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For d, 7,7 € C the generalized Muirhead operators are
T 0?
(1) DI =g (1=

+ {7— S(r—1)- [T+1‘ (T = 1)]“ 222;(.-1——2?)}31

_gzz,-(l—z',). 9 1<i<r).

G %i—T 0z;

For a, 3 € C, the system of partial differential equations
(2) (DI —af)y=0 (1<i<r)

specializes for r = 1 to the classical hypergeometric equation. For r >
1 and d = 1 it was studied in [5], for general d in [4]. We write X for
(z1,...,2,). When d > 0, and d/2—~ is not a natural number, a generalized
hypergeometric series F(%)(a, 8;7; X), convergent for |z;] <1 (1 <i < r),
can be constructed; it is the unique solution of the system (2) subject to
the conditions (i) y is symmetric in z,,...,z,, (ii) y is analytic at (0,...,0),
(iii) y(0,...,0) = 1. For d = 1 this result is due to Muirhead [5]; for general
d it was claimed in [4], but the proof had a gap due to the difficulty of seeing
whether the generalized binomial coefficients in the sense of Muirhead are
independent of r (as they happen to be when d = 1). A complete proof for
general d was then given by Z. Yan [6].

The function F is a hypergeometric function in the sense of Heckman
and Opdam [2]; it corresponds to the root system BC, and an eigenvalue
parameter on the diagonal edge of the Weyl chamber. This is a non-trivial
fact, proved for r = 2 by Yan [6], and for general » by R. Beerends and
E. Opdam (not yet published).

~ By general theory the space of solutions of the system (2) is 2"-dimen-
sional; it is of interest to study this space in detail. As a first step, we want
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here to find solutions that are symmetric in z,,...,z,; these form an in-
variant subspace for a fairly large (“diagonal”) subgroup of the monodromy
group.

One can find such solutions by generalizing Kummer’s twenty-four inte-
grals of the classical hypergeometric equation. The key for finding these is
to describe the action of fractional linear transformations on the hypergeo-
metric equation. We are going to do this for the system (2) in Proposition 1.
After this, Kummer’s table can, in principle, be computed. To make the
computation manageable we first find the appropriate generalization of the
normal form of the hypergeometric equation (cf. e.g. [3], p. 31). It is not
immediately obvious what this generalization has to be; a transformation
eliminating all the first derivatives as in the one-variable case does not seem
possible here. Nonetheless, we find a transformed equation on which the
signed permutations of the parameters act in a simple way, just as in the
classical case. The generalized Kummer table then follows easily.

If T is a diffeomorphism, for functions f we write T*f = f o T, and for
linear differential operators D,

T.D=T*10DoT*.

(This amounts to “changing the variable” from X to T'(X) in the operator.)
We note that if D is a Oth order operator, i.e. multiplication by a function
¢, then T\ D is multiplication by ¢ o T1.

Let G be the group of fractional linear transformations T in one variable

which permute the points 0,1, 00. We shall consider G as a group acting on
C" by the transformations X — T(X), where T'(X) = (T(z,),...,T(z,)).

We list the elements of G as e = T, T}, ..., Ts, and to each of these elements
we associate a matrix as follows:
5 1 00 _ 0 -1 1 B -1 11
To=10 1 0}, Th=|-1 0 1], Th,=10 1 0],
0 0 1 0 0 1 0 01

_ -1 11 _ 1 0 0 [0 -1 1
Ts=|-10 1), Ty=|1 -1 0], T5=[1 -1 0].
0 0 1 0 0 1 0 0 1

These matrices form a representation of G (which is, of course, isomorphic
with the symmetric group over three elements). The action of T € G on a

single variable £ is then given as (a€ + b)(cf + d)~! where (g 3) is the left

upper corner of T. To each T € G we also associate the linear function Y7
given, on C, by

(3) Yr(€) =cf+d

where ¢, d are as above.



MUIRHEAD OPERATORS 667

We define ¢ = 1+ d(r—1)/2 and we also define an action of G on C? by
T.(ry7) = (7,7)

when (7', 7',¢) = (1, r,q)‘T, where T denotes the transposed matrix.
Now we can state our first result.

PROPOSITION 1. The generalized Muirhead operators transform under
eachT € G by

(4) T,'Dsf'q) = ’ch-x(x,')D;-r'(fn) .
(The factor on the right stands for a multiplication operator.)

It seems easiest to prove this result by first looking at the operators
£ obtained by dividing D" by z;(1 - z;):

(5) ggm)z(922+(7-§(r—1)+r+1—7) a

i oz z; z;—1 oz;

d 1 d _z,—(1-z,-)a)
+2J§_z.~—z,‘ (09:.' zi(1-z;) 0z;)

Writing g(£&) = £(1 — €), a small computation shows that

(6) goT = (T")yrg
where 7' denotes the derivative of T. Hence (4) is equivalent to
(7) T.g'{‘f"‘l) - (T-l(zi)l)-2giTc(""‘Y) (1 < i < T) .

Since both sides describe an action of G, it is enough to prove (7) for a set of
generators of G, e.g. for T} and T3. This is a relatively short computation,
left to the reader.

Remark. Written out in detail, the Proposition amounts to the five
equalities

(Tl)*’Dg’YvT) - _ziDSq—‘Y’q-‘r) ,
(Tz)‘p(.“/v'r) — D(_TlT-'Y+q) ,
(Ta).DE‘Yv"') - (zi - I)Dsq-‘%""“H‘Q) ,
(Ty) 'D(-%T) = (z; - I)D(_“Y—T"Y)

*=g 3 ?
(TS):'DE%T) - _zi‘DE‘Y-"’»q"f) .

The ambitious sounding formulations (4), (7) serve for making it clear
that it is enough to make the computation for T} and T3.

To proceed, we introduce the notations X? = M=z, (1-X) =
[I(1 — z;)?. Similarly we shall write ¥7(X) = [][ ¥7(z:). A computation,
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made easy by using logarithmic differentiation, gives
(8) X—p(l _ X)l-ag(fﬂ) 0 X?(1— y()a — g("’+2(0+0)n+2p)
t “ 1

+V@+7—qx+dv+r—7) plo+T-7+q)+a(p+7)
z? (z; —1)2 ri(zi—-1) ’

(We used a small circle to indicate that X?(1 — X)? is regarded as a multi-

plication operator, to be followed by 8,(7"') )
The system (2) can equivalently be written in the form

(EH —aplg(z))y=0 (1<i<r).
We transform it by choosing
(9) p=324-7), o=1(r-a-f-4-1),
where, as an abbreviation, we wrote
A= g(r -1).

+

From (8) we get
(10)  X7P(1 = X)~ (" - af/g(21) 0 X*(1 - X)*
= 8,“-1’“) + A/g(z;) — R(\ pyv;2;) (1<i<r)

where we used the abbreviations

A=q-7,
(11) v=y-a-§,
p=p3-a,
and
R(A, p,v; §)
__1 (A+1)2-2)2 + (A+1)* -2 (A+1)2—,\2+p2—u2]
4 £? (€-1)? £€-1) '

We denote by N,-(A'“’") the right hand side of ( 10). Its first two terms
are independent of a, 3,7, and its third term transforms under G by

(12) RO, 53 T(E)) = mrs REI (A, o) 6),
T'(§)
where T stands for the same permutation of A, u,v as the one induced by
T on 0,00, 1 (in this order). To prove (12) it is again enough to verify it for
Tl and Tz.
The system N{**™")Y = 0 (1 < i < r) is from our point of view the
proper “normal form” of the system (2). Just as in the one-variable case, it
has the following crucial property.
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PROPOSITION 2. ForeachT € Gand1<i<r,

T (2(X) NP 0 (X)) = s MO
The proof for general r is only a little more troublesome than for r = 1.
Since ¥7(X) = £X°T(1- X)°T with pr and ot equal to 0 or 1, the formula
(8) can be used to find the r-conjugate of N;-(A“‘ *). Then one uses (7),
(12) and a little computation to finish the proof. »

One can now construct the general version of Kummer’s twenty-four
integrals of the hypergeometric equation (cf. [3], p. 31). In fact, let o, 3,7
be fixed. By (9) and (11) we compute the corresponding p,o and A, pu,v.

For each T in G we take f“(/\, p,v) and put % signs in front of the images
of A and p in all possible ways. This gives 24 triples (A, u’,v'). For each
we calculate the corresponding o', 3',4' by (11) and p’, o’ by (9). Then, by
Proposition 2,

Yr(X)X?(1 = X)°T(X)~" (1 - T(X))~" F(, 8';7; T(X))

is a solution of the system (2). The computation is easy and gives the
following result.

PROPOSITION 3. Each entry in Kummer’s table ([3], p. 33, or [1], p. 105),
after changing 1 and 2 to q and 2q everywhere in the ezponents and parame-
ters, and interpreting powers of X, 1— X as described above, gives a solution
of the system (2).
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