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Introduction. In previous work we proved a Generalized Bochner The-
orem (GBT) for bounded Hankel forms, which allowed their integral ex-
pression in terms of measures, thus relating the classical Bochner theorem
to both continuity problems for the Hilbert transform, and interpolation
problems addressed by the Nehari theorem. Since the Bochner theorem
was extended by I. Segal to unitary representations of symplectic spaces, it
is natural to seek symplectic versions of the GBT, and the corresponding
applications to singular integrals and interpolation problems.

We have already given in [CS3] a version of the GBT in the special
case where the space of the representation is that of the Hilbert—Schmidt
operators acting in L?(R).

In this note we give a version of the GBT for arbitrary unitary repre-
sentations of the symplectic plane that is of a different nature. It is based
on Segal’s theorem and on the fact that every unitary representation of
the symplectic plane has a cyclic element (see the Appendix). This fact
adds interest to the present version of the GBT, in view of the possibility
of generalizations in directions developed by M. Livshitz, M. G. Krein and
H. Langer.

Here we describe the motivation underlying this approach, as well as the
changes made necessary by the crucial difference between the representations
of the ~ymplectic plane and those of the group Z (or other commutative
groups like Z™ or R™). The representations of the Heisenberg group, closely
related to those of the symplectic plane, will be discussed elsewhere.

The relevant aspects of both the Bochner theorem and the GBT are
recalled in Section 1, in the simplest case of the circle T. Those results
are stated in the case of unitary representations of the group Z in terms
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of cyclic elements, in a way suitable to their translation to corresponding
representations of the symplectic plane, which are given in Section 2.
We especially thank Professor Nolan Wallach for useful conversations on
the subject and, specifically, for providing the proof given in the Appendix.
This paper was written while the second author was visiting the Univer-
sity of California at Santa Cruz, whose support we are happy to acknowledge.

1. Toeplitz forms related to unitary representations of Z. Every
unitary operator U : H — H, in the Hilbert space H, defines a unitary
representation n — U, = U™ of the group Z, denoted by [H,U, = U"].
If T ~ [0,27) is the unit circle, then to each point z = e € T there cor-
responds an irreducible unitary representation [H,, U,(2)], where H, = C
and Up(z)A = 2", VA € C, and all the irreducible representations of Z
are of this type. If [H,U,, = U"] is a representation of Z then every func-
tion @ : Z — C of finite support (i.e., every finite sequence a(n)) gives rise
to a bounded operator a(U) = ), a(n)U™ € L(H), and these finite se-
quences a(n) are in 1-1 correspondence with the trigonometric polynomials
f(z) = Y a(n)z" = Y fA(n)z". Let V be the vector space of all such
polynomials, 7 : V — V the shift operator 7 : f(t) — zf(z), and write
f(U) = T a(n)U" = ¥ fA(m)U™.

A sesquilinear form B : V x V — C is called Toeplitz if *

B(rf,79) = B(f,9),
and positive if B(f, f) > 0. Every form B givesrise toakernel K : ZxZ — C
defined by K(m,n) = B(z™,z"), and since (z") is a basis of V' there is a
1-1 correspondence B « K = Kpg, and K = Kpgis called positive definite
(respectively, Toeplitz) if B is positive (resp., Toeplitz).

1.1 (The Bochner-Herglotz theorem). There is a 1-1 correspondence
B — p between positive Toeplitz forms B : V x V — C and finite measures
pu2>0in T, given by

(1) B(f,9)= [ fgdu, Vf.g€V,
so that
(1a) K(m,n) = Kg(m,n) = p*(m —n) = f e (m=mt dy.

Given a unitary representation [H,U™] of Z and an element w € H, for
each f € V we write pf = f(U)w,set H, = {pf : f € V} and say thatwisa
cyclic element (or a vacuum) if H,, is dense in H. If w is cyclic then, setting
B(f,9) = (pf,pg), we get a positive Toeplitz form in V and Theorem 1.1
gives:

1.2 (Spectral theorem for cyclic representations of Z). If [H,U"] is
a unitary representation of Z with a cyclic element w, then there ezists a
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finite measure u > 0 in T such that the above map p: V — H, extends to a

unitary isomorphism of L*(u) onto H, under which the shift T passes into
U = U, so that :

(2) (pf.p9)= [ fadp, Vf,g€ L*(n).
Moreover, if E is the spectral measure of U, then
(2a) (4) = (E(A)w, w).

Conversely, if B: V x V — C is a positive Toeplitz form, then (f, f)g =
B(f, f) defines a Hilbertian seminorm giving rise to a Hilbert space Hp,
while since (7 f,7g) = (f,g), T gives rise to a unitary operator, and z° =1
to a cyclic element in Hg. Thus Theorem 1.2 gives 1.1 and both theorems
are logically equivalent.

Similar properties hold for unitary representations of the group R,t —
U; = e'*4, where A is selfadjoint or symmetric. and we can consider A-
cyclic elements. M. Livshitz generalized the notion of A-cyclic element so
as to provide integral representations for A-symmetric forms, even in cases
when A has no cyclic element. M. G. Krein developed Livshitz’ idea into a
powerful method of directing functionals, but with his notion it is not clear
whether a cyclic element gives rise to such a functional. However, following
Livshitz’ original idea, we get a notion of directing functional, naturally
associated to each cyclic element as follows.

Observe that in Theorem 1.2, V is considered as a set of elements of
L%*(u) and, if f € V and pf = 0, then pf = 0 as an element of L%(u), but
there may exist non-zero functions f € V such that pf = 0. Thus if we
consider V as a space of continuous functions then p~! is not defined as a
map from H, toV. Butif V,, = {f € V : pf = 0} and Q is a projection
of V onto V,,, then p~! can be defined as an injective map I' of H,, onto
VI = (I -Q)V,, so that each I'€ is a function and I'(2) is defined for all
2 € T, and we can speak of the value I'§(2) = I,£€. In this way we get

1.3. If[H,U™), and w,p and p are as in 1.2, then there is a linear map
I : Tx H, — C such that, setting I'§ = I'(z,£) — £(2), the following
properties hold: '

(a) Vz € T, I, is a linear functional in H,,, and V€ € H,, the function
r§=(2)ev;

(b) w(2) #0,Vz € T;

(c) if £ € H,, and £™(z) = 0 then I € H,, such that £ = (U — z)7.
Moreover, for every £ € H,,, &M € V and pt = €, EN = p~1¢, so that by (2),
3) (&m= [ @du= [(E)(Tm)dp, V& ne H,.

Since the space H, = C = {)A1}, each number I',£ can be considered as
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an operator in H,, and (3) can be written as
(3)  (&m= [TUL (L),  VEnE A,

If [H,U,] is an arbitrary unitary representation of Z, H, a dense subspace
of H, and if to each £ € H, there is assigned a smooth function é* : T — C,
EN2) = I,€, satisfying conditions (a), (b), (c) of 1.3 (with H,, replaced
by H;), then we say that the map £ — £7(2) = I.£ is a weak directing
functional of [H,U,](?). For a clear exposition of the ideas of Livshitz and
Krein, see [A]; the theory was furhter elaborated by H. Langer [L).

From an argument of Livshitz and Krein (cf. [A]) follows

1.4. If€ — &N is a weak directing functional of [H,U,), then there ezists
a measure u > 0 in T such that (3) and (3a) hold. Thus the map eztends
to a unitary isomorphism between L?(p) and H.

Finally, let [H,U,] be a unitary representation of Z and let B : H x
H — C be a positive form which is U-invariant or Toeplitz, B(UE,Un) =
B(&,7m), and bounded, | B(€,7n)| < c||€]| ||n||. For simplicity assume that B is
strictly positive, B(£,£) > 0 whenever £ # 0, so that the metric (¢,9)p =
B(&,n) gives rise to a Hilbert space [Hp,(£,7n)s], in which H C Hp is
a dense subspace, and to a unitary representation n — U™ in Hp, since
(UE,Un)p = B(UE,Un) = (€,n7)B. Moreover, from the continuity of B
it follows that every dense subspace in H is dense in Hpg, and every cyclic
element (respectively, directing functional) of [H, U™] is also a cyclic element
(resp. directing functional) of [Hp, U™}, hence:

1.5. If [H,U,) has a cyclic element w (respectively, a weak directing
Junctional in Hy C H) then for every positive Toeplitzform B: Hx H — C
there ezists a measure p > 0 in T such that

(4) B(f(U)w,g(Uw) = [ fgdp, Vf,geV
(respectively,
(42) B(&,n)= [€ nhdp,  VEne Hy).

Since, as shown above, every cyclic representation has an associate weak
directing functional, 1.5 can be considered as a generalization of 1.2, as well
as of Bochner’s theorem 1.1. While Bochner’s theorem gives an integral
expression of positive forms B : V x V — C satisfying B(r f,7g) = B(f, 9),
1.5 gives a similar expression of the positive forms B : H x H — C satisfy-
ing B(UE,Un) = B(€,7m). Theorem 1.5, as extended by Krein and Langer

(!) In Krein’s definition, condition (b) is somewhat relaxed and another condition,
(UM = €A, is required. A similar notion can be formulated for vector-valued functionals
¢* : T — N, N a Hilbert space, by suitably modifying condition (b) (see Section 2).
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to symmetric operators and to vector-valued &, provided many important
applications in Analysis and is closely related to a general eigenexpansion
method for positive definite kernels due to Krein and Berezanskii (cf. [B],
[M]).

The previous considerations extend to the space V=V xV = {(f1, f2) :
fi, f» € V}, and the shift operator 7 : V — V defined by 7(f1, f2) =
(tfi,7f2). Here a sesquilinear form B : V x V — C is called Toeplitz
if B(7(f1,f2),7(91,92)) = B((f1, f2),(91,92)). For instance, the following
analogue of Bochner’s theorem 1.1 gives integral expressions for such forms
in terms of positive matrices of measures, i.e. (y4;) > 0 if the scalar matrix
(1i;(Q)) is positive definite for every Borel set A.

1l.1a. If B:V x V — C is a positive Toeplitz form then there ezist four
measures ;j, i,j = 1,2, in T such that the matriz measure (p;;) > 0, and

(5) B((f1, ) (91,92) = . [ figsdpij.

i,j=1,2
This gives the following analogue of 1.2:

1.2a. Let [H,U, = U™] be a unitary representation of Z, and w;,w; two
elements of H such that the subspace H,, ., = pV is dense in H, where for
(f1, f2) € V we set p(fi1, f2) = fi(U)wr + f2(U)ws. Then there exist four
measures [i;;, 1,5 = 1,2, in T such that the matriz measure (p;;) > 0, and
such that p extends to a unitary isomorphism of L*(u) onto H under which
the shift T of V passes into U, and so that

(5a) (p(f1, f2),P(91,92))0r = f Z fig;duii, V(f, f2), (91,92) € V.

1,7=1,2

Conversely (5) can be deduced from (5a).

As above, every representation [H,U™] with a pair w;,w; such that
H,, ., is dense in H gives rise to a “directing functional” I' : (H,, u,,T) —
C2, (&,t) = L€ = E7(t) € C%, €M € V, which has properties similar to the
C2-valued Krein functionals, for which an analogue of Proposition 1.4 holds.
Finally, if [H,U™] is a unitary representation of Z which either has a cyclic
pair wy,w; or a C2-valued functional I, then an analogue of 1.5 holds for
every continuous positive U-Toeplitz form B: H x H — C.

In all these propositions we have a 2 x 2 matrix measure (u;;) > 0in T
which gives the desired integral representation. |

We shall not go into details, but consider now Hankel forms and the
GBT for unitary representations of Z. Let Z, = {n € Z:n >0}, Z_ =
{n € Z:n < 0} and set

Vi={f=2Xf n)z" €V :suppfrCZy}, Vo={f€V:suppfrCZ.}
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so that
(6) vicVv, r'WCV,.

A sesquilinear form By : V; x V2 — C is called Hankel if there is a Toeplitz
form B : V x V — C such that By = B in V; x V3, so that

(7) BO(Tfag) = BO(f’T-lg)a V(f’g) € Vl X V2-
Let us fix two positive Toeplitz forms B; : VXV — C, ¢t = 1,2 and let
Wflls, = (f, f)};li2 be the corresponding quadratic 7-invariant seminorms,

where (fag)B.- = Bi(f’g)v (Tf,Tg)B.. = (fag)B.-' If By : ‘/1 xV, = C
(respectively, B : V x V — C) is a Hankel (resp., Toeplitz) form, then we
say that By (resp., B) is bounded, and write

(8) Bo < (By,B;)in V; x Vo (respectively, B < (By,B;) in V x V)

if |Bo(f,9)| < lIfllB, llgllB, (respectively, |B(f,g)| < ||fls, llgllB,) holds
for all (f,g) € Vi x V; (respectively, (f,g) € V x V).

With each Toeplitz form B we associate a form B : V x V — C defined
by

(9) B((f1, f2),(91,92)) = B1(f1,91) + Bo( f1,92) + Bo(91, f2) + B2(f2,92).

Then B < (B1,B2) in V x V iff B is a positive Toeplitz form.
We have then the following two theorems (see [CS1], [CS2]).

1.6 (Lifting property of bounded Hankel forms). If the Hankel form
By satisfies By < (By,B2) in Vj x Va, then there ezists a Toeplitz form
B:V xV — C such that B < (B1,B;) inV x V and By = Blv,xv,.

From 1.6 and (5) we get

1.7 (The GBT for Hankel forms in T). If By is a Hankel form satisfying
Bo < (B1,B;) in Vi x V3, then there ezist four measures p;j, t,j = 1,2,
p21 = fyp in T, such that (pi;) > 0 and By(f,g) = [ fgdpn in Vi x W,
By(f,9) = [ fgdpsz in V3 x V3, and Bo(f,9) = [ fgdm2 in V1 x V2.

Let now [H,U™] be a unitary representation of Z and H,, H, two sub-
spaces of H satisfying

(10) UH, C H,, U-1H2 C H,.

A form B : H x H — C (respectively, By : Hy x Hy — C) is U-Toeplitz
(or U-Hankel) if B(UE,Un) = B(€,7) (or Bo(U&,n) = Bo(€,U~1n)) for all
(&,m) € H x H (or for all (§,17) € H; x Hz). From the 1-parametric lifting
theorem in [CS2], [CS3] follows

1.8 (Lifting theorem in [H, U™)). If B,, B; are positive U-Toeplitz forms,
and By is a U-Hankel form satisfying By < (By, By) in Hy X H,, then there
exists a U-Toeplitz form B : H x H — C such that B < (By,B;) in H x H
and By = B in H; x H,.
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From 1.8 and the integral representation of continuous positive U-Toep-
litz forms follows

1.9 (The GBT for unitary representations of Z). Let [H,U"], Hy, H,
satisfy (10), let By and By : H X H — C be two positive U-Toeplitz forms,
and assume that [H x H,U™], where U(&,&) = (U&,UE;) for (&,&2) €
H x H, has either a cyclic pair (w1,w?), w1 € H x {0}, w; € {0} x H, or
a C2-valued weak directing functional I'. Then, for every U-Hankel form
By satisfying Bg < (B1,B;) in Hy x Hj, there ezxist four measures u;;,
3,7 = 1,2, po1 = @iy in T such that (p;;) > 0, and B,, B, and B, are
given in Hy X Hy, H, X H; and H, X H,, respectively, by the measures u;,
p22 and w13, as in (4) under the cyclic hypothesis, or as in (4a) under the
directing functional assumption.

Other abstract versions of the GBT for representations of Z are given
in [CS3] and [CS4].

Let us remark again that from the GBT follow the results on the conti-
nuity of the Hilbert transform in weighted L? spaces in the one-dimensional
cases as well as in product spaces as given in [CS2] and [CS3]). For the
significance of these problems, see [Z].

2. Toeplitz forms related to representations of [C,[, ]]. We now
translate Theorems 1.1-1.5 of Section 1 by replacing unitary representations
of Z by unitary representations of the symplectic plane. Let us identify C
with R2, denote their points by z = z + iy = (z,¥), z,y € R, and set

[2,2'] = — Im 22" = zy' — y2'.

C with the symplectic form [ , ] is called the symplectic plane [C,[ , ]].
[H,W(2)] is a unitary representation of [C,[, ]] if H is a Hilbert space and
W : C — L(H) is a function assigning to each z € C a unitary operator
W(z) in H satisfying

(11) W(z)W(u) = exp(7i[z, u])W(z + u),

and continuous in the strong topology of £L(H). With each representation
[H,W(z)] there is associated a bounded linear map W : L}(R%?) — L(H)
which assigns to each F' € L1(R?) the operator W(F) given by

(11a) W(F) = ff F(z,y)W(z + iy) dz dy.

The representation is said to be irreducible if there is no proper subspace
of H which is W(z)-invariant for all z. The basic example of such an irre-
ducible representation is the Schrédinger representation [L2(R), #(z)] where

(12)  (P(z + iy)¥)(t) = exp(2riyt + wizy)Y(t + ), V¢ € L*(R).
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The unitary symplectic representation [H, W(2)] is said to be a direct sum
of Schrédinger’s representations if

(a) H = @N_, H,, where N < 00 and H; = H, = ... = L*(R);
(b) for each k¥ < N and for all z € C, the subspace Hy = L?(R) is
W(z)-invariant and W(z)|g, = &(2).

In this case let m; be the orthogonal projection of H onto Hy, so that
the elements £ € H are denoted by £ = (m§,m€, ..), W(2)€ = (P(z)m&,
D(2)m2&,...), (§&,1) = X k(™€ Tkn)L2(R), and we write H = Qn, Hy =
2N, [H,W(z)] = [2n,¥(2)] = [N, (7k), ¥(2)], ¥(2) = Un(2).

The spectral theorem for symplectic representations, due to von Neu-
mann and Stone, says that

(1) all irreducible unitary representations of the symplectic plane are
unitary equivalent, so that there is essentially only one such irreducible
representation, [L2(R), #(z)];

(2) for every unitary representation [H,W(z)] there is an N < oo and a
unitary isomorphism U of H onto 2y under which the operators W(z) pass
into the &(z), Vz, i.e., [H,W(z)] is unitarily equivalent to [2x, ¥(2)].

Moreover, there is an explicit canonical procedure (see [F]) for construct-
ing the unitary map U : H — 2§ in (2), as follows. There is a fixed
Gaussian function 4 : R* — C (the same for all the representations) such
that the operator P = W‘y : H — H is an orthogonal projection of H
onto a subspace H., of dimension N, and such that if {h,, hs,...} is a fixed
orthonormal basis of H, and H,, is the closed subspace spanned by the ele-
ments {W(2)h, : z € R?}, then H = H, ® H, @ ... where all H;, ~ L%(R)
and the desired operator U is given by

(13) U(W(2)hp) = (617, 6n27,--.) € L} (R)® L2 (R)® ... = 2N,

where 6, =0 if k # n and §,, = 1.

In the case of Z there is an irreducible representation [H,, Uy(z)] for each
z€T, H, =C, Uy(z) @ z" = e'™ = e,(t), while the symplectic plane has
essentially only one irreducible representation z — &(z), so that in passing
from Z to [C, [, ]] we replace n € Z by z € C, and the functions e,(t) by the
operators #(2). Then the space V C L?(T) of trigonometric polynomials
Y, @nen(t) is replaced now by the subspace IT C L£(L?(R)) of the operators
A=Y, a(2)®(z), where a : C — C has finite support. A sesquilinear form
B:II x I — C is called Toeplitz if

(14) B(Q(Z)Al,Q(Z)AQ) = B(Al,Az), VA,,A; € IT and Vz € C.

It is easy to see that {#(z) : z € C} is a basis in IT so that B is determined by
the associated kernel Kg : CxC — C, defined by Kg(2,u) = B(9(2), $(u)),

and B(Y a(2)8(2), T b(w)8(v)) = ¥, T, a(2)b(u) K 5(2, u).
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If B is Toeplitz then Kg will be called symplectic Toeplitz, and in this
case we have
(14a) Kp(z,u) = e*l2¥ K (2, u),
where K(2,u) = K;(z — u) is ordinary Toeplitz.

Given a representation [H,W(z)], an element w € H and an operator
A = Y a(2)®(z) € II, we write A(W) = Y a(2)W(z) ~ a(W), H, =
{A(W)w : A € IT} and say that w is a cyclic element or a vacuum if H, is
dense in H. In particular [25,¥(2)] has a cyclic element w € 2y if 2, =
{A(W)w : A € IT} is dense in 2. In this case writing w = {mw, mw,...},
7w € L%(R), we have

(A1(P)w, A(F)w) = YD ax(2)az(u)(¥(2)w, ¥(u)w)

N
= E Z 0,1(2)02(“) E(Q(Z)ﬂ'kw, di(u)wkw),
z u k

=1

so that
(15) (Al(!F)w, Ag(!F)w) =Tr SA;AI,
where S is a positive trace class operator in L%(R), given by
(15a) S = Z(ﬂ'kw) ® (mrw).

k

Thus we have the following analogue of Theorem 1.2:

2.1. Ifw is a vacuum of [2n,¥(z)] then there ezists a positive trace class
operator S in L2(R) such that (15) holds for all A;, A; € II. Moreover, S is
given ezplicitly through w by (15a).

If B: II x I — C is positive Toeplitz form then, as in the case of V,
B gives rise to a cyclic representation [H, W(z)] ~ [2n,¥(2)], and Theo-
rem 2.1 gives

2.2 (I. Segal’s theorem [S]). If B : IT x I — C-(respectively, if K :
C x C — C) is a positive Toeplitz form (respectively, a positive definite
symplectic Toeplitz kernel) then there ezists a positive trace class operator S
in L*(R) such that

(16) B(A;,A2) = Tr SAS A, K(z,u) = Tr S&(—u)d(2).
Conversely, Theorem 2.1 can be obtained from Theorem 2.2 by setting
B(Al, A2) = (Al(!l'l)w, Ag(!P)w),

hence Theorems 2.1 and 2.2 are logically equivalent, where 2.2 is the ana-
logue of the Bochner theorem 1.1.
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The analogue of Theorem 1.3 is as follows. Let w be a cyclic element of
(2N, %(2)], 20 = {A(W)w: A€ M} and IT,, = {A € IT : A(¥)w = 0}. Since
P(0)w = w, #(0) € I1,, there is an algebraic linear projection @ of IT onto
I, such that (I — Q)®(0) = (0). The mapping A — A(¥)w maps IT onto
2, and IT, onto 0, hence its restriction to (I — Q)I7 is a bijection onto 2,
which takes #(0) onto w, and if I is the inverse of this restriction, then I"
is a bijection of 2, onto (I — Q)II. Hence

2.3. If [2N,¥(2)],w and S are as in 2.1, and I : 2, — II is a linear
injection such that writing I'f = £ we have w» = #(0) = I, then A = &N
implies £ = A(¥)w, so that

(17) (&;m) = Tr S(n")*¢", V& ne Q..
Setting 11}, = (I — Q)IT = I'(12,,), we have

(a1) & — &N = I'€ is a bijection of 2, onto IT.;

(by) for every integer k < N there is an element ¢, € L%(R), with
Yk llex]|? < oo, and a linear map v, : I/, — £2,, such that every A € IT/,
satisfies Aex = (7xA) ek = (71 A);

(c1) for every £ € 2, e, = 0> 7€ = 0.

Condition (b;) corresponds to the modified condition (b) mentioned in the
footnote (!). Furthermore, here we have I' instead of I, as in Section 1,
since in the case of the group Z there is an irreducible representation for each
z € T, while now there is only one irreducible representation repeated N
times, so that conditions (a;)—(c;) involve £ < N, but not 2.

Setting ex = myw and 7, A = A(¥)w for A € I/, we have (7, A)" =
(I -Q)A = A (since QA € IT,, v«(I — Q)A = vrA and i is injective on
IT!)) and in particular Ae, = (yxA) ex. Moreover,

Tr(1kA) = Tp(A(Y)w) = mp(A(Y)Tw, A(P)Tow, . . .)
= A(¥)mw = A(¥)er,
so that (b;) holds. Finally, if £*¢; = 0 then by definition of v there exists
A= (I-Q)AE II, such that £ = A(¥)w, and £* = A, hence
€ = T A(Y)w = m(ATMw, ..., ATw,...) = Amw = Agx = 0,

so that also (cy) holds.

If 2, is an arbitrary dense subspace of 2x, IT' a subspace of IT and
I : 2, — II' a map satisfying conditions (a;), (by), (c1) (with IT!, replaced
by IT"), then we say that I' is a weak directing functional of [2y,¥(2)], and
write £A = I'€.

24. If I' : £ — II' is an arbitrary weak directional functional of
[2n,W(2)], then there ezists a positive trace class operator S in L%(R) such
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that
(18) (&) =TrS(In)" () =TrS(n")"¢", V& ne
and S=(61®¢&1)+(2®e2) + ...

Proof. Setting, for a given £ € 2, & = € — 7k(€M), we have, by (b;),
Efer = Eex—(W(EM)) ek = EMer — € ex = 0, so that £l'ex = 0 and by (c1),
m€r = 0. Hence mp€ = mpye(€R) = &Mex by (by). Thus 7€ = £Pey,
V€ € 2, and Vk, hence

)= (m&,min) =) _(Erex,mler) = ) _((n™)*E ex, €x),
k k k

and setting S = (61 ® €1) + (62 ® €2) + ... we get the desired equality (18).
.

Since, as shown above, each cyclic element w has an associated directional
functional, Proposition 2.4 contains 2.2 as a special case.

Let now [H,W(z)] be an arbitrary unitary representation of the sym-
plectic plane and B : H x H — C a continuous positive form which is
W (z)-Toeplitz: B(W(z)¢,W(z)n) = B(£,n), Vz. Assume for simplicity
that B is strongly positive: B(§,€) > 0if £ # 0. Then (£,7)p = B(&,1) is
a scalar product in H giving rise to a Hilbert space H? such that H is a
dense subspace in HB. Since B is W(z)-Toeplitz, all W(z) extend to uni-
tary operators in HB, so that [HB,W(z)] becomes a unitary representation
of the symplectic plane. Since B is continuous, the convergence in the norm
of H implies that in the norm of HB, and every subspace H; C H, dense
in H, is dense in HB. Since the integral ([ W(z)y(2)dz)¢ (where 7 is the
Gaussian function used in (13)) converges in the norm of H, it converges
to the same limit in the norm of HB, thus if PB is the orthogonal projec-
tor corresponding to [H B, W(z)] (see the construction preceding (13)) then
PB = P on H. The above orthonormal system (h,) in H, may not be
orthogonal in H 2B, but since (h,) is complete in H., C H, it also generates
the closure H., of H, in HB, and orthogonalizing (h,) we get an orthonor-
mal basis (hB) for H, = HP where the h2 are expressed through the h,
by explicit formula of the Schmidt procedure. Thus the elements W(z)h2
span in HB the subspace H? such that H2 = HP @ HE @ ... and U5,
defined by UB(W(2)hB) = (6n17,6n27,...) = U(W(2)h,) gives as in (13)
the canonical unitary map of [HB, W(z)] onto [22x, #(2)]. This shows in the
first place that £y is the same for [H2,W(z)] and for [H, W(z)], so that
[HB,W(z)] = [2n,®(2)] = [H,W(z)] through the isomorphism U and UB.
Moreover, knowing the spectral decomposition of [H, W(z2)], i.e. knowing U
through the h,,, we can write by explicit formulae the spectral decomposition
of [HB,W(z)] = [2n, ¥(2)] through the AP and UB.
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In particular, if w is a cyclic element of [2y,®(z)] then pB = (UB)-1p
gives a linear map of IT onto a dense subspace of HB, and (4;,4;) —
(pBA;,pBA;y) s gives a positive Toeplitz form in IT. Therefore,

2.5. There is a positive trace class operator S in L*(R) such that
(19) (pBA1,pBA)ys = Tr SA3A;, VA, A€l

In particular, from the explicit formula relating (h2) to (h,), we obtain
a representation of B(A;hB, A;hB) through §. Without going into details,
we may state the following proposition:

2.8. Let [H,W(2)] be a symplectic representation with spectral decom-
position [H,W(z)] 2 [2x,D(z)], and let w be a cyclic element in 2y and
B : H x H — C a continuous positive W(z)-Toeplitz form. Then B can be
ezpressed ezplicitly by a formula of type (16) through a trace class operator S
in L*(R). Similarly, any weak directing functional defined in the linear span
of the elements {W(z)h,} can be transferred to the elements {W(z)hEB},
providing a formula of type (18) for B(&€,7n) = (€,7)B.

Now the crucial difference between the representations of the symplectic
plane and those of the group Z (or other commutative groups Z", R") is
the following property which follows from 2.6 and the results proved in the
Appendix.

2.7. Every unitary representation [2xy,P(2)] has a cyclic element w,
and in particular also directing functionals. Thus if [H,W(z2)] is an arbi-
trary symplectic representation and B : H x H — C a continuous positive
W(z)-Toeplitz form, then B can be given ezplicit representations of type (16)
or (18) through a trace class operator S in L*(R).

Asin (5) and (5a), it follows then that Segal’s theorem extends to positive
Toeplitz forms B : 112 x I1? — C, I1* = II x II, through four operators (S;;)
in L?(R) such that (S;;) > 0 in an obvious sense, and 2.2 and 2.4 extend to
forms B : H x H — C, since [H, W(z)] has always a cyclic pair (w;,w;) and
IT2-valued weak directing functionals.

Let us pass now to the GBT for symplectic representations. Let

I = {A =Y a(2)®(z) € IT : suppa(z) C {z=(z,y) €R?: 2 >0,
_ y 2 0}},
(20) 1Tz = {3 a(2)®(2) : suppa(z) C {(2,y) : ¢ < 0} U{(z,y) : y < 0}},
Iy = {$ a()®(z) : suppa(z) C {= < 0}},
22 = {3 a(2)9(2) : suppa(z) C {y < 0}},
so that IT, = II5; + IT,,.

A sesquilinear form By : II} X II; — C is said to be Hankel if there
exists a Toeplitz form B : IT x I — C such that By = B in IT; x II,.
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As in Section 1, fix two positive Toeplitz forms and define the relations
By < (Bl,Bz) in IT} x I, or in II; x II,,, and By < (Bl,Bz) in IT x II.
Then from the general 2-parametric lifting theorem given in [CS3], we obtain

2.8 (Lifting theorem for bounded Hankel forms in 1Ty x II;). If By :
II, x I, — C is a Hankel form satisfying By < (B, By) in II; X II,, then
there ezxist two Toeplitz forms B' : I x I — C, B" : Il x I — C satisfying
B' < (B4, B;) and B" < (By,B;) in IT x II, and such that By = B’ in
I, x I3, By = B" in II; X II,,.

From 2.8, and the preceding discussion we get

2.9 (GBT for Hankel forms in IT; X II3). If By : I, x II; — C is Hankel
and satisfies By < (By, B3) in II X II;, then there exist four trace class
operators (S};), and four trace class operators (S!:), i,j = 1,2, satisfying
(5%;) =0, (S}%) >0, such that

By < (Al,Az) =Tr S{zA;Al fOT (A],Az) € Il x Iy,
By < (Al,Az) =Tr S{'zA;Al for (Al,Az) € I, x I,
B; < (Al,Az) =Tr S:.-A;Al =Tr S::A;Al, in II; X H.’,

1=1,2.

Let [H,W(z)] be an arbitrary unitary representation of the symplectic
plane and H,, H, two subspaces of H such that

W(z)Hy C H, if z=(z,y)withz>0,y>0,
W(z)Hy C Hy, if z=(z,y) withz<0,y<0.

Set Hyy = {f € Hy : W(z+1y)f € Hyif 2 < 0}, Hyy = {£ € H, :
W(z +iy)€ € Hy if y < 0}. By : Hy X Hy — C is said to be Hankel if there
exists an W(z)-Toeplitz form B : H x H — C such that By = B in Hy X H,.
Fixing two positive W(z)-Toeplitz forms By, B; : H x H — C we shall have
the lifting theorem:

(22) if the Hankel form By satisfies By < (By, B2) in Hy X Hy then there
ezist two Toeplitz forms B', B" such that B' and B" are < (B, B2)
in H x H and By = B' in H12, By = B" in H21-

From (22) it follows that one can write explicit formulae, similar to those
of 2.9 for bounded Hankel forms in H; x H;, for arbitrary symplectic repre-
sentations [H, W(z)], where we can always fix a cyclic pair or a weak direct-
ing functional. We shall not go into explicit formulae here, and only add the
following remark. Of special interest is the representation [H, W(z)] where
H = L?(L*(R)) = the space of all Hilbert-Schmidt operators X : L*(R) —
L*(R) with scalar product (X,Y) = Tr Y*X, and W(2)X = &(2)X.
The GBT for this representation [L2(L%(R)), W(z) = &(z)] was stud-
ied in [CS3] through the following substitute of Segal’s theorem: if B :

(21)
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L2(L%*(R)) x L2(L%*(R)) — C is a continuous W(z)-Toeplitz form, then there
exists a trace class operator S in L%(R) such that B(X,Y) = Tr $;Y*X.
Instead, in the present treatment of this case, we have B(X,Y) = Tr SAj A,
for certain A;, A; € II; there S can be explicitly written through a cyclic
element which we know always exists, while the above operator S; is not
given explicitly. In some applications the version of [CS3] may be more suit-
able, and in others the one given here is better. Moreover, the version given
here, based on the existence of cyclic elements, applies to all representations
[H,W(z)] and not only in the case when H = L%(L%(R)), W(z) = &(2), and
to obtain this was the basic aim of this paper.

Appendix. Our results depend on the fact that every unitary repre-
sentation of the symplectic plane has a cyclic element. Lacking an explicit
reference for this fact, we reproduce here a proof by Nolan Wallach [W] of
a more general proposition.

Let G be a group and let (7, H) be an infinite-dimensional, irreducible,
unitary representation of G. Let H,, be a countably infinite direct sum of
copies of H and let 7, be the corresponding diagonal representation of G.

PROPOSITION. Let {v,} be an orthonormal basis of H and let A € R be
suchthat 0 < A< 1. Setw=v19 A, D N038...9 A" 10, P... Thenw
ts a cyclic vector for T.

Let us first recall a finite-dimensional result that contains all but one
of the ideas for the general case. Let G be a group and let (w,V) be a
representation of G with dimV = n < oco. Let V" be a direct sum of n
copies of V' and let 7™ be the corresponding diagonal representation of G:

(@) (1 ®..®vp)=7(g)1 ®...0 7(g)vn.
LEMMA. If {v1,...,v,} is a basis of V thenw = v, @ ...® v, is a cyclic
vector for ™.
Proof. Suppose that A € (V*)* and that
(A.1) Am*(g)w)=0 forall g €Q@q.
Let {v}} be the dual basis to {v;}. Let A = A1 @...® ;. Then \; =
>, Ai(vj)v;. Thus (A.1) implies that

(A.2) ) Ai(v)v;(r(g)v:) =0 forall g € G.

Let A be the linear operator on V with matrix [A;(v;)] relative to the basis
{v;}. Then (A.2) says that Tr(An(g)) = O for all ¢ € G. Since 7 is
irreducible, the span of all 7(g), g € G is End(V). Thus A=0s0 A =0. =
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We now modify this argument so that it applies to the infinite-dimen-
sional case.

Proof of the Proposition. Let u € Hy be such that (rm(g)w,u)
=0forallg€ G. Now u =u; Qu; ... Write u; = Ej(u,-,v_,-)vj. Then
our assumption says that

(A.3) z(v,-,u,-) (v(g)A"1v;,v) =0 forall g € G.

Let A be the operator on V with matrix (v;, u;) relative to the basis {v,}.
Then A is of Hilbert—Schmidt class with HS-norm 3=, . |(u;, )2 = %, lluill?
= ||A||%s- Let D be the operator such that Dv, = A"~!v,. Then (A.3) says

Tr(x(9)D)=0 forall g€G.

Notice that this makes sense since both A and D are HS.

We now recall the von Neumann density theorem. Let .A be the algebra of
operators on H generated by the x(g), g € G. Let T be a bounded operator
on H,let € > 0 be given and let z; € H be such that ¥ ||z;]|> < co. Then
there exists A € A such that

E (A = T)zi|f? < e.

Apply this result to see that u = 0. Let z; = A*~1v;. Let ¢ > 0 be given
and let A, € A be such that Y. ||(Ac — A*)z;||> < £. Now (A.3) implies
(A.4) Tr (A(A* — A.)D) = Tr (AA*D).

On the other hand, Tr (A(A* — A,)D) = 3 ,(A(A* — A.)zi,v;). So

ITr (AA*D)| < Z_: (A(A* — Ao)zi,v)| = Z: (A% = Ac)zi, A%v3)|
< Z (A* = Ae)zs]| - ||A%vi]l.

Observe that if z,y > 0 then zy < €1/222 4 £~1/2¢42, Thus
ITHAA*D)| < €'/2 ) |A%0j|I* + €71/ Y _I(47 - Ao)z;)°
j J

< e Alihs +€'/2.

Hence Tr (AA*D) = 0. Now D = EE*, with Ev, = A»~1)/2y_ . Thus
Tr ((E*A)(E*A)*) = 0. So E*A = 0. This implies that A(*-1/2(y;, v;) = 0
foralli,5. Sou=0. =

Remark. The preceding argument actually shows that w = a;v; @
a2 @D ...0 a,v, @ ... is cyclic whenever {a,} € I? and a,, # 0 for all n.
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