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1. Introduction. Let G be a group and let (@) denote the collection
of all finitc non-empty complexes (subsets) of G. For A, B € F'(@) the set
product of A and B is defined by

AB ={ab | a € A, b e B}.

If A e F(@), then |A]| denotes the cardinality of the set A. In [3],
p. 5, Theorem 2.2, and [6], p. 14, Exercise 2.11, it is stated incorrectly
that

(1) |AB||ANB| = |A||B|

for any two complexes A and B of G. The truth of this identity would
imply that

(2) |AB| = |BA|

for all complexes A and B, and this equality does not hold c¢ven in the
symmetric group S;. Of course, (1) does hold in case where A and B are
finite subgroups of G. In this note * we prove that if (2) holds for all 3-ele-
ment subsets 4 and B, then G must be Abelian. We characterize those
groups in which (2) holds for all 2-element subsets, and those groups in
which (2) holds for all 4-element subsets. The quaternion group @ of or-
der 8 plays a central role in our development. In Section 4 we prove that
||AB,— |BA|| <1 for all A, BeF(@) if and only if @ is Abelian or the
quaternien group Q.

2. Preliminaries. We say that a group G satisfies condition u(k) if
|AB| = |BA| for all 4, B € F(@) such that |A| = |B| = k, and @ satis-
fies condition u(0) if |AB| = |BA| for all 4, Be F(@). If 4 € F(G) and
x € @, then the set x4 (Ax) is called a left (right) translate of A. The left
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(right) translation classes form a partition of F(G@). The center of G will
be denoted by Z (@), the centralizer in @ of # € @ by C(z), and the normal-
izer of A € F(@) in @ by N(A). For z € @, {z) denotes the cyclic subgroup
generated by z. If A e F(G), then A~ = {a™'|a € A}. For subsets X
and Y of @, X\ Y denotes the set of elements of X that do not belong to Y.
The quaternion group of order 8 is given by

Q =<a,b | a*=0b*=1, a® =0, ba = a*b).

The following list contains some of the properties of @ that will be
needed for our exposition.

(1) If A eF(Q) and |A| =2, then the left and right translation
classes of A are identical.

If this property holds for every 2-element subset of a group @, then
we say that G satisfies condition 6(2).

(2) The group @Q satisfies condition x(2).

To see this, let A, B € F(Q) be such that |4| = |B| = 2.Then A = z4,
and B = yB,, where 4, = {1, #,} and B, = {1, y,}. It is easy to verify
that |4,B,| = |B,4,|. Then

|AB| = |vA,y B,| = |2zA, B,| = |4, B,|
and
|[BA| = |yB,2A,| = |ywB, A,| = |B,4,|.
Thus |AB| = |BA|.
Note that this argument is valid for any group that satisfies condi-
tion 4(2).
(3) @ does not satisfy u(3).
Let A = {1, a, b} and B = {a%, b, ab}. Then |[AB| =7 and | BA| = 6.
(4) @ does not satisfy w(4). '
Let A ={1, a,a? b} and B = {1, b, ab, a®b}. Then |4AB| =7 and
|BA| = 8.
(5) Mann proved in [6], Theorem 1, that if A, B € F(@), then either
AB =@ or |A|+ |B|< |G|. It follows that if |G| < 2k, then G satisfies
u(k). Thus @ satisfies u(r) for r > b.

3. Set products and the conditions u(k).

LEMMA 1. If G = Q XV, where V- is an elementary Abelian group of
exponent 2, then G satisfies condition 6(2).

Proof. Let A = {a,2,, a,x,}, where a,,a,€Q and @,,2z,€ V. Let
asvy € G. If a, = a,, let a3a, = a,a,. Then a;z,4 = Aa,x;. Suppose that
a, # a; and let a{a;, a;} = {a,, a,}a,. I a0, = a,a, and aza; = a,a,,
then a;z; A = Aa,r;. In the other case we have aza, = a,a, and agag
= a,a,. Then

a, 2, A = Aa,x,2, 2,.
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THEOBREM 1. For a group G, the following are equivalent:
(i) G satisfies condition u(2).
(ii) @ ts Abelian or G is Hamiltonian of the form @ xV, where V is an
clementary Abelian group of exponent 2.
(iii) G satisfies condition 6(2).
Proof. (i) = (ii). Suppose that G is not Abelian and let =,y €@
be such that zy # yz. Then

fe, 9} {1,y 's} ={2,y, vy~ a}
and
L,y o} {m, 9} = {z,9,97'", y™ ay}.

Thus y = y~'2?% and so y* = 2°. Now xy® # y°», and thus y°® = o?
= 92, Therefore, y ¢ Z(G) implies y* = 1. Clearly, then y* =1 for all
y €G. Now let x €G. If y ¢ C(x), then ay ¢ O(z), and so (vy)® = 2? = y°.
Thus syry = y%, and 8o yoy~' = 2! = 2 It follows that (&) is normal

in @. Thus @ 4s Hamiltonian with no elements of odd order. By [4], Theo-
rem 12.5.4, p. 190, G = Q@ XV, where V is a group of exponent 2.

That (ii) implies (iii) is the content of Lemma 1. The fact that (iii)
implies (i) is noted after the proof of fact (2) concerning the quaternion
group @.

THEOREM 2. A group G satisfies condition u(0) if and only if G i8 Abelian.

Proof. x(0) implies x(3) and x(2). By (ii) of Theorem 1, @ is Abelian
or @ = Q xV. Since @ does not satisfy u(3), G is Abelian.

LeMMA 2. If a group G satisfies u(k) for some natural number k> 3
and if

|G| > p(k) = 2(k—1)*+2(k~1)*+(k —1),
then G satisfies u(r) for all r such that 2 <r < k.

Proof. It suffices to show that G satisfies u(k—1). Let 4, B e F(Q)
be such that |A| = [B| = k—1. Let

C = AUABB™'UB™'BA
and choose z e G\C. Let
D =BUA'ABUz~'ABUA™'xBUBAA*UBAxz~"'UBzA"!

and choose y e @\ D. This choice of # and y can be made since |G| > p(k)
and p(k) is an upper bound for [C| and |D|. Then

(Auz)(Buy) = ABUsBU Ayusy,
(Buy)(Auz) = BAUBzUyAVyz.

The choice of # and y guarantees that the unions above are disjoint.
Thus |[AB| = |BA|, and so @ satisfies condition u(k—1).
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THEOREM 3. If G i8 an infinite group satisfying u(k) for some natural
number k > 3, then G is Abelian.

Proof. By Lemma 2, G satisfies x(3) and ux(2). By Theorem 1 (ii),
G is Abelian since @ does not satisfy u(3).

LeMMA 3. The dihedral groups D, do mot satisfy u(k) for n=>%k = 3.

Proof. Let
D, =<a,b | a® =¥ =1, ba =a""'b).

Let
A = {1’ a,a, ..., a’k—27 b}1 B = {17 b’ ab’ a?b, ..., ak_zb}.

Then, if n > 2k —4,
| |AB] = 4k—6 and |BA| = 3k—4 < 4%—6.
Tf n < 2k—4, then
[AB| =2n and |BA| =n+k-=1<2n—1 <a2n.

LeMMA 4. If G 18 a group satisfying u(k) for some natural number
k> 2 and if H is a subgroup of G such that |H| > k and [@ : H] > k, then H
is normal in G. '

Proof. Suppose that H is not normal in @. Then there exist g €@
and & € H such that ghg~' ¢ H. Thus the cosets H, Hg, and Hgh are distinct.
Let the cosets Haz,, ..., Hz;_, be distinet and different from H, Hg, and
Hgh. For k =2 let A = {g,gh} and B = {1, h}. Then |[AB|< 3 while
|[BA| = 4. Suppose that £ > 3 and let

A ={1,9,0h, 21y ..., Tp_g}.

Choose distinct elements hy, ..., h;_, € H different from 1 and &,

and let
B == {1, h, hl’ ceey hk_2}.

Then |BA| = k* while |[AB| < I*—1, since we obtain gh € AB in at
least two ways.

THEOREM 4. A group G satisfies u(3) if and only if G is Abelian.

Proof. Because of Lemma 2, if |G| > p(3) = 26, then @G satisfies
#(2), and so @ is Abelian. It remains to consider those groups G for which
|G| < 26. The non-Abelian groups of orders 6, 10, 14, 22, and 26 are di-
hedral, and so, by Lemma 3, do not satisfy 4(3). The non-Abelian groups
of order 8 are @ and D, neither of which satisfies x(3). If |G| = 12, then,
by Lemma 4, the 2-Sylow subgroup and the 3-Sylow subgroup are normal,
and so @ is Abelian. A similar argument is valid for groups of order 20,
21, and 24. Thus we have left to consider groups of orders 18 and 16.
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Suppose that |G| = 18. Let H be the normal 3-Sylow subgroup of @&
and let b € G, where o(b) = 2. By Lemma 4, a subgroup of order 3 is normal
in G. Let o(a) = 3. Then {a, b) is either Z, or D;. Since D, does not satisfy
1(3), we have <a, b) = Z,, and 80 ab = ba. If H = Z3 X Zs, then b € Z(@).
Hence all subgroups of G are normal and G is Abelian. Suppose that H = Z,
and let H = {x). Then b 'a%b = &3, and so b 'ab = x, 2%, or &". Also
x = b~ *xb®, These conditions imply b~'xb = 2. Thus beZ(@) and G is
Abelian.

Suppose that |G| = 16. By Lemma 4, subgroups of G of order 4 are
normal. Subgroups of order 8 are also normal. Suppose, by the way of
contradiction, that ¢ is not Abelian. Note that G is not Hamiltonian.
Thus there exists a b € @ such that o(b) = 2 and <(b) is not normal in G.
Let x € @ be such that 27 'bx # b. If a € G and o(a) = 4, then {a) is normal
in @. Also b # a® Thus, if N = {a,d), then |N| = 8, and so ab = ba.
Now, if y ¢ N implies o(y) = 2, then o(2b) = 2 and #~*bx = b, contrary
to our supposition. Thus we may assume that o(x) = 8. Then o(2%) = 4,
and so bx2b~' = x2. Thus bxb~' = a° or 2". If bab™' = &', then G = (x, b)
is isomorphie to Dy, a contradiction. Thus bab~' = #°, and so

G =<{2,b) ={&,b | 2® =0 =1, bz = 2°b).

Let A = {1,b, #b} and B = {w, 42, 2b}. Then |AB| = 9 and |BA| = 6,
and G does not satisfy u(3).

THEOREM 5. A group G satisfies u(4) if and only if G is Abelian or
G = D,.

Proof. By Theorem 1 of Mann [56], D, does satisfy (4. By Lemma 2,
if |G| > p(4) = 75, then G satisfies u(3) and ux(2), and so @ is Abelian,
There remains to consider those groups @ for which |G| < 75. Many of the
cases follow easily by the use of Lemmas 3 and 4, and the Sylow theorems.
The cases for which |G| = 16, 32, or 64 are handled in essentially the same
way as the case |G| = 16 in the proof of Theorem 4. We include here 3
of the cases that are more or less representative of the several cases that
must be considered.

Let |G| = 18 and suppose (by the way of contradiction) that @ is not
Abelian. Let H be the normal 3-Sylow subgroup of G and let b € G, where
o(b) =2. If H = {x), where o(x) =9, then bzb~' = 2* and G = D,;
but D, does not satisfy u(4). Thus H = Z; xZ,. If there exist ¢,y e H
such that o(z) = o(y) =3 and bwb™" =y ¢ (@), let A = {1, z, 22, b} and
B -- {1,b, xb, 22b}. Then [AB| = 8 and |BA| = 12, a contradiction. Thus
we may suppose that bzb~! = 2 for all x € H. Let y € H\ (). Then, if
we let A = {x, 22, 2y, zb} and B = {1, b, 2b, yb}, we have |AB| =10
and |BA| = 12. Thus a group of order 18 satisfying x(4) must be Abelian.
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Let |G| = 24. We know that groups of order 12 that satisfy u(4)
are Abelian. Let H be a 2-Sylow subgroup and J a 3-Sylow subgroup.
Now H is Abelian as D, and @ do not satisfy u(4). Let K be a subgroup
of order 4. Then, by Lemma 4, K is normal in G. Thus KJ is an Abelian
subgroup of G of order 12. Therefore, KJ < N(J), and so J is normal
in G. Now let L be a subgroup of order 2. Then L is contained in a 2-Sylow
subgroup M of G. Since M is Abelian, M < N(L). Let M, be a subgroup
of M containing L, where |M,| = 4. Then M, J is Abelian, and so J < N (L).
Thus L is normal in @. If H contains distinct subgroups of order 4, then H
is normal and G is Abelian. Otherwise H is cyclic (see [2], Theorem VI,
p. 132). Let H = {x) and J = {(a). Then 2 'axr = a?. Thus

QG =<a,z|2®=a=1, ar = za®).

Let A = {x, 22, 23, za} and B = {a, za, 2%a, a’}. Then |[AB| =10
and |BA| = 12. Thus a group of order 24 satisfying u(4) is Abelian.

Let |G| = 27 and suppose that G is not Abelian. Then we have the
following two cases (see [6], Problem 5.42, p. 94).

Case 1. We have
G=Ca,b|a=b0=1,0"ab = a*).

Let A = {a, a*, a®, ab} and B = {b, ab, a%b, b*}. Then [AB| = 11 and
|BA| = 13.

Case 2. We have
G =da,b,c| a®=0=c*=1,ca = ac,chb = be, ab = cha).

Let 4 = {1, a,a?, b} and B = {b, ab, a®b, b*}. Then |AB| =9 and
|BA| = 15.

We have not pursued the conditions u(k) for k¥ > 5. In order to do
80, it would be worth-while to sharpen the inequality in Lemma 2. As
the value of % is increased, we will of course find groups of small order
that satisfy u(k). For example, Dy, D,, and Q satisfy x(5). In closing this
section, we ask the following question:

Is there a non-Abelian group G that satisfies condition u(k) (k > 5),
where |G| >2k? (P 1165)

4. Set products and condition ¢(1). We say that a group @ satisfics
ondition ¢(1) provided that

|l[4B|—B4|| <1

for all 4, B € F(Q). In this section we prove that the only groups that
satisfy (1) are the Abelian groups and the quaternion group @ of order 8.

LEMMA 5. If a group G satisfies condition £(1), then every finite sub-
group of G is normal.
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Proof. Let H be a non-trivial finite subgroup of @, and suppose that
H is not normal in G. Then there exists an @ € @ such that Ha # aH.
Without loss of generality, we may assume that aH & Ha. Let ¢ € aH\ Ha.
Then z # a. Now

{xya}H =axHvaH =aH and H{z,a} = HxzUHa.
Consequently, Hx # Ha since ¢ ¢ Ha. Thus
| H{z, a}| - |{z, a}H|| = |H|>2
contradicting the supposition that G satisfies condition &(1).
LEMMA 6. If @ i3 a non-Abelian group satisfying condition s(1), then G
t8 Hamiltonian.

Proof. Suppose y €@ is such that {y) is not normal in G. Then,
beeause of Lemma 5, we have o(y) = oo. Let £ €e G\ N ({¥)). Then zy +# yx.
Now

{z,9}{1,27'y,y7'0} = {o, 9,927y, 2y "2}
and
a7y, v o}z, 9} = {=,y, 27 Y2, 27"y, g7 0%, Y )

Thus at least two of the words of the second product must be equal.
Only the following 4 equalities are consistent with the assumption that
xy + yx:

(1) ¢ = 2 'y® which implies z? = ¥?2;

(2) 2 'yx = y '@ which implies z7'y = y~'x;

(3) #7'yr = ylay;

(4) o7'y? =y~ 'at,

Now «(xy) # (xy)x and replacing y in (1)-(4) by xy we infer that
at least one of the following equalities must hold:

(1) a* = (xy)?;

(2') ™ (ay) = (xy) '3

(3") z7 @y e = (vy) " x(xy);

(4') &7 (ay)? = (xy)" 2

Now (1’) implies ™'y~ ' = y, and so cannot hold under the assump-
tion that x ¢ N({y)>). Equality (2’) implies y* = 1 contrary to the fact
that o(y) = oo. Thus one of (1)-(4) holds and (3') or (4') holds We present
here only 2 of 8 possible cases.

Case 1. Suppose that (2) and (3’) hold. Then =z~ 'y =y~ 'z and y=»
=y 'xy. Thus y3z~'y = y2x = zy, and so y® = a2 Also z 'yxr =y~ 'a®
= y2. Thus

= (@7'ya)® = a7 'y*0 = 2* = y?,

contradicting the supposition that o(y) =
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Case 2. Suppose that (4) and (4') hold. Then 2~ 'y? = y~'22 and
yay =y 'x. Thus y2zy = 2, and so y~ w"y"2 = 2~ !, Therefore, y 'z}
=27 'y = y~'2? and so 2® = 1. Then y 'zy = a2, since {(z) is normal
in G and xy # yxr. Thus z 'y® =y 'a?y =z, and so y® = a2, which
implies ¥*> = 1 .contrary to the assumption that o(y) = oo. Thus every
cyclic subgroup of @ is normal, and so G is Hamiltonian.

THEOREM 6. The only groups that satisfy condition ¢(1) are the Abelian
groups and the quaternion group Q of order 8.

Proof. Suppose that G satisfies ¢(1). Then, by Lemma 6, G is Abelian
or Hamiltonian, Suppose that G is Hamiltonian. Then G = @ XV, where
V is Abelian. Suppose that V 51 and let x eV, ¢ # 1. Let A4 and B
be the 3-element subsets of @ as given in (3) of Section 2. Then [AB| =7
and [BA| = 6. Let C = AVAx and D = BU Bz. Then '

= (AVAz)(BUBz) = ABUABzU ABx?
and .
= (BUBz)(AVAzr) = BAUBAxUBAx2.

If 2 = 1, then |CD| = 14 and |DC| = 12. If 2 # 1, then |CD| = 21
and |DC| = 18. Thus the only possibility is that G = @. The fact that @
does satisfy condition ¢(1) can easily be verified on a computer. We offer
our thanks to Professor Albert Newhouse for his help in writing the
program.

We end this note with the observation that one could consider con-
ditions (k) for ¥ > 2. As the value of k is increased, the groups of small
order will, of course, satisfy ¢(k). For example, 8; along with @ and the
Abelian groups satisfy &(2). The dihedral group D, does not satisfy ¢(2).

REEFERENOES

(1] R. Baer, Situation der Uniergruppen und Strukiur der Gruppe, Sitzungsberichte
der Heidelberger Akademie der Wissenschaften, Mathematisch-Naturwissen-
schaftliche Klasse, 2 (1933), p. 12-17.

{2] W. Burnside, Theory of groups of finite order, 2nd edition, New York 1955.

[3] D. Gorenstein, Finite groups, New York - Evanston - London 1968.

{4] M. Hall, The theory of groups, New York 1959.

(51 H. B. Mann, On products of sets of group elements, Canadian Journal of Mathematics
4 (1952), p. 64-66.

(6] J. Rotman, The theory of groups: An introduction, 2nd edltlon, Boston 1973.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF HOUSTON
HOUSTON, TEXAS

Regu par la Rédaction le 18. 11. 1977



