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1. Introduction

Let D be a region (open convex set) in C and {f}, i=1, ..., d, analytic
functions in D. Let m > 0 and let a system of d integers {J;},i =1, ..., d, be
given such that Z';l 0; =m. Consider a triangular table « =(,,), k
=1,...,n+1, whose limit points are all in D.

DeriniTiON 1. We say that the system of rational functions {ni = Pni/qn}s
i=1,...,d, is an (n, m) simultaneous rational interpolant of {f;},i=1, ..., d,
associated to {6;},i =1, ..., d, in the n-th row of a if for all sufficiently large n

deg (pn.l') < n—éi, deg (qn) sm,

and r,; (o) = filn), k=1,2,...,n+1, i=1,2,...,d, in the sense of
Hermite.

We wish to remark that in the case of d = 1 the definition coincides
with that of generalized multipoint Padé approximants. The problem of
constructing such a system in the classical case of interpolation at the origin
is considered in [1] where an explicit solution is given in terms of determi-
nants.

When d = 1, the study of differences of interpolants of a fixed function
has its origin in a paper of Walsh (see [11]) in which he considers a
particular case of differences of polynomial interpolants and proves an
overconvergence result; that is, that the difference of these polynomial
interpolants converges in a larger region than that of analyticity of the fixed
analytic function which they interpolate. Various extensions of Walsh’s result
can be found in [2], [7] and [10]. We are particularly interested in the
extension of Saff, Sharma and Varga [10]. Before formulating it, we need to
introduce some concepts and notation.

Let E be a compact subset of C whose complement 2 (with respect to
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the extended complex plane) is connected and regular in the sense that Q has
Green’s function G (z) with pole at infinity (without loss of generality we may
assume that OeE). Let I',, 6 > 1, be the level curve I', = {zeC: G(2)
= loga) and E, the region limited by I',. Consider two triangular tables a
=(m) k=1,...,n+1, a =(,), k=1,...,n+1, neN, whose limit points
are in E, and define

n+1

W"(Z) = I—[ (Z—ak.n)’ wW_, (Z) = ls

k=1
n+1

wy@ = [T -0, wo, @ =1
k=1

Let f be an analytic function in E which is meromorphic with exactly m
poles in E; where R > 1 is fixed. The problem solved in [11] was to find
conditions that would yield the overconvergence of differences of multipoint
Padé approximants r,,, and r,, that interpolate f in the (n+m)th row of a
and o' respectively. First, a natural condition of extremality was imposed on
the table a, namely

(1.1) lim|w,(2)|'" = dexp(G(2))
where 4 is the transfinite diameter (or capacity) of E, and the limit is uniform
on each compact subset of Q.

Also, a condition of “nearness” of the tables « and a' is needed.

Since the polynomials w;(z) and wj(z) are monic polynomials of degree
j+1, for each n there exist n+ 1 unique constants y;(n), 0 <j < n, such that

(1.2 Wi@) = wa@+ Y, 1 (mwj-y (2).
j=0

J

We suppose that there exists —oo0 < 0 <1 such that
(1.3) limsup | Y |ul(4RY}'" < AR® (< 4R).
j=0
It was proved that the extremality of « and the condition (1.3) yield the

extremality of o', i.e.

(14) lim |w,, (2)|"/" = dexp(G (2)).

For this case the following result was proved:
THEOREM A. Under the above conditions we have for each y, R < y < o,
limsup \max |r,m(2) =1\ m(2), z€H}'" < y/R?7°,

where H is an arbitrary compact subset of E,\ |poles of f).
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Essential to the proof is the generalization of Montessus de Ballore’s
Theorem given by Saff in [9].

When studying the case when d > 1 it is natural to ask whether it is
possible to obtain a similar result for the difference of simultaneous rational
interpolants. In the following section we will prove the following theorem.

THeOREM. Ler E, Ex (R > 1) be as before. Consider a system of functions
‘i =1, ..., d, analytic in E and meromorphic in Eg such that f; has exactly
d; poles in Ex where 16;!,i =1, ..., d, is a system of non-negative integers such
that Z:=1 0; = m > 0. Suppose additionally that if i # j then f; and f; have no
common poles. Tuke two triangular tables a and o' such that a satisfies (1.1)
and (1.3) holds. If \r,; = p,i/qn\, i=1,...,d, and \ry; =p,i/q,), i=1,....4d,
are systems of (n, m) simultaneous rational interpolants of |f;), i=1,...,4d,
with respect to !8;), i =1,...,d, and the tables a« and o' respectively, then
there exist a; such that for each y, R <7y < o,

(1.5) limsup !max|r,;(z2)—r,;(2), zeH}'" < y/Rz_"", i=1,...,d,

where H is an arbitrary closed subset of E,\U;"= , \Zils U:.';l \2;} is the set of
poles of the system of functions in Eg,

B %max doggr;, 8} if 6; # m,
“=9 if 6, =m,

0 is that of condition (1.3) and r; is the smallest number for which {poles of Jis
j#i} <E,, for each r' >r;.

2. Proof of the theorem

Before proving the theorem it is necessary to present some ideas given by-
Graves-Morris and Saff in [4].

For d > 1, in general, it is not possible to guarantee the uniqueness of
the corresponding approximant. In the context of convergence results this
may be ensured through the following:

DerFiniTioN 2. Let each of the functions f;, ..., f; be meromorphic in the
open set U and let non-negative integers J,,..., 6, be given for which
ZL , 6; > 0. Then the functions f;(z) are said to be polewise independent with
respect to the numbers 8, in U if there do not exist poiynomials
p1(2), ..., ps(z), at least one of which is non-null, satisfying:

(i) deg \pi(2)) < 6,1 1if §; = 1.
@) p(z)=0if 6, =0.
(iii) 0(z) = ZL , Pi(2) f:(2) is analytic throughout U.
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We note that the conditions imposed on the system of functions in the
theorem that we are about to prove are a particular case of polewise
independence.

TueoreM B (see [4]). Let E and Ez (R > 1) be as before and let {f}, i
=1, ..., d, be a system of analytic functions in Eg except for m possible poles
(not necessarily distinct) at z;€Eg\E, 1 <j < m (if z; is repeated exactly p
times then each f; is allowed to have a pole at z; of order at most p). Let {9,}, i
=1,...,d, be a set of non-negative integers such that Z 6; =m > 0 and the

f ﬁ}, i= l , d, are polewise independent with respect to {5, Lhi=1,...,d, in
Egr. Ifais a trtangular table that satisfies (1.1) and all its limit pomts are in E,

then there exists a unique system {r,; = p,./q.}, i =1, ..., d, of simultaneous
rational interpolants associated to {8;}, i =1, ..., d, in the n-th row of a such
that

(2.1) limsup|lg,—4qll{" < 7/R,

(2.2 imsup|lfi—r.ll{"<o/R, i=1,...,4d,

where A and H are any compact subsets of C and of ER\U , 1z;} respective-
ly; r and o are the smallest numbers satisfying U {z,} c E jor eachr' >r
and H c E,. for each ¢’ > c respectively.

In the proof of the theorem an important role is played by the fact that

If w, is a pole of order m, for some f; then for each j, 1 <j < m,,

(2.3) limsup|g¥ )" < 6/R  if u el,,,

which is a consequence of the polewise independence of tﬁe system (see [4]).

Proof of the theorem. By Theorem B, the polynomials of the denomina-
tor g,(z) and q,(z) satisfy

(24 limg,(z) = limg,(2) = [] (z—z) = q(2)

j=1

uniformly on every compact subset of the plane.
Let ,-q(z)=]'1J s+1E— W), where w;, j=36,+1, ..., m are the poles of

ﬁu k # i lf 6!’ #m (lq(z) =1 lf (Sl = m) and Qn(z) = qn,dl- (Z) Qn.ég (Z)x q;l(z)
= qn.3,(2) qn,;(z), Where

(2.5) limsup|lg,,s; —:qlld" < r/R, limsuplig, s —qlly" < r/R
and A is any compact subset of C (see (2.1)) if &, # m (if §; = m, n,5; (2)
=dqns (2) =1).

Now, define J,;(z) = g, 4,(2) i(2) qns,(2). Thus for each i=1,...,4d,
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dn.5(2) pni(2) is the unique polynomial in the set P, of polynomials of degree
at most n which interpolates g, 4 (2)J,i(z) at ay,, ¥z ..., %pt1,, in the
Hermite sense. Similarly, g, s, (2) pn.:(2) is the unique polynomial in P, which
interpolates g, 5(2)J,;(2) at ay ., a2p, ..., Gpsy 0 Since J,;(2), i=1,2,...,4d,
are analytic on E, there exists a constant s> 1 such that all J ;(z), i

=1, 2, ..., d, are analytic on and inside the level curve I',. Then, for each n
sufficiently large, Hermite’s formula gives

{Wa (1) =W 2)} 41.5; (2) G5 (1) J o, (0) P

1
4 (D) Pai (2) = 5 ]

Iy w, (1) (t—2) ’
, 1 Wa@—wa(2)} 4us: (2) g}, 5 (1) T, (1)
0@ 7@ =5 f s dr.

Subtracting, we have

1 . A, 2)J,;
(2.6) 4, (2) i (2) — 4n(2) Pi (2) = — .‘. mi(ts 2) i (0)

2L mOw -2 *C

where
Api(t, 2) = Wy () Wa(t) {gn.s; (1) Gy (2) — G5 () 9 (2)}
+ W, (t) Wi (2) 45,5 (1) 4,5 (2)
= W () W (2) qn, 5 (8) G, (2).-

Next, let {ut}, j=1,2,..., 5, s; <, denote the distinct poles of £ in
Egx—E. Let M be any constant such that max {1, R®} <M <R and all the
poles of f;(z) lie inside I'y. By c; = {t: t—uf| = &), 1 <j <s;, we denote
small circles that are mutually exterior and satisfy c; = Ey\E for each j
=1, 2,..., 5;. By setting c,,+; = I'y;, Cauchy’s theorem applied to the inte-
gral (2.6) gives, for all n sufficiently large

s;p+1
(2.7) @@ Pni (D=0 i@ = Y If12), i=1,2,....4,
=1
where
1 An.l' (t’ Z) Jn.i (t)

O = 2 L mowie—2

and Cy+1 is taken positively oriented, while the remaining contours c;,
1 <j<s;, are all negatively oriented.
Using (1.2) we express I{}(z) as
,,(t)—W,,(Z))W,,(t)Q(t, Z)+F(t’ z)}"n,i(t)d
t
w, () w, (8) (t—2)

1
28 @& =5 ] {lw
j

20 — Banach Center t. 22
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where

(2.8a) @, 2)= n,s; (1) Gn.5; (2) — Gn,5; (t) G 5; (7-),
@8 F.9)= 3w (s ) (0 0 A=) dh )

+Wj- 1 (2) Wa () ng; () 4 (2) |-
Let y > R. According to (2.5) and (2.8a) we have
(29 limsup {max|Q(t, 2)|; tec;, zel',}'" < r/R.
From the hypotheses (1.1) and (1.3) we obtain
(2.10) | limsup {max|F(t, z)|; z€l,, t€ly}'" < 4% yR°,
(2.11)  limsup {max |w,(t)—w, ()| Iw,(®)|; z€T,, t ey }'" < 4*yR.
From (1.1) and (1.4) we have

(2.12) lim {min jw,(t) W,(®)]; t €y} V" = (AM)?,
thus

. R
(2.13) limsup {max I, , ; (;?|; zel ) g ?ma’;(lrz % _

Next, to estimate the integrals around the poles zf we note that for each
i=12,...,8, I;;(2) is just the residue at t =z} of the function
{Wa(®) (Wa () =wa(2)] Q(t, 2+ F (¢, 2) } i (1)
w, (1) Wy (6) (z 1) 3

(2.14)

From (2.3) we obtain
(2.15). lim sup |¢%, (z}))'/" < o}/R
and similarly .
(2.16) limsup g% (z})|'" < 6}/R

where k =0, 1, ..., m;—1, m; is the multiplicity of z} (of f) and z} eF,;.
Using (1.1), (2.5), (1.3), (2.15), (2.16), (1.4) we obtain the following rates:

(2.17) limsup :max | -{w,,(t)(»y,,(t)—w,,(z))}/at"|,=,3, zerl, }l/" < 4%oty,
(2.18) limsup {max|&* {Q(t, 2)}/0t")~.y, z €T, }'"" < r/R,

(2.19) limsup {max|& |F(, 2)}/ 0= 1y, 2 eI",}l’"~ < 4?yR° (y2R),
(2200 limsup|d* {w,()w, (0}~ /" < 1/(4o?)?*  at t =z¥,
(2.21) limsup|d* |J,; () (t—z})"}/d""/" < (6*/R)*  at t =z¥.
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Using the combination of (2.21), (2.20), (2.19), (2.18), and (2.17) for
estimating the residue at ¢t = z¥ of the function in (2.14), we obtain, for each j
=1,2,...,s,

(222) limsup {max|I{}(z)|, zel,}'/* < ymax(r;, R)/R* (y = R).
Thus, from (2.22) and (2.13) it follows that for y > R
(2.23)  limsup {max|q,(2) Pu;(2) — 4u(2) Pr:(2), z €T, }'" < ymax(r;, R%)/M?

and so, letting M approach R and applying the maximum principle, we
obtain

(224)  limsup {max|q;(2) p,;(2) — 4.(2) p,: (2)l, z€E,}" < y/R

2—0,‘

where a; = max {loggr;, 0} if &; # m.
Using the same method we can obtain (2.24) for gq; = 0 if §; = m. Now
we immediately obtain (1.5) from (2.4) and (2.24).

Note. If d =1 then 4, = m and we got the result of [10].

CoroLLARY. Let {f;}, i=1,...,d, be a system of analytic functions in
[z| <17 such that for each i =1, ...,d, f; has exactly §; poles in [|z| < R]

(R > 1) where {5,}, i=1,...,d, is a set of non-negative integers such that
Z 5;=m>0. Then if {r,,,—p,,,/q,,}, i=1,...,d, and {r,,,_p,,,/q,,} i
=1,...,d, denote the (n, m) simultaneous ratmnal interpolants of \f!, i

=1, ..., d, with respect to {6,}, i=1, ...,d, at the origin and at the (n+l)-
roots of unity then for each y, R <y < o,

(2.25) limsup {max |r,(z)—7,;(2), zeH}"" < y/R* ™%
where H is an arbitrary closed subset of [|z| < 7]\U, iz :."=1 {z;} is the
set of poles of the system in [|z| < R] and -

_flogg(max {jul, u is pole of f;, j # i})  if &; # m,
- 9 l:fé, =m.

Proof. This is a special case of the theorem. Let E = [|z| < 1], so that E
has capacity 4 =1. The associated Green function is then simply G(z)
= log|z|, and the level cyrves I', are the circles [|z| = 0]. Now, w,(z) = z"*!
and w(z) = z"*! —1. Trivially w,(z) satisfies (1.1) and the inequallity of (1.3)
is valid for every R > 1, with @ = 0. Thus the theorem gives (2.25). Further-
more, slight modifications in the proof of the theorem show that, for these
special interpolation schemes, we can indeed allow some or all of the poles
{f}, i=1,2;...,d, to lie in the punctured disc 0 < |z| < 1.

As the reader can observe in our result on the difference of simultaneous
rational interpolants it has been necessary, due to the.method used in the
proof, to impose more severe restrictions than those in Graves-Morris and
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Saffs Theorem B (no common poles for the functions in the system). It
would be interesting to obtain a result similar to ours but, for instance,
under the general condition of polewise independence. It would also be
interesting to know whether the results obtained are exact, that is, whether in
general it is not possible to obtain a larger region of overconvergence for an
arbitrary system of analytic functions {f;}, i =1, ..., d, satisfying the condi-
tions imposed in the theorem.
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