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Let X be a compact metric space and T be a homeomorphism of X
onto itself. The trajectory x(j) = T’ x of a single point x can be viewed as an
X-valued function on the group of integers. In this paper we study the
trajectories that are almost periodic in the sense of Weyl (W-a.p.). A well-
known subclass of W-a.p. trajectories consists of the uniformly (or Bohr)
almost periodic ones. These are just the equicontinuous (or L-stable)
trajectories, which always have a unique invariant measure u (unique
ergodicity) as well as the property that the unitary operator induced by T on
L?(u) has pure point spectrum (discrete spectrum). In Section 2 we prove that
both properties are preserved in the W-a.p. case (Theorems 1 and 2).

The unique ergodicity of W-a.p. trajectories is obtained by means of an
approximation argument for vector-valued W-a.p. functions while the discrete
spectrum is a consequence of the Wiener and Wintner theory of sequences
having a correlation [17].

In symbolic dynamics, an important class of W-a.p. trajectories are the
regular Toeplitz sequences of Jacobs and Keane [8]. Our Theorems 1 and 2
extend Theorems 5 and 6 in [8], respectively. Another class of examples is
related to the uniform sequences of Brunel and Keane [4] derived from the
unit circle and is obtained via R-a.p. functions considered by Hartman and
Ryll-Nardzewski [6]. The latter class contains, in particular, the Sturmian
dynamical systems ([7], [10]). The unique ergodicity of Sturmian systems
was shown by Klein in [10]. We prove (Section 3) that their discrete
spectrum is always irrational.

Finally, we note that nonperiodic Morse sequences [9] are never W-a.p.
(Proposition 3). This observation provides us with a vast class of symbolic
dynamical systems that are uniquely ergodic and have discrete spectrum
without being W-a.p.

The author would like to thank Professor S. Hartman for many helpful
remarks.

1. Almost periodic functions. A subset S of the integers Z is called
syndetic (or relatively dense) if it has bounded gaps in Z. The class of all
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syndetic sets will be denoted by %. A function g from Z into a complete
metric space (X, d) is called uniformly almost periodic (u.a.p.) if

Ve>03Se¥ VseS supd(g,()), 9(i)) <e,
j

where g,(j) =g(j+s). The range of a u.a.p. function is easily seen to be
relatively compact. If (X, d) is the complex plane, the u.a.p. functions are the
classical almost periodic functions of Bohr (in classical theory, however, u.a.p.
functions are usually defined on R rather than Z). Abstract a.p. functions
were first considered by Bochner [3].

For every LeN the Stepanoff distance D5, between two functions Z

— X is defined by the formula
Ds, (g, h) = sup VIt Y d(g (), h()),

jed
where the supremum is taken over all intervals J of length L in Z. Now a
function g: Z = X is called Weyl almost periodic (W-a.p.) if

Ve>03LeN 3Se¥ VseS Dy, (g, g) <e.

Clearly, every purely periodic function is u.a.p. and u.a.p. functions are
W-a.p. The classical W-a.p. functions were introduced by Weyl in [16] (see
also [2] and [15] for properties of classical W-a.p. functions).

It is easy to verify that for k <!/

DS,(g9 h) < (1+k/I)DSk(g’ h),

whence, in the definition of W-a.p. functions, D5, <e can be replaced by the
condition Vk > L D5, <e. Moreover, it suffices to consider the intervals J of

the form {0, 1, ..., k} (see [15], Section 3). For bounded functions another
equivalent definition reads

Ve>03LeN 3Se¥ VseS |{jed: d(g,(j), g()) > e}|/W| <e

for every interval J of length > L in Z.

It should be noted that the notion of almost periodicity is independent
of the choice of a uniformly equivalent metric on X. Recall that every
compact metric space embeds homeomorphically into a Hilbert space.

The following proof is based on an approximation argument ([2],
Chapter 2, Section 4).

LEMMA 1. Let g be a W-a.p. function taking values in a compact convex
subset K of a Banach space. Then for every ¢ > 0 there exists a K-valued
u.a.p. function h such that Ds, (g, h) <& for some L.
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Proof. We let d(x, y) =||x—y|| in K. Now choose S € ¥ with gaps <m
and LeN such that Dg (g,, g) <& for s€S. There exists a bisequence t;€S

(j€Z) with
tyedjm, ..., (j+1)m—1}.

The set J = {t;: jeZ} is syndetic with gaps <2m. By compactness and
using diagonal procedure we can find a sequence T, = co such that

hmIJ,,l" Y g+t =h()eK
te,

exists for every jeZ, where J,=Jn{-T,, ..., T,}. We have

k+L-1 k+L-1

L't ¥ llg®—hOll < llmIJ,.I' LYY llgti)—gG+ol

i=k ted,, i=k

llm IJ.l =" 3 Ds, (9, g) <,

teJ,

so Dg, (g9, h) < e. It remains to show that h is a u.a.p. function. Given § > 0,
there exist Pe.% and /eN such that

DS,(gs’ g) < 6/2"1
for all s in P. By the definition of A,

IhG+s)—h0)lI < llmlJ..l P2 llgG+s+—gG+ol

teJ,

Ty

< lim |Jl (2T+1)‘ Y lgG+s+0)—g(i+ol.
n n t=-T,

Since (2T,+1)/|J,| & m, and 2T,+1 > | implies

T,
QT +1)™! ,-Zr llgj+s+1)—g(+0)ll < 2Ds,(gs, 9),
we obtain "
Sl}pllh(j+8)—h(l)ll < 2mDs, (g5, g) <
for all seP.

The Weyl distance Dy between two functions from Z into X is defined
by the formula

Dy (g, h) = ii"fn'DsL(g, h)

(cf. [2], II, Section 2). It is clear that a Dy-limit of W-a.p. functions is itself
W-a.p. Consequently, Lemma 1 characterizes vector W-a.p. functions with
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relatively compact range as Dy -limits of u.a.p. functions (hence of trigonome-
tric polynomials, see [12], II, Section 2).

By Bochner’s criterion, a Banach space valued function g: Z = E is
u.a.p. iff its orbit {g,: s€Z) is relatively compact in the space of E-valued
bounded sequences with supremum norm. An easy consequence of this fact is
that the functions g;: Z = X, (i =1, 2, ...), where the X; are compact metric,
are u.a.p. iff the diagonal function

g=91,92..): Z _’nxi

is ua.p. (cf. [12], I, Section 2). We generalize this to the case of W-a.p.
functions. '

LEmMMa 2. Let g;: Z — X; with (X;, d;) compact metric, i =1, 2, ... Then
the function g =(g,, g2, ...) is W-a.p. (u.a.p) iff each g; is W-a.p. (u.a.p.).

Proof. It suffices to prove the sufficiency in the W-a.p. case. Assume
d; <1 and endow X =[] X; with the metric d =) 27'd;. Without loss of
generality we may assume that each X; is a convex compact subset of a
Banach space. By Lemma 1, for every ¢ > 0 there exist u.a.p. functions h;: Z
— X; such that Dy (g;, h;) <¢/2. Now the function h = (hy, h,, ...) is u.a.p.
and for any L> 1, keZ we have

k+L-1 @® k+L-1

L Z.k d(g(j),h(j))=§12—.-L—1 ,;( d;(g: (), k()

k+L-1

<YLY dgl) k() +e2
i=1 i=k

provided 2'™™ <. Since Dg, (g;, h) <¢/2 for L large enough and i
=1, 2,..., m we obtain

Dy (g, b = lim Ds, (g, b) <.

This proves that g can be Dy-approximated by u.a.p. functions, so it is
W-a.p.

Our next lemma gives another equivalent definition of compact valued
almost periodic functions.

LEMMA 3. Let (X, d) be a compact metric_space and F be a family of
continuous functions on X taking values in a metric space. Assume in addition
that the functions in F separate the points of X. Then g: Z - X is W-a.p.
(u.a.p.) iff the functions f.og are W-a.p. (u.a.p) for all f eF.

Proof. Let f,, f5, ... be a separating sequence in F. The mapping ¢(x)
= (f1(x), f2(x), ...) establishes a homeomorphic embedding of X into the
product space Y =[] fi(X). Put h(j) = fi(g(j)) and let h = (h,, h,, ...). Since
h(j) = ©(9 (), g is W-a.p. iff h has the same property. Now apply Lemma 2.
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We recall that a complex-valued function g is almost periodic in the
sense of Besicovitch (B-a.p.) if for every & > 0 there exists a trigonometric
polynomial p such that

L
imQ2L+1)~' Y lg()-pU)l <e
L ji=-L

(see [2]). Every complex-valued W-a.p. function is known to be B-a.p.

For a compact metric space (X, d) we say that g: Z = X is B-a.p. if
fog is a (bounded) B-a.p. function for each continuous complex-valued
function f on X. It follows from Lemma 3 that X-valued W-a.p. functions
are B-a.p.

Remark 1. Note that complex-valued bounded B-a.p. functions form a
function algebra closed under the uniform norm and conjugation, which by
the Stone-Weierstrass theorem makes Lemma 3 valid for B-a.p. functions as
well.

2. Almost periodic points. We shall consider a dynamical system (X, T),
where (X, d) is a compact metric space and T a homeomorphism of X onto
itself. A point x in X will be called uniformly almost periodic (u.a.p.) if the X-
valued function

x(j) =T x
is u.a.p. Analogously, x will be called a W-a.p. (B-a.p.) point if X is a W-a.p.
(B-a.p.) function. We say that x is strictly transitive if there is only one
invariant Borel probability measure on its orbit closure. The orbit closure of
x is then said to be uniquely ergodic.

The dynamical properties of u.a.p. points are well understood. In fact, x
is u.a.p. iff the orbit closure O(x) of x is an equicontinuous subsystem of X.
It follows that every yeO(x) is also u.a.p. Moreover, by the Halmos—von
Neumann theorem, x is u.a.p. iff (O(x), T) is isomorphic (i, topologically
conjugate) to a minimal rotation of a compact abelian metric group. This, in
particular, implies that (O(x), T) is uniquely ergodic and has discrete spec-
trum (see [13] for a thorough discussion of u.a.p. points in continuous time
dynamical systems). By Lemma 3 and Remark 1, x is u.a.p. (W-a.p,, B-a.p.) iff
for every feC(X) the function

f*() = A(T x)
is ua.p. (W-a.p,, B-a.p.).

Remark 2. Since the uniform norm, the Stepanoff distance, and the
upper limit in the definition of B-a.p. functions are translation invariant, the
following useful criterion of almost periodicity is also valid: x is u.a.p. (W-
a.p., B-a.p.) if the functions f* (f €F) are u.a.p. (W-a.p,, B-a.p.), where F is any
family of continuous functions such that the functions fo T’ (f €F, jeZ)
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separate the points of X. In particular, if Y is compact metric and (Y% 5) is
the (left bilateral) shift system, then xeYZ is a u.a.p. (W-a.p., B-a.p.) point iff
x: Z—Y is a uap. (W-a.p, B-a.p.) function (to see this project onto the
0-th coordinate). It is now obvious that in symbolic dynamics, ie, for Y
finite, all u.a.p. points are periodic.

Now we prove that, as in the u.a.p. case, almost periodicity in the sense
of Weyl is a property of the whole orbit closure.

LemMma 4. If x is a W-a.p. point, then every y in O(x) is also W-a.p.

Proof. Let ¢ > 0. There exist L > 1 and S €% such that Dg, (x,, X) <¢
for s€eS. This implies

k+L-1
L™t Y d(T**y, T'y) <e
j=k
for all keZ, s€S, and ye!{T/x: jeZ}. Since the function
k+L-1
y—=L' ¥ d(T'**y, Ty)
i=k

is continuous, we obtain Dy, (¥;, y) < ¢ for all y €0 (x).

As the following example shows, the B-a.p. points do not enjoy the same
property.

ExampLE 1. Let Y be a compact metric space. Consider the shift system
(YZ S). There exists a B-a.p. point x such that O(x) = YZ In fact, let A be a
countable dense subset of Y. The family of all finite blocks of letters from A4
is countable, so we may arrange it into a sequence A4,, 4,, ... Let g; be the
length of A4;. Now choose a rapidly increasing sequence of natural numbers
b; so that

lim(.il a,./ﬁ‘":l (@+b)) =0

and let B; = B...B be a block of length b;, where B is a fixed element of Y.
We define x; to be f for j < 0. For j > 0 we define (x;) as the concatenation
B,A;B,A,... It is now clear that for every continuous function on Y we

have

L

imQL+1)~" Y 1f(x)=f () =0,
L j=-L

so j = f(x;) is a B-a.p. function and, consequently, x is a B-a.p. point in YZ

(see Remark 2). On the other hand, each finite block of A occurs infinitely

many times in x, so O(x) contains AZ, hence its closure YZ

Let (X, T) be a dynamical system. We say that x, — x quasi-uniformly in
X if Dy (x,, X) = 0. Quasi-uniform convergence has been studied in [8]. (The
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quasi-uniform convergence in [8] is slightly stronger since the authors
require additionally that d(x,, x) =0.)

It follows from Lemma 1 that for any W-a.p. point x in (X, T) the
function X can be Dy-approximated by the u.a.p. function h taking values in
a possibly larger compact convex subset K o X of a Banach space. We can
consider both h and x (or, more precisely, X) as points in the shift system K?Z.
Clearly, X embeds into KZ% via ¢(y) =(T'y). In view of Remark 2, h
approximates x quasi-uniformly in KZ and we obtain the following result:

ProposITION 1. There exists a topological embedding of (X, T) into a
dynamical system (X, T) in which all W-a.p. points of X are quasi-uniform
limits of u.a.p. points in X.

Theorem 3 in [8] states that a quasi-uniform limit of strictly transitive
points is strictly transitive. Since u.a.p. points are strictly transitive, we have

THEOREM 1. Every W-a.p. point is strictly transitive.

It should be noted that an alternative proof of Theorem 1 is possible by
combining Theorem 5.5 in [14], Lemma 3, and a property of scalar W-a.p.

functions asserting that the limit
k+L-1

imL' Y ()
L fert
exists uniformly in k ([15], Sections 3 and 4).

We recall that a sequence x €10, 1]Z is called Toeplitz if every symbol
(hence every finite block) occurs in x periodically. Regular Toeplitz sequences
(see [8] for the definition) are quasi-uniform limits of periodic points in
{0, 1}Z, so they are W-a.p. Strict transitivity of regular Toeplitz sequences is
the contents of Theorem 5 in [8] (see also [18] for a more general approach).

We remidrk that in general a W-a.p. point cannot be quasi-uniformly
approximated by u.a.p. points within the same dynamical system. In fact, if
x€{0, 1}Z is a nonperiodic regular Toeplitz sequence, then the system X
= O(x) is minimal and x is W-a.p, but there are no u.a.p. points in X
whatsoever, as all u.a.p. points in {0, 1}Z are periodic.

The following example shows that it may not be possible to quasi-
uniformly approximate a W-a.p. point (or even a u.a.p. point) by periodic
ones even at the expense of enlarging the dynamical system. Therefore, the
phrase “uw.a.p.” in Proposition 1 cannot be replaced by “periodic”.

ExampLE 2. Let X be the unit circle in the complex plane and T, x
= e*™ x, a irrational. Then, clearly, all the points are u.a.p. Suppose (X, T})
is isometrically embedded into a dynamical system (X, T). We show that if y
is k-periodic in X and zeX, then Dy (Z, y) = 1/2 (in fact, more is shown as
the same inequality is proved for a weaker pseudometric). First note that the
sets

Aj={xeX:d(x, Py)=1} (i=0,1,...,k=1)

8 — Colioquium Math. 56.1
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are closed and each of them has Lebesgue measure 1(4)) at least 1/2 (as X
= Aju(—A;). For every ¢ > 0 there exists a B; which is a finite union of .
arcs and satisfies

(@) 1(B) >(2+e)”' and (b) d(B;, T'y) > 1—e.

Since T¥ = T,, is still an irrational rotation, for m large enough we have
m—-1 o .
m VY s (T2 >Q2+e)™ " (i=0,1,...,k=1),
i=0

which means T}*izeB; for at least m/(2+¢) i’s in {0, ..., m—1}. Conse-
quently,

m-1 ) .
m=1 Y d(T*z, T y) > (1-e)/(2+¢)
i=0

for j=0,1, ..., k—1. This clearly implies
n—1
limn=! Y d(Tiz, T'y) > 1/2
n i=0
and Dy (2, y) = 1/2.

Apart from the regular Toeplitz sequences we single out a vast class of
W-a.p. points in shift dynamical systems. Let X, Y be compact metric spaces
and let u be a Borel probability measure on X. By R(X, u, Y) we denote the
family of all functions h: X —Y such that h has the set of discontinuity
points of measure u zero. The following proposition is similar to Corollary
3.21 in [1]; the idea goes back to Hartman and Ryll-Nardzewski (see [6]).

ProrosiTION 2. Let x be a W-a.p. point in (X, T) and heR(X, u, Y)
where p is the unique invariant measure of (O(x), T). Then the function j
—h(T’x) is W-a.p. :

Proof. By Lemma 3 it suffices to consider a real-valued h. For every
¢ > 0 there exist continuous functions f and g such that

f<h<g and ((g—fldu<e.

By unique ergodicity (Theorem 1), the averages
k+L-1

L j;‘ @—/)(T'x)
converge to [ (g—f)du uniformly in k (see [14]). This implies
lim s, (g% /) <
and, consequently,

Dy (g*, h") < Dw(g", /) <.

Since g* is W-a.p. and ¢ was arbitrary, h* is W-a.p.
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We remark that if, in Proposition 2, x is uv.a.p. and h is a characteristic
function with (hdu >0, then {j>1: h(T’x) =1} is a typical uniform se-
quence in the sense of Brunel and Keane [4]. It is observed in [1] that such
sequences h(T’x) are B-a.p.

The following example shows, in particular, that there exist W-a.p. 0-1
sequences which are not ‘quasi-uniform limits of periodic points in {0, 1}Z.
More specifically, there is a 0-1 sequence of the above type which is distant
in the sense of Dy from any Toeplitz sequence.

ExampLE 3. Let (X, T,) be an irrational rotation -of the circle, A be the
arc [0, n), and zeX be fixed. By Proposition 2, the 0-1 sequence x;
= y.(TJ2) is W-a.p. We shall prove Dy (x, y) = 1/2 for every 0-1 Toeplitz
sequence y. Suppose the contrary for some y. Then there exists L > 1 such
that the corresponding L-blocks of x and y always agree at more than a half
of the coordinates. If we consider only sufficiently large s, then T}z never
hits any of the end points of 4. Let B=y;...y;+.-, be an L-block in y
positioned sufficiently far to the left. Since y is Toeplitz, B occurs in y with a
period m. Among the numbers T™ z (k > 0) there exists one arbitrarily close
to —z, so, for some k,

Xmk+i+j = Xa(T¥H T 2) = 1— g (i 2) = 1=x;4j,

j=0,1,..., L=1. This shows that the blocks
C=x,-...x,-+L_l and S"'kC=xmk+1...xmh+,-+L_l

disagree at each coordinate. On the other hand, B and $™ B coincide (in y).
Consequently, the L-blocks $™ C and §™ B disagree at more than a half of
the coordinates, a contradiction.

For the rest of the paper we consider spectral properties of W-a.p.
points.

Let u.be an invariant measure for (X, T). We say that T has discrete
spectrum on L?(p) if the eigenfunctions of the unitary operator f = foT
span a dense supspace of L*(u). If (X, T) is uniquely ergodic and X = O(x),
then x is‘said to have discrete spectrum if T has discrete spectrum, on
L2(0(x)). ~ |

Our aim is to prove that W-a.p. points have discrete spectrum. For
regular Toeplitz sequences this is Theorem 6 in [8]. Our result follows from
the theory of sequences having a correlation and its applications to ergodic
theory developed by Wiener and Wintner.. In [17], they obtained a con-
nection between ergodic systems with discrete spectrum and complex-valued
B-a.p. functions. A convenient version is the following result due to Bellow
and Losert:

() Let T be an ergodic invertible measure preserving transformation of a
probability space. Then T has discrete spectrum on L* iff for every bounded
measurable function g and almost every x the function j =g (T’ x) is B-a.p.
([1], Theorem 3.22).
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Now we have

LEMMA 5. Let u be an ergodic measure on a dynamical system (X, T).
Then T has discrete spectrum on L*(y) iff almost every point in X is B-a.p.

Proof. It suffices to consider a suitable countable set F of continuous
(scalar) functions on X and apply (*) along with Lemma 3 for B-a.p.
functions (see Remark 1).

In view of Theorem 1, Lemmas 4 and 5 imply

THEOREM 2. Every W-a.p. point has discrete spectrum.

3. Morse shifts and Sturmian dynamical systems. We have shown that if x
is W-a.p., then O(x) is uniquely ergodic and has discrete spectrum on I2. The
converse does not hold: a counterexample exists among the (generalized)
Morse sequences (see [9] for definitions and notation). In fact, it has been
shown by Lemanczyk [11] that a Morse sequence either is continuous (in the
sense of [9], p. 351) or has discrete spectrum. Consequently, by [9], Theorem
9, there exist nonperiodic (strictly transitive) Morse sequences with discrete
spectrum. On the other hand, no nonperiodic Morse sequence is W-a.p. This
follows from Proposition 3 below.

Let (Y, ¢) be a compact metric space. For any two L-blocks over Y we
define

L
D(al...aL, bl "'bL) =L Z Q(a,-, bi)‘
i=1

Consider the following property of x in YZ:

(P) There exist ¢ > 0 and arbitrarily large natural numbers L such that
x is a concatenation of certain L-blocks B, satisfying D(B,, Bg) > ¢ for
B, # B;. '

(The concatenation means x=...B, B, B, .., where B,
= X4r ... Xe+1)L—1-) If x is @ Morse sequence, then Y =10, 1}, e =1, L=n,
y=1,2 B,=¢, B,=¢.

ProposITION 3. Let x satisfy (P) in the shift system YZ If x is W-a.p,
then x is periodic.

Proof. Choose Lin (P) and S€.¥ such that Ds, (&, &) <#&/2 for s€S,
where £(j) = x;. By reducing S (mod L) we can find s, # 5, in § with s, =5,
(mod L), or

ss=k I+t O<t<L,i=1,2).

Since Ds, (s, &s,) <& we have in particular
D(Bnu,’ B,sz) <e¢ (ke2),

where B, = Xy....Xg+ne-1- By (P), this implies By ir, =By, k€Z),
whence ¢ = ¢,,. Since s;—s; # 0, x is periodic.
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Now we recall the definition of the Sturmian dynamical systems ([7],
[5], 12.57-12.63, and [10]). Let A be a subset of the umit circle, T, be an
irrational rotation, 0 <a < 1, and |z] = 1. If the boundary of A has Lebesgue
measure zero, then by Proposition 2 the sequence

Xj = XA(HZ)

is W-a.p. (in fact, R-a.p. in the sense of [6]). In particular, the orbit closure
O(x) in the shift space ({0, 1}% S) is uniquely ergodic and has discrete
spectrum. (For Sturmian systems the unique ergodicity has been proved in
[10])

If A is an arc [u, v) of length 2nx (i.e. of Lebesgue measure a), then O(x)
is called a Sturmian dynamical system. It is known that (O(x), S*) is then
minimal for k =1, 2, ... ([7], Theorem 6.4). This implies that the S*-orbit
closures of x all coincide with O(x). Note that if 7, denotes the projection on
the r-th coordinate, then the function

J o (SYx) = (T 2) = x4 (T (€2 2))

is also W-a.p, which by Lemma 3 implies that x is a W-a.p. point in
(O(x), $). By Theorem 1 each of the systems (O(x), S*), k > 1, is uniquely
ergodic with the same invariant measure u. The measure theoretic dynamical
system (O(x), p, S) is therefore totally ergodic. Consequently, there are no
roots of unity (different from 1) in the spectrum of the unitary operator
defined by S on L?(u), that is to say we have proved

CoroLLARY. Each Sturmian dynamical system has irrational discrete spec-
trum. .

Now we shall prove a more general proposition which, in particular,
applies to the 0-1 sequences generated by arbitrary Jordan measurable
subsets of the unit circle. The proof is independent of [7].

Let z be a W-a.p. point in (X, T). Denote by A the unique invariant
measure on O(z). Now fix heR(X, A, Y), where Y is a metric compact
space. We consider the sequence

xj=h(T'z) (jeZ)

as a point in the shift dynamical system (YZ S). By Proposition 2 and
Lemma 3, x is a W-a.p. point in YZ

ProrosITION 4. Let: (X,d) be a compact metric space and
T, z,A, Y, h, S, x be as above. Assume in addition that for every k > 1 the T*-
orbit |T*z: jeZ) is dense in O(z). Then x has irrational discrete spectrum.

Proof. As before, it suffices to prove that the measure theoretic system
(0(x), u, S) is totally ergodic, where u denotes the unique invariant measure
on O(x) (Theorem 1).

First we prove that supp y, the topological support of 4, is contained in
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all the S*-orbit closures of x. Fix wesuppu (= 0 (w)) and. pick a cylindrical
neighborhood U, of w of the form

U =weY% Jow)—eowl <e, lil <p},

where ©: Y =R is a continuous function, teZ, and p > 1. Note that all

such sets form a neighborhood base at w. We want to show that- sHo eU,
for some j,€Z. Since O(w) is a unique minimal orbit closure in O(x), it is
not hard to see that

M=im: S"xeU,,} ¥,

so the gaps of M are bounded by, say, r > 1. Since the set of discontinuity
points of ¢ oh has A measure zero, we can find two continuous real-valued
functions f and g on X such that

f<ooh<g and [(g—f)dA <e/(4max(r, 2p)).
There must exist an my e M such that
g(T™ ' 2)—f(T™ " 2) <e/4 (il <p),

for otherwise

((g—=/)di = limn™* zo (@=/)(T2) > ¢/(4max(r, 2p)

(cf. the proof of Proposition 2). Now choose é > 0 such that the condition
d(T™z, v) <& implies

If(T™ ' 2)—f(T'v)| <e/4 and g(T'v)—f(T'v) <e/d
for |ij <p. Given k > 1, we can find j, €Z such that
d(T™z, TOz) < 6.
This gives
o (R(T"" 2))— o (h(T™"" 2))| < g (T (T° 2))—1 (T (T¥°2))
+g(T™" ) —f (T 2)+[f (T™" 2)—f (T (T 2))| < 3¢/4
(il < p). Since myeM, S¥°xeU,.
_ By using the projections x; as before, we infer that x is W-a.p. in each
(O(x), $*). Also, for k =1 the S*-orbit closure of x contains suppu, so we
deduce from Theorem 1 that u is the unique invariant measyre for all

(O(x), S¥). This implies that the measure theoretic dynamical system
(0(x), u, S) is totally ergodic.
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