY =((1-ZY *+(n—DHZ(1 -2 (1 -2)

so b, = (n—d)("7")—-(71).
The complete intersection defect of a graded algebra R is
cid(R) = b, (R)—n+d.

COROLLARY. Let k[A] be of embedding dimension n and dimension d and
suppose that k[A} has a 2-linear resolution. Then

(";d) < cid (k[4]) < (n—d)(n+d —3)/2.
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There is equality to the left if and only if k[A] is Cohen-Macaulay and to the
right if and only if A is the disjoint union of a (d— 1)-simplex and n—d points.

The last invariant we consider is the Poincaré series

Pyy(Z) = Z dim, Tor¥4(k, k) Z

20

THEOREM 6. Let k[A] be of embedding dimension n and dimension d.
Suppose that k[A] has a 2-linear resolution. Then, coefficientwise,

(14 Z¥/(1—(n—d) Z) < Py (Z) < (1 + 2P /(1 —(n—d) Z (1 + Z)*" 1),

Proof. Since rings with 2-linear resolutions are Golod [Ba-Fr, Theorem 7]
we have Py, (Z) = (1 +Z)/(1 - Y .;5 o b; Z'* '), where n is the embedding dimen-
sion and the b;s are the Betti numbers. Thus the Poincaré series is maximal
(minimal resp.) when the Betti numbers are maximal (minimal resp.).

A praded algebra R=k[X,, X,, ..., X,J/(f,,f2, .-, J;) of dimension
d and depth g is cailed extremal if

R(Z)=(1-Z) ‘max([(1-Zy"" ﬁ (1-2%], (1-2y79

i=1

where d; = deg f; and where the brackets stand for taking the initial positive
part of a power series. This is the minimal possible value of R(Z) given the
numerical character (n, d, g, (d,, d,, ..., d,)), see [Frl].

THEOREM 7. Let G be a graph with n vertices consisting of one K, and
a (g—1)-tree attached to this K; in a K,_, (1 <g<d). Then k[A(G)] is an
extremal ring of numerical character (n, d, g, 2,2,..., 2)). (The number of 2’s is
("2 -3 —(n—d)g.)

Proof. The f-vector of A(G) is

()G @)re-al () (1) G o0 0)

Hence

k[A](Z)—1+Z()Z/(1 Zy+(n— d)Z( )Z'“/(I -Z)+!

=1/(1-2Y'+(n—d)Z{(1-ZF =(1-2) *(n—d) Z+(1—-Z) )
which meets the requirement in the definition of extremality.
We conclude this section with some problems.

ProsLEMs. Stanley—Reisner rings are special in the sense that their depth is
always positive (except in the very trivial case of an empty complex). Therefore
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the bounds in the theorems above can not be expected to hold in the general
case of 2-linear algebras. Except for this trivial modification we would rather
believe that they do hold in general. We formulate this as problems. Are the
following true for arbitrary graded 2-linear algebras R of embedding dimension
n, dimension d and depth g?

@) 1/(1—-2)~(n—d)Z < R(Z) < (1 +(r—d) Z)/(1 - 2V,

(b) e(R) < n—d+1 (e(R) denotes the multiplicity),

© Y1=2ZY+(n—d)Z(1-ZyY < R(Z) < (1 +(n—d— 1) Z)/(1 - Z)"

+Z(1-2Y,

d) Hr—=(5) = bR = 7Y —D)—(51),

) 1+Z2¥/(1-(n—dDZ(1+2Z)) = Px(2) = (1 +2)"/(1 —(n—d) Z),

() Is there equality to the right in (a), (b), (d) and (e) if and only if R is
Cohen—Macaulay?

What we know is the following. If R is Cohen—Macaulay we do have
equality to the right in (2}(e). We also know that the left inequality is correct in
(@) and (c) and that the statement in (d) is equivalent to the statement in (e).
Furthermore, if we can prove that equality to the right is equivalent to R being
Cohen—Macaulay in one of (a), (d) or (e), then equality is equivalent to R being
Cohen—-Macaulay also for the other two.

4. Depth of Stanley—Reisner rings

We now turn to the question of the depth of an arbitrary Stanley-Reisner ring
k[4]. It has been shown in [Sm] that depthk[4] = 1+ max {i; the i-skeleton
4' of 4 has a Cohen-Macaulay Stanley-Reisner ring}. He used a topological
characterization of Cohen-Macaulay-complexes and his proof has since been
simplified in [Wa] using ideas from [Mu]. We will give a purely algebraic
proof of this theorem.

THEOREM 8. Let A be a simplicial complex. Then depthk[4d] =1+
max {i; k[4] is Cohen—Macaulay}.

Proof. Let k(4] =k[X,, X,, ..., X,]/I be of dimension 4. The depth
of k[4A] equals max{j; TorR(k[4],k)=0 for i>n—j}. Let o=
(X;,» X, ..., X)) be a face of maximal dimension in 4. Removing o (but none
of its faces) from A gives a complex with Stanley-Reisner ring

KX, Xy oo XU +H(X X, X)) = k[4—a].

Consider the exact sequence

0—(x;,x;,...x;) > k[A] > k[4—0] >0

1y 12

of k[X,, X,, ..., X,]J-modules. It is easy to see that as such the kernel
K = (x;, x;,...x; ) is isomorphic to k[ Y;, Y,, ..., Y,]. The long exact sequence
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..o TorR (K, k) - TorR (k [4], k) —»Tor?(k [4—a], k) > TotR (K, k)— ...
and the fact that Tor? (K, k) =0 if i > n—d (depth K = d) and Tor®_,(K, k)
# 0 gives

TorR(k[A], k) ~ TorR(k[d—a], k) if i>n—d+1
and
0— Torf_44 (k[4], k) > TorR_y4 1 (k[d—0], k)

is exact. Thus, if k[A] is not Cohen-Macaulay, we have depthk[4]
= depthk[4—¢]. Continuing to “factor out” maximal simplexes we get
depthk[A4] = depth k[4°~']. If k[4%7 '] is Cohen—Macaulay we are finished,
otherwise depthk[497 '] = depthk[447?] and so on.
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Addendum

At the conference talk W. Vogel asked for the characterization of simplicial
complexes with Stanley-Reisner rings with 2-linear resolutions and which are
Buchsbaum. Here is a delayed answer.

P. Schenzel has characterized Buchsbaum Stanley—Reisner rings as those
belonging to simplexes with Cohen-Macaulay links of vertices [Sc, Theorem
3.2]. A Stanley—Reisner ring k{A4] is Cohen—-Macaulay if and only if it is pure
and has Cohen-Macaulay links of vertices and furthermore H;(4) =0 for

i <dim A [Re, Theorem 1]. We will use these facts to prove the following
theorem.

THEOREM. Let A be a simplicial complex. The following are equivalent.

(i) k[4] is Buchsbaum and has a 2-linear resolution.
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(n) For each connected component 4, of A we have that G (A,) is a d-tree for
some d and that A(G(A))) = 4, (i.e. kx[4;] is Cohen—-Macaulay and has a 2-linear
resolution).

(it} k[A] is the fibre product of rings k [A,] which are Cohen—Macaulay and
have 2-linear resolutions.

Proof. The Stanley-Reisner ring of the disjoint union of 4, and 4, is the
fibre product of k[4,] and k[4,], hence (ii) and (iii) are equivalent. That (ii)
implies (i) follows from Schenzel's and Reisner’s theorems. Assume (i). Schen-
zel’s theorem shows that k[ 4] is Buchsbaum if and only if k[4,] is Buchsbaum
for each connected component 4; of A. Hence we consider a connected
component 4; of 4. We use the inductive process of building 4, described
above. The Mayer—Vietoris sequence shows that H j{4) =0 for all j. Thus
k[A4;] is Buchsbaum if and only i k[4,] is Cohen-Macaulay.
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