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1. Introduction. In this paper, (G, +) denotes a locally compact Abelian
group and (B, || -||) stands for a Banach space. Many authors considered the
following problem:

Suppose that f: G — B and for each heG the function 4, f defined by

4, f(x):=f(x+h—f(x), xeG,

belongs to a class .7 c B®. What can be said about the function f?

In [2]-[4] and [12] it was shown, under various assumptions on G and
B, that for a large number of classes # (among others for the class of all
continuous functions) f may be represented in the form

(1) f=y+g, where ge.# and y: G—B is an additive function, ie,
Y(x+y) =r(x)+70), x, y€G.

It was pointed out (cf. [5] and [12]) that for the class L,(G) with
1 < p < oo, instead of (1) the following decomposition is appropriate:

(2) f=y+g+s, where y: G — B is additive, g is an L,function and s: G
— B is such that, for each heG, 4,s =0 almost everywhere on G.

The class % < BS is said to have the difference property (resp., the weak
difference property) if any function f: G — B with all differences 4, f belong-
ing to .# admits decomposition (1) (resp., (2)).

Kemperman [11] initiates the study of the following more general
question: describe all functions f: G — B satisfying the condition

(3) 4arfeF for any fixed hegG,

where 4;:= 4, , (n times) denotes the n-th order difference operator
defined recurrently as follows:

A f:=f A4f):=f(x+h=f(), x, heG,
Ayny S 1=, by my_ S)s By ... By €G.
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Kemperman has proved (') that for various classes .# any function f fulfilling
(3) may be written in the form

(4) f =y+g for a certain g €.# and for an n-th order polynomial function
y: G = B.

Recall that a function y: G — B is said to be a polynomial function of
n-th order if and only if

47 y(x) =0 for all x, heG
or, equivalently ([7], Theorem 3),

()] Yy=Yot+V71+...+Vn,

where y, is a constant and there exist k-additive and symmetric functions
%: G* = B such that
"X =F(x,...,x), x€G,k=1,...,n.

Y« 1S sometimes called a monomial function of k-th order.

If for every function f: G — B condition (3) implies (4) we say that the
class & has the difference property of n-th order. In our previous paper [9]
we have obtained difference properties of any orders for the class of all
Banach-valued continuous functions defined on an arbitrary locally compact.
Abelian group and for the class of all Banach-valued Riemann integrable
functions on a compact second countable Abelian group.

In the present paper we introduce the concept of weak difference
property of higher orders.

DErFINITION. A class & < BY is said to have the weak difference property
of n-th order if and only if for any function f satisfying (3) there exist an n-th
order polynomial function y: G —B, a function ge.# and a function
s: G »B such that, for each heG, 4;s=0 almost everywhere and
f=y+g+s.

Remark 1. In the above definition we may require y to be a monomial
function of n-th order. Indeed, if y has representation (5), we put

Y=Y S*i=S+Yo+yit .+ Ve

Then f = y*+g+s* and Als* = 4}s = 0 almost everywhere.

The main purpose of this paper is t& prove weak difference properties of
higher orders for the class of all L, -functions and, as a simple consequence,
for Orlicz spaces, generalizing well-known results of Carroll and Koehl [6]
and Woyczynski [16]. '

2. Preliminary remarks and results. Let R denote the set of all real
numbers and. let I'°(R) be the class of all functions f: R =R which are

(*) Unpublished results; private information.
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Lebesgue integrable over each finite interval [a, b]. This class has no
difference properties of any positive order. We shall show even something
more.

It is well known (cf. [15]) that there exists a non-measurable function
¢: R —R taking only two values (0 and 1) and such that, for every heR,
4, ¢0(x) =0 holds except for countably many values of x €R.

Given a positive integer n we choose an arbitrary polynomial P of
degree n—1 and put

f(x):=P(x)-p(x), xeR.

The function f has the following properties:
(i) for each heR, 4} f =0 almost everywhere;
(i) for any integer k with 0 <k < n—1 and for any heR\ {0}, 4} f is
non-measurable;
(iii) f is bounded on every bounded interval.
Property (ii1) is obvious. To prove (ii) and (i) we shall show inductively
that for any integer k with 0 <k < n and each heR we have

(6) Ak f(x) = @(x)- 45 P(x) for almost all xeR.

For k =0, (6) is satisfied by the definition of f. Suppose (6) holds for some k
(0 < k <n). Then, using properties of ¢, for almost all xeR we have

AT f(x) = 4y 45 f () = 4y(9 (x) 45 P (x))
= @(x+h)- 45 P(x+h)—p(x)- 45 P(x)
=4,0(x) A P(x+h)+o(x) 457! P(x) = ¢(x)- 45! P(x).

The induction completes the proof of (6).

Since 4} P = 0, from (6) applied for k = n we derive that 4} f = 0 almost
everywhere, which proves (i).

If k <n—1 and heR\ {0}, then 4§ P is a non-zero polynomial of degree
n—1—k. By virtue of (6), adding the roots of the polynomial 4% P to the
exceptional set of values of x, we conclude that

45 f ()
(p(X) - A;‘x P (X)
holds:for almost all xeR. If 4% f were a measurable function, so would be ¢,
a contradiction. Consequently, (ii) is proved.

Evidently, for each heR the function 4} f is Lebesgue integrable over
any interval, and putting y:=0, g:=0, s:= f, one may represent f in the
form f = y+g+s with a monomial function y, an integrable function g and a
function s having all n-th differences equal to zero almost everywhere. We
shall show, however, that f does not admit any decomposition of the form

(7) f=r+g*+s*,
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where y* is a polynomial function, g* is a measurable function and for a
certain integer k such that 0 <k < n-1 all k-th differences of s* vanish
almost everywhere. Suppose to the contrary that there exist functions y*, g*,
and s* having the above properties and that (7) holds true. Then, choosing
an heR\'0!, we can write

Ak y* = Ak f— Ak g* — Aks* = A% f— Ak g* almost everywhere.

Since 4kg* is measurable, (ii) implies that A%y* is a non-measurable
function. Moreover, (iii) together with the fact that A4}g* being measurable is
bounded on a set of positive measure guarantees the boundedness of 4%y*
on a set of positive measure. On the other hand, 4%y* as a polynomial
function bounded on a set of positive measure must be continuous (see, e.g.,
[10], Theorem 6): a contradiction.

In particular, the above considerations disprove the difference property
of n-th order for the class L'°(R) as well as for the class of all Lebesgue
measurable functions from R into R. However, from our further results the
weak difference property of an arbitrary order for the class L'{°(R) follows
easily. .

Now, we give some results which will be useful in the sequel. The
following lemma may be found in [1] (p. 72 and p. 102, Exercise 1):

LeEmMA 1. Let (G, +) be a compact Abelian group and let u be the
normed Haar measure on G. Every continuous epimorphism T: G =G of the
group G preserves the measure y, i.e. u(T~'(A)) = u(A) for any Borel set
AcG.

CoroLLARY 1. If (G, +) is a compact Abelian group in which the division
by an integer k is (possibly not uniquely) performed, then the transformation
T: G -G determined by T(x):=k-x, x€G, preserves the normed Haar
measure on G.

In what follows we always assume that G is compact. For a function
f: G =B the symbol [f] will stand for the class of all functions which
coincide with f almost everywhere in the sense of the Haar measure.
Throughout this paper, L,(G, B) is regarded as a Banach space of all classes
[f] determined by strongly measurable functions f: G =B equipped with
the norm

([ QNP du()” < 0 if 1< p <o,

IES I, - = {ess sup|lfll if p=o0.

According to the notation used in [12] we precede the integral sign of a
function f: G =B (a function F: G = L,(G, B)) with B (resp, with L,).
Consequently, B[f(x)du(x) denotes an element of the space B, and
L,(F(x)du(x) is an element of the space L,(G, B).
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Given an xeG we denote by T, the translation operator defined by
T.f(»):=f(x+y), yeG, feB°.

LEMMA 2. Let (G, +) be a compact Abelian group divisible (not necessar-
ily uniquely) by an integer k > 1. If [f]1€L,(G, B), where 1 < p < oo, then

L, ([Tix f1ldu(x) = [B f(x)du(x)].

Proof. Corollary 1 implies

To complete the proof it remains to use Koehl’'s Lemma 3.2 from [12].

3. Main results.

THEOREM 1. Let 1 < p < oo and let (G, +) be a compact Abelian group
in which the division by 2, 3 up to n is (not necessarily uniquely) performed. Let
J: G —B be a function such that for each heG we have [4}f]€l (G, B).

Then f =g+ +s, where [g]<L.,(G, B), ;: G — B is a monomial function of
n-th order, and s: G — B is such that, for each heG, [4}s] = 0.
Proof. We distinguish two cases.
Case l. 1 <p<oo.
Define a function F: G = L,(G, B) by
F(h:=[43f], heG.

Since we deal with two types of difference operators, the first one defined on
functions with values in the space B and the other on functions assuming

values in the space L,(G, B), we distinguish the latter by the use of boldface
letters. Moreover, we put

alf1:=[43f] and T [f]:=[T.f]

It is easy to check that the above operations are correctly defined. Now,

A F(x) = Z(—l)" 1( )F(Vﬂh) Z(—l)" ’( )[Aw:.f]
- z(—l)" /(3 )Z(—w ‘(0 )nwnfl
(S (o))

= Z( - "( )nvdkhf] Z(—l)"‘ ( )T,“F(kh).
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For each integer k with 0 < k < n, the transformation
Gax - T, F(kh)eL,(G, B)

is continuous (cf. [14], 1.1.5 and the remark made at the beginning of the
proof of Lemma 3.2 from [12]). Thus 4} F is continuous for each fixed heG.
By Theorem 2 from [9] we have

) F=H+T,+...+T,,

where H: G = L,(G, B) is a continuous function, and I',;: G = L,(G, B) is a
monomial function of k-th order for k=1, ..., n.
Using the notation

H,.=F, H:=F-TIi,,—...—TI,k=0,1,...,n-1,
we have
H0=H,.
(9) for each heG, A4kH, is a continuous function for k=1, ..., n,
1 .
(10) I, (h) =FL,,jAtH,‘(x)du(x), heG, k=1, ..., n.

Indeed, from (8) we infer that
AR F = A H+n! T, (h)
and
AF =AEH+ KT (h)+ ATy +...+T), k=1,...,n-1.
Consequently, we get
(11) AYH, = AXH+k'T(h), heG, k=1,...,n.

Now, (9) follows immediately by the continuity of H. Moreover, since H
being continuous is integrable on G and since u is a translation invariant
measure, we obtain

L, (4% H(x)du(x)
& k
=) (—1)"'1( j)LA H (x+jh)du(x)
j=0
= i (—1)*‘f(';)L,,,(H(x)du(x) =0, heG,k=1,...,n.
j=0

This together with (11) yields
.L, '[A}‘, Hy(x)du(x) = L, (k! Ty (hdu(x) = k!'Ty (h),
heG, k=1, ..., n, which completes the proof of (10).
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Put |
v(h):=—7B [4nf(x)du(x), heG,

[g:=(=1)"L, [H(x)du(x).

Then [g]€L,(G, B) and it is easy to check that y is a monomial function
of n-th order. We put s:= f—y—g. Using the commutativity of the difference

operators we compute

k (k
A3(45F () = 4 ( > (- 19 (J.)F(y+jx))
k k
Z( 1) ’( ) a4y f1= 3 (—l)k-j(k.)A;+jx[A;:f]
j=o0 j=0 J

k
( 1)k-J v+ixF(h), h,x,yeG, k=1,...,n
yrJ

Since, for any ﬁxed x, heG and j=0, 1, ..., k, the mapping

Gay Ay+JxF(h) Z (_l)n l( ) |y+uxF(h)EL (G B)

is continuous, and therefore integrable over G, we obtain
(12) L, fAF'.(A"F(y))du(y)
Z (=1 ’( )L [4y+ 5 F (W dp(y)

i( 1+ ’(’)L {4,F(hdu(y) =0, x,heG,k=1,..,n

Now we are going to show inductively that
(13) 43I (x)=0 for h,xeG, k=1, ...,n
For, let us first note that A4} is a linear bounded operator in L,(G, B). This is

readily seen from the formula

=y (—1)"-f(’T)T,~,.
j=0 J
and from the fact that

WTn L My = ILATil,  for any [f]eL,(G, B),

which implies the boundedness of T, j=0, 1,..., n. Therefore, if ¢: G
—L,(G, B) is an integrable function, then (cf, e.g., [8], Theorem III. 6.20)

ML, [®dp = L, [ A0 @dp.
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Thus, by (12) and (10), we have

1 i
AT, (x) = FA;"L" VA% F (y)du(y)

L, {4y (4%F (»)du(y) =0, x, heG,

1
n!
which proves (13) for k = n. Suppose that (13) holds true for each of
k+1, ..., n with some k > 1. Then

A:(A'J‘:(rk+l (Y)+-~-+rn(.V)))

=A (é:o(— 14 (’;)(r,,ﬂ (y+jx)+---+F..(J’+J'x)))

k (K
=2 (=) (J.)(Azrm(y+jx)+.-.+A:F,(y+jx)) =0,
j=0

h, x, yeG.
Hence, using again (12) and (10), we derive
n n 1 " 4k
A1) = 43 (7 Ly (4L HL ) du(y) )
1
=FAZ'.(L,,IAi(F(y)—THI(y)—..-—F..(Y))dﬂ(y))

= ;:-!Lp [(43(45 F (9) = 45(45(Fes 1 0) + ..+ T, (1)) d(y)

1
= Lo [ (A F(0)du() =0, b, x€G.

The induction ensures that (13) holds for every integer k with 1 <k <n.
In the following calculations we apply (13) and Lemma 2:

[439] = (=17 45 L, {H(x)dp(x)
= (~1)"L, {4} H(0 dpu(x)
= (=1L, [(43F ()~ 45T, (x)~...~ 43T (x)) dps(x)
= (=1L, [ 4} F (x)du(x) = (= 1)" L, [ A% F (R dps(x)

= (=1L, (go(— 1y (:) n,F(h))de)

=¥ (-1 (Z)L [ o F (W) dp(x)
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k=1

= F(h—[Bf4;f(x)du(9)] = F(h—[n!y(H], heG.

= F(h)+ i (- (Z)[B [4rf (x)du(x)]

Finally,
[43s] = [4; f1-[48y]1-[4ig]
= F(h)—[n!y(W]-[43g] =0, heG,

which completes the proof of our theorem in the case where 1 < p < .

Case 2. p= 0.

Let us define the function F: G = L (G, B) by the same formula as in
Case 1. Fix an arbitrary pe[1, o). It has been shown previously that, for
each heG, ALF is continuous if it is regarded as a function from G into
L,(G, B). Hence

F=H+T;+...+4T,,
where, with the aid of the notation
H,:=F, H:=F-TI,y—...—I,, k=0,1,...,n-1,
we have
(14 Hy=H: G—L,(G, B) is continuous;

(15) for any integer k (1 < k < n) and for each heG the function A} H,:
G - L,(G, B) is continuous;

(16) r(h) = 7:—!1.,, [ALH ()du(x), heG.

All these results are derived in the proof of Case 1.
It is clear that if a function
¢: G- (\ L,G,B)
1€p<w
is integrable over G as a function from G into the space L,(G, B) for each
fixed pe[1, o), then the integral L, ®du does not depend on p and it is an

element of () L,(G, B). Consequently, it is not difficult to show induc-
1€p<aw -

tively that, actually, the functions I', and H, are defined independently of the
choice of a pe[l, o),
riyy G- N\ L,G,B), k=1,...,n,

1€p<aw

H:G- ( L,G,B), k=0,1,....n,

1€p<w

11 - Colloquium Math. 56.1
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and for each fixed pe[i, o) conditions (14)(16) are satisfied.
Put

[9]:= (- 1)"L, [H(x)dp(x), .1<p<co.
The last integral is also independent of p and we have

gle N L,(G; B).

1€sp<w

Bearing in mind what has been shown in the proof of Case 1, in order to
complete our present proof, it remains to check that [g] €L «(G, B). For this
purpose let us define

1
Fi(hy, ..., b):= FLpIAhl...hk H, (x)du(x),

hy, ..., €G, 1<p<o, k=1,
and
Fo:=L,[Ho(x)du(x).
Then
fy: G- N L,G, B

1€p<aw

is a k-additive symmetric function such that I',(h) = Iy(h, ..., h) for all
heG, k=1,....,n and (-1)"T =[g].

Now, we shall prove that for each k =0, 1, ..., n, the following estima-
tions are valid:

(17)  Vhy, ..., heG IM(hy,...,h) >0 VxeG V1

Sp<®
4n, .., HeOl, < My(hy, ..., h),

1
(18) Vhy,...,leG V1< p <o |Fy(hy,..., Wy < 77 Mi(hy, ., by,

where for k = 0 condition (17) is understood as follows:
IMy>0VxeG VI <p<o [|Ho(x), < My,
and similarly for k = 0 condition (18) means that
V1<p<oo |IFll, <

The proofs of (17) and (18) proceed snmultaneously by induction on k passing
backwards from n to zero. In the first step we are going to obtain (17) and
(18) for k = n.

Fix arbitrarily elements h,, ..., h,eG. Applying Djokovi¢’s Theorem 2
from [7], by our assumptions we get the expansion

Ahl...h"Hn(x) = ZriA:iHn(x+vi)a X'EG,

iel
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where I is a finite set of indices, r;’s are rationals and u;, v; €G are determined
by hy, ..., h, for i€l. Putting

M,(hy, ..., h):=} Iri Z ( )"F(]ui)"m

iel

and applying properties of the L,-norm we obtain
iy ..0p Ha GOl = | rdl H (x+va)||p

iel

<Y Inlll4;, F(x+v.)ll,,

iel

=TI

iel

Z'rl Z ( )I'I;(x+vi)F(Jul)"p

iel

e z ( )nF(iu.-)u,, < My(hy, ..., )

iel

Z (=)~ j( )Ti(t+v,)F(.’ul)

for every xeG and 1 < p < oo, which yields (17) with k = n. Now, we have
1
n!

IFa(hys s Bll, = = ||Ly § Any 4, Ha(x)dp ()],

1 1
< ﬁI“Ahl...hnH"‘(x)"pdﬂ(X) < n_!Mn(hl’ cees hn), 1 < p < oo,

and so (18) holds for k = n.

To continue the induction procedure assume (17) and (18) are true for
each integer from k+1 to n with some k such that n > k > 0. Let us choose
elements h,, ..., h, €G (if k = 0, we choose no elements, whereas the symbols
Ay,..n H(x) and Ty (hy, ..., b) take the form of H,(x) and Iy, respectively).

Putting
A= N {xeG: 4, .., He X, < n}

1€p<w
and taking into account the fact that by (14) or (15) the function
.A'll...hk Hk: G —»Lp(G9 B)

is continuous for every p€[1, o), we infer that A, is a closed subset of G for
each positive integer n.
Now, we show that

(19) U 4,=6.
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For, let us choose an arbitrary x€G. Since H, =F-TI,,,—...—TI,, for any
y€G one can find an integer n(y) such that

HH, W, < IWF Dl + 1T+ s ONlp+- .-+ I DI,

S NIFOlw+ My (s oo )+

1
(k+1)!

1
+;"Mn(y’9}’)<n(y)s l<p<w

Hence, if k = 0, then ||Hy (x)||, < n(x), 1 < p < o, whereas for k > 0 we have

1
"Alnl...thk(x)"p:‘" Y (-l)k—q-m-‘ka(x"‘ax hl+"°+8khk)"p

‘1---‘&‘0
1
< )Y |Ho(x+& hi+...+e ),
e1...55=0
1
< )Y n(x+eh+...+eh), 1<p<oo.
el...¢k=0

Consequently, there exists an integer N(x) such that
a
xeAN(x) < Ul Am
n=

which implies (19).

By the Baire Category Theorem we can find an integer N such that Ay
contains a non-void open subset V of G. Thus, G is covered by a finite
family of sets V+1,, ..., V+I, for some [, ..., [ €G. We put

Mk(hla ceey hk):= lnslaéx (2Mk+l(li’ hl’ Ty hk)+N)

with the usual agreement that for k =0

M, := max (2M, (I)+N).
1<i<r

Given an arbitrary xeG we find an index i (1 <i<r) such that xeV+1,.
Thus, x = y+1; for a certain yeV. The observation that H, = H,,, — I, 4,
leads us to the formula

Apny..n He ) = Apny . Hes 1 () —(k+1)! Fosr(hy by, .oy by,
and hence
Wdn, ..., Hi N, = [[An, ..o, He 0+ DI,
< Ny ny..op He Do+ 11y ., He O,
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< 1 yny..m His s Wil +(k+ DYIFys o (G, gy e hll,
+|dn, .. He O,
< 2Ml+l(li’ hl’ ceey hk)+N < Mk(hl’ ceny hh)’ 1< p <o0.

Since x has been arbitrarily chosen, we conclude that

A4, ..n He(ll, < Mi(hy, ..., ) for all xeG and 1 <p <oo.

Moreover,

~ 1
Wy (hy, ..., Wll, = “F L,{4,,. . nH(x)dpu(x)

p

1 1

This completes the proof of (17) and (18).
From (18) with k = 0 it follows that

(20) Ilgdl, = (= 1) Foll, < Mo for every pe[l, o).

If [g] were not in L (G, B), there would exist a Borel set E = G of positive
measure such that ||g(x)|| = My+1 for all x€E. Consequently, we would
have

g, = (fllg (NP dp()"” = (Mo + 1) ((B) .

The last expression tends to My+1 as p —oo, contrary to (20). This
completes our proof.

In terms of weak difference properties of higher orders the above
theorem may be formulated as follows:

CoRrOLLARY 2. Under the assumptions of Theorem 1 on the group G the
class L,(G, B) (1 < p < ) consisting of functions whose equivalence classes
remain in L,(G, B) has the weak difference property of n-th order.

In the particular case of the compact group K of reals mod 1 we have

CoroLLARY 3. The class L’,,( K, B) admits the weak difference property of
an arbitrary order.

Remark. 2. Let us consider a discrete cyclic group G of a finite order r
with the uniformly distributed normed measure. The group G is not divisible
by any integer k such that r and k have a non-trivial common divisor. Never-
theless, for any p (1 < p< ), the class L,(G, R) has weak difference
properties (and, in fact, difference properties) of any orders. This example
shows that the divisibility assumptions on G in Theorem 1 and Corollary 2
are not necessary. We do not know yet whether our results remain true
without any divisibility assumptions.
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4. Conclusions concerning Orlicz spaces. In the sequel, Lo (G, B)'denotes
the Orlicz space equipped with the Orlicz or Luxemburg norm generated by
a Young function @ (for definitions see, e.g., [6] and [13]).

LeMMA 3. Let (G, +) be a compact Abelian group. If g: G — B is such
that '

B(gdu=0 and [4,g9]1€Lq(G, B) for every heG,

then [g]€Ly(G, B).

The proof of Lemma 3 for n = 1 is contained in the crucial part of the
proof of Theorem 3.1 from [6]. For n > 1 one can obtain Lemma 3 by a
simple induction.

The analogue of Corollary 2 for Orlicz spaces reads as follows:

THeOREM 2. Under the assumptions of Theorem 1 on the group G the
class Ly (G, B) consisting of functions whose equivalence classes belong to the
Orlicz space Ly(G, B) has the weak difference property of n-th order.

Proof. Choose a function f: G — B such that, for each hegG,
A,,feL (G, B) < L, (G, B).

By Corollary 2 we have f =y+g+s, where y is a monomial function of
n-th order, geL, (G, B) and, for every heG, Als =0 almost everywhere.
Without loss of generality we may assume that B {gdu = 0. Since

[439] = [43f]1€Lg(G, B)

holds for each heG, Lemma 3 guarantees that [g] € Lo(G, B), which was to
be shown.
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