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EQUATIONAL LOGIC AND THEORIES
IN SENTENTIAL LANGUAGES
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Equational logic based on identity predicate is well known in ab-
stract algebra (see [5], p. 275-288, [2] and [1], chapter 4). One may
try to build and study equational logic based on identity connective,
introduced in [4]. There is an analogy between both kinds of equational
logics, since both formators, the identity predicate and identity connective,
formalize the genuine notion of identity. However, there must also be
some differences between them which follow the difference in the syntactie
category (predicate, connective).

The idea of this note is to compare the identity connective with
the identity predicate, using but one sentential language £ described in
section 1. The binary formator = behaves like the identity predicate (with
respect to E,) in section 2 and becomes the identity connective (with
respect to E) in section 3. Obviously, the identity predicate relates to con-
gruences of algebras. From section 4 it can be seen that the identity
connective relates to regular congruences which are not totally unknown
in abstract algebra.

The restriction to regular congruences is forced by the rule of inference
«, « = f |/ B which is characteristic for the identity connective. It modifies
the usual notion of an equational theory (i.e., E,-theory) and calls for
a certain change of other notions (model, variety, equational class).
Section 3 contains two theorems for E-theories which parallel classical
theorems of G. Birkhoff (for E,-theories), stated in section 1, that is, the
completeness theorem and the equational class theorem. An intermediary
notion of an n-variety of algebras is introduced in section 4. Again, an
equational class theorem relates n-varieties to equational E-theories.

1. Let  be a sentential language with the binary connective = and
other sentential connectives. FMg is the set of all formulas of £, built up
from sentential variables p;, with je J, where J is an infinite set, by means
of connectives, including =. If X < FM,, then Sb(X) is the set of all
substitutions in formulas in X. Formulas « = B are called equations and
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EQg is the set of them. If T < FMg,, then « ~  stands for (« = )¢ T.
T

2. If X c EQg, then E,(X) is the smallest set Y = EQg over X such
that (1) all trivial equations « = « are in Y, (2) for each (!) connective
of €, Y is closed under the w-invariance rule

;=B t=1,..,k [ o(agy ...y o) = 0(Byy ..oy By
and, (3) Y is closed under both rules
a=B/B=a and a=y, B=v/a=8.

Subsets of EQg of the form E,(X) for X < EQg are called E,-theories.
The language £ is an absolutely free algebra in the class o of all
algebras similar to £. The map

To~
T

is a one-one correspondence between E,-theories and congruences of £.
If Ae Ao and he Hom(L, A), then EQ(h, A) is the set of all equations
a = B such that h(«) = h(p). It follows that E,(X) < EQ(h, %) whenever
X < EQ(h, A). Let

EQ) = N{EQ(h,A): he Hom (L, A)}.

Then EQ(Y) = E,(Sb (EQ())).

COoMPLETENESS THEOREM (G. Birkhoff). T = E,(Sb(X)) for some
X < EQq iff T = EQ(A) for some e A q.

A class o < A g is called a variety iff o is closed under operations
I, S, P and Q, of taking isomorphic images, subalgebras, product algebras
and quotient algebras (modulo congruences), respectively.

EQUATIONAL CLASS THEOREM (G. Birkhoff). A class X < o g i8 a vari-
ety iff there exists an X = EQg such that the class {Ne oA g: X = EQ(N)}
8 just A .

3. If X = FM,, then E(X) is the smallest set Y < FMg over X such
that (1) all trivial equations are in Y, (2) for each connective w of £,
Y is closed under the w-invariance rule and, (3) Y is closed under the
special identity rule «,« =8 / B.

Consequently, (« = B)e E(X) whenever (B = a)e E(X) or (a =1),
(B = v)e E(X). Subsets of FMy of the form E(X) for X < FM, (or X
c EQg) are called E-theories (or equational E-theories).

If Ae A 5, the binary operation o of A shall correspond to the identity
connective =. For any proper subset D of A, the carrier of %, the pair
M = (A, D) is called an m-structure (matriz structure), the algebra A is
also denoted by alg () and the relation a 5y b on A is defined as (aob)e D.
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A congruence ~ of U is said to be an m-congruence of M if, for all a, be A,
be D whenever a ~b and aeD.

We write A° for {aca: ae A}.

Let M, = <W;, D> for ¢ =1,2. We say that M, is an m-expansion
of M, if A, =A, and D, € D,. If he Hom(%,, A,), then h is called
m-homomorphism of M, to M, iff D, =ﬁ(Dz), where h is the h-counter-
image operation. If ~ is an m-congruence of M = (A, D> and M | ~ =
A/ ~,D [ ~> where W | ~ is the quotient of A modulo ~and D | ~
= {a | ~: ae D}, then the canonical map a -a | ~ is an m-epimorphism
of M to M /| ~ (the quotient of M modulo ~). The operations I, S and P
are also well defined for m-structures.

An m-structure M = (A, D) is said to be a model, Me A4, if ~ is

D
m-congruence of IN. If ~ is the identity relation on A, then the model I

D
is called normal, Me /" # 4. The m-structure (8, T) is a model for every
E-theory T. If he Hom(£, ), then, clearly,

E(X) < h(D) whenever X c h(D).
For any model MM = (A, DD, the set TRo(M) = FM, is defined as
N {h(D): he Hom(g, A)}.

It follows that TRg(M) = E(Sb(TRg(M)))-

m-EPIMORPHISM LEMMA. If I, and M, are models and there exists
an m-epimorphism of M, to M,, then TRg(M,) = TRo(M,).

CoNTRACTION LEMMA. If I = (A, D) is a model, then WM | ~ is
a normal model, the contraction of M. D

COROLLARY. A congruence ~ of U is m-congruence of the model M
=, D) iff ~< e

IsoMORPHISM THEOREM. If Me N Mg, and J and alg(M) are of equal
power, then there exists an E-theory T such that M and the contraction of
(R, T) are m-isomorphic.

CoMPLETENESS THEOREM. T = E(Sb(X)) for some X < FM, iff there
exists an Me N Mg such that T = TRg(M).

Let E, C and CE be, correspondingly, the operation of m-expanding
models to models, that of contracting models and the composition of C
and E. Then, a class o < # ' #, is said to be an m-variety if X is closed
under I, S, P and CE.
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EQUATIONAL CLASS THEOREM. A class X < A ' #y 18 an m-variely
iff there exists an X < EQg such that the class

{De ¥ My: X = TRy(M))
18 just X .
4. An algebra e X'g is regular (or normal), We Ay (or We N H'Y),

if A = alg(M) for some M in #, (or in A #y). A congruence ~ of A in
X ¢ is said to be regular if, for all a, b, ¢, d in A,

a ~b if (aob) ~ (coe) for some c.

(1) e A g is reqular iff there exists a proper regular congruence of U.
(2) Let ~ be a congruence of e A g. Then ~ is regular iff, for all
a,beA,
a ~Db iff (aob)eD,

where D = {de A|d ~c¢ for some ce A°}.

(3) e A g is mormal iff the identity relation on A s regular, i.e., for
all a,b,ceA,

aob = coc implies a = Db.

(4) If A, Be A g, he Hom (A, B) and B is normal, then the kernel
of h is regular and, hence, W is regular. If We H 'y and ~ is a regular con-
gruence of U, then A | ~ is normal.

(8) If e o g is normal and M = (A, A°), then
EQ(Y) = EQg nTRe(M).

(6) Every normal algebra i isomorphic to & | T, i.e., the quotient
of & modulo ~, for some E-theory T.
T

A class o < Ay is called an n-variety if every algebra in X" is normal
and X is closed under I, S, P, and Q°, the operation of taking quotients
modulo regular congruences.

EQUATIONAL CLASS THEOREM. A class X < X'y i8 an n-variety iff
there exists an X < EQqg such that the class

{Ue ¥ H3: X = EQ(U))
18 just A.

Proof. Let X be an n-variety and let J be the class of all E,-theories
EQ(Y) for A< K. Set X = () J and form the product A* of all £ / T for
TeJ. Observe that £ / X is isomorphic to a subalgebra of A*. Thus £ / X
eX'. Let % be any algebra in 4%y such that X < EQ(¥). Set S
= EQ(g, A), where g is an epimorphism of £ to A. Clearly, £ / S and U are
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isomorphic. Since X < 8, there is an epimorphism h of € / X to 8 / S.
But % is normal. Hence, the kernel of h is regular. Therefore, £ / 8, i.e.,
A is in o
Remark. Regular congruences ~ satisfying the condition of uni-
formity
(aca) ~ (bob) for all a,b

have been examined by Slominski in [3].
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