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A PROBLEM ABOUT SET TRANSLATIONS ON THE REAL LINE

BY

IVAN GUINTCHEYV (ROUSSE)

Let R be the set of the real numbers with the usual topology. For
any ¢t € R and F < R we define the translation T, F of F as

T,F = {wecR: v =t+2z for some 2z € F}.

In the paper we consider the following

PrOBLEM. Are there two closed sets A and B contained in R such
that for any ¢,,8,€eR (+ =1,...,p; j =1,..., q) the relation
(1) TyAn ... NIy AnT, Bn ... nquB =0

is satisfied if and onmly if ¢; = s; for some ¢ and jt

The affirmative answer to this problem is obtained by constructing
A and B with the above-mentioned property.

Suppose s, (4 =1, 2, ...) is a monotone nonincreasing sequence of
positive numbers such that

e, =1.

“

DM

=

p=

Suppose I, < (0,1) (u =1,2,...) are closed nonintersecting inter-
vals of lengths |I,| = ¢,. Given a positive integer n, we define the intervals
I (u=1,...,m% a8 I, =T,I,, where k and r are integers such that
1<r<nand g =rkn+tr.

Let 2" = {o}} (0 =0,1,..., 2”2—1) be the set of all ordered finite
gsequences of length n? consisting of zeros and units. For an integer r
(1< r<n?), wi(r) denotes the number at the r-th place of w}.

Given any integer N and a positive integer u, we put

x—N

A,(N) ={wE[N,N+y'2"2]: w—N—[ ]p =

for some 7 and wj,_y), (r) = O},
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r—N
u

B, (N) ={me[N,N+p'2“2]: m—N—-[ J,ueI:.‘

for some 7 and wf,_ ), (7) =:1},

where the brackets [-] denote the integer part of the comprised quantity.
Put now

A" = UI-A#('N#) and B = qBM(Nu)!
= Hu=

where the integers N, are chosen so that
N, > max{sup4,(N,)UB,(N,): 1<r<pu—1}.
LeEMMA. The sets A’ and B’ are closed and disjoint, and for any t;, s; € B
(t =1,...,p; 5 =1,...,q) such that
min{|t;—8:1<i<p, 1<j< g > ¢
the following relation holds true:
(2) T,A'n ... nT A'nT,B'n...nT, B" #0.

Proof. We write 4, and B, instead of 4,(¥,) and B,(N,), since no
misunderstanding can occur. ‘

The sets A, and B, (x =1, 2, ...) are closed as unions of finite
number of closed intervals, hence each of the sets A’ and B’, being a union
of locally finite family of closed sets, is closed (!). Further, 4, and B,
are disjoint, which follows from the defining formulas for x = » and is
evidently true for u # » by construction. Hence

A'nB' =|JA,nB, =90.
By
Let ¢,8; (¢t =1,...,p; j =1,...,q) be chosen accordingly to the

assumption above. We define a mapping f of R onto the unit circle K
in the complex plane by f(z) = ¢**®. Let 8’ = A’UB’. We see that

£(87) = Qf(r,o

is the union of nonintersecting arcs f(I,) on K and its Lebesgue measure
on K is

F@) = D 1L = 2= D) e, = 2m,
us=1

ne=1

(!) See p. 33 in: R. Engelking, General topology, Warszawa 1977.
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whence |[K\f(8’)] = 0. Since the translations on R preserve the measure
of the image, we have

IKENf(Ty 8’ ... nT,pS’nT‘,lS’n nT,qS’)]

= 1O ENE g0 ENA,)

D
< YIRS+ YRN8 = o.
i=1 j=1

Thus |
If(Te8 .. 0Ty 8'aT, 8’ ... nT, 8)| = 2=

and, in particular, this intersection is nonvoid. Suppose it contains a
Ppoint 2’. Since

128) = US(TL), i<k,
there are integers k;,l; (¢ =1,...,p; j =1, ..., q) such that
e N {f(TeLi)nf(T, L) :1<i<p, 1<j< ¢}
Consequently, there is a real number z such that
e—t—[z—t] =0q€l, (i=1,..,p),
z—s,—[z—gj] = B; eI,j G=1,...,9).
Choose now an integer » > max {m,, m,}, where
my =max{k,l:1<i<p, L<j<q},
my = 1+2max{jt;], 18] :1<i<p, 1<j< ¢}

Let 2, €(0,n) be such that 2z, =2 (mod 1) and m, <z, < n—m,.
The existence of 2z, follows from the choice of n.

It is easy to check that each of 2, —¢, and 2, —s; belongs to some
interval Ij; but that they cannot both belong to the same interval I7.
Indeed, 2, —?; and 2, —s; belong to (0, »). Further,

ZH—t;=2—t =0q (modl), =2z—s =2—8 =4p; (modl).

Since a; € I,y p; € I;, and n > m,, we see that the first statement
holds true. The second statement follows from 2, —t; —(2,—8;)| = |t; —3|
> ¢;; hence it is impossible that both 2, —?, and 2, —s; belong to the same
I, whose length by assumption is not greater than €.

Consider now such wj for which wj(r) = 0 if I7 contains some number
#;—t; and wy(r) = 1 otherwise. By construction of 4, and B, it follows
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that one can find an integer N such that
A'A(N,N+n) ={we(N,N+n): a—N eI}
for some r and wjj(r) = 0},
BnNn(N,N+n)={wre(N,N+n): a—N el}
for some r and w)(r) = 1}.

Let now 2z, € (N, N+n) be such that z, = 2, (mod »). The choice
of z, yields that z,—?;, and 2, —s; belong to (N, N 4n). Since each of
2y—t,—N =2,—1%; and 2,—8;—N = 2, —8; belongs to some I} satisfying
wy(r) =0 if 2, —t, € I? and w}(r) =1 otherwise, we see that z,—?#, € A’
and 2,—s; € B’. Thus

2,€ Ty A'nTyA'n ... nT,pA’nTalB’n nT,qB'.

Let now {¢}} (» =1,2,...;» =1,2,...) be a set of positive numbers
&, such that
lime] =0

and ¢, (u =1, 2,...) for each » =1, 2, ... is a monotone nonincreasing
sequence with

Za:, = 1.
p=1

Let {I} be a set of closed intervals, each contained in (0, 1), such that
for each » =1, 2,... the intervals {I,} (# =1,2,...) do not intersect
and the length of I, is ¢&,.

For an integer N and positive integers u and » weput A}, (N) = A4,(N),
where A,(N) has been constructed with the use of the intervals {I}}
instead of {I,}. In a similar way we define Bj(N).

We put

A=JA,N,) and B=BLN),
B,y

uy

where the integers N} are chosen so that
N, >max{sup A’ UB,.: p'+v' <u+v or ug'+v = pu+» but u’ < u}.

THEOREM. The scts A and B are closed. For any 1,8, e R (¢ =1,...,p;
i =1,...,q) relation (1) kolds if and only if t; = 8; for some ¢ and j.

Proof. We write A}, and B, instead of 4}, (N}) and Bj(N,). By con-
struction, 4’,n B,. = @ for all positive integers u, ', », »’, hence AnB = @.
Being unions of locally finite families of closed sets, both A and B are
closed.
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If ¢, = s, for some i and j, then (1) is satisfied since AnB =@.
Suppose now that

m =min{f,—8: 1<i<P, 1<j< ¢ >0
and choose » such that & < m. We put
A’ =\ J4, and B =|JB,.
p=1 u=1

Applying now the Lemma we see that
T, A4’ ... nT,pA'n.TslB’n nT,qB" # 0,

and since A’ =« A and B’ c B, relation (1) does not hold.

In the sequel we give an application of the previous results.

If the domain of a function « is R and ¢ € R, then the translation
of x is defined as the function ,(0) = #(t+ 6). If # is a bounded function
on R we write

lzll = sup |®(t)].
teR

COROLLARY. There exists & bounded continuous function £ on R such
that

n n
(3) | Y @y || = D) 1ol
k=1 k=1
Jor arbitrary w, a;, and t, such that t; #1t; for i # j.

Proof. Let A and B be closed subsets of B such that for every
,y8;€R (1 =1,...,p; j=1,...,q) relation (1) holds if and only if
t; = 8; for some ¢ and j. In particular, A and B are disjoint.

Let £ be a continuous function on R such that £(t) =1 for te 4,

n
#£(t) = —1 for te B, and |#]| = 1. Given a linear combination &, &y,
k=1

let us divide the numbers #, into two groups {t;} ({ =1,...,p) and
{t/} (j =1,..., q) according to whether a, >0 or a; < 0. Let

tel ,An...nT_LAnT_,Bn...nT_.B.
1 P 1 q

Then 4;(t) =1 (¢=1,...,p) and ﬁ,}'(t)= -1 (j=1,...,9).

Therefore
hi n
Hzakﬁ‘k” = lzn:akﬁlk(t)l = 2 la‘kl‘
kw1 k=1 =1

The inverse inequality is obvious, since ll, ]l = 1.
Remark. We consider the following Banach spaces of functions on R
supplied with the sup-norm:
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the space M of bounded functions;

the space C of continuous and bounded functions;

the subspace C, of M (x € M) generated by {z,: t € R}.

Given a Banach space X we denote its conjugate by X’. Using the
Corollary we can show that

there exist functions x € C such that

(i) O, is isomorphic to M;

(ii) each function y € M 1is of the form y(t) = {f, ;> for some f e C'.

Indeed, let # = # € C, where & satisfies (3). To prove (i) we observe
that O is isomorphic to I'(R) under the mapping

(=] (=]
A
2 Ay Ty, — 2 B Xty

where y denotes the set indicator. Since (I'(R))’ is isomorphic to M under
the mapping (I'(R)) s f — <{f, x4, the space (C;)’ is isomorphic to M
under the mapping (C;)' s f — {f, £;> € M. Using (i) and the Hahn-Banach
theorem for C; = C we obtain (ii).

If we had C; = C for some £ satisfying (3), we could find a represen-
tation for C’, however a simple argument shows that this is impossible.
In fact, no function « in ¢ has the property C, = C. This can be seen
by the following proof due to Professor C. Ryll-Nardzewski. Take a Banach
mean IR on C, thatis a translation-invariant linear functional normed
by M (1) = 1, where 1 stands for the function identically equal to 1. It is
known that for every function exp(iA-) with 2 = 0 we have M (exp(ii-))
= 0, so the functions exp(iA-) are orthogonal with respect to M, i.e.

M (exp(id-)exp(id’-)) =0 if 4 #1;
besides,
M (exp (44-) exp(id-)) = 1.

Thus the “Fourier coefficients” withrespect to M, a, = M(xexp(—ii-)),
satisfy the Bessel inequality

D) a2 <M(Jal?) < oo,
A

Hence the set spec z = {exp(¢4-): a; 7 0} is countable, and so there
exists a function exp (¢4,-) orthogonal to z, therefore to all ;. Obviously,
exp (i4o°) is not in the closure of the linear span of x, with respect to the
norm M (|- ()2 and all the more with respect to the sup-norm.
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