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INVERSE INVARIANCE OF METRIZABILITY
FOR ORDERED SPACES

BY

T. PRZYMUSINSKI (WARSZAWA)

In this paper we examine the inverse invariance of metrizability
and weight under continuous mappings defined on topological ordered
spaces.

Let K be a topological ordered space and f: K—Y a continuous
mapping of K onto Y. We ask under what conditions on f:

1. the metrizability of Y implies the metrizability of K?

2. the weight of K is not greater than the weight of Y ?

We prove some theorems presenting conditions for positive answers
to 1 and 2 and give examples showing the essentiality of assumptions.

Let us recall that the problem of inverse invariance of metrizability
and weight under continuous mappings has been investigated for example
in [2], [3], [5] and [8]-[13].

The author is grateful to Professor R. Engelking for his wvaluable
remarks and help in the preparation of this paper.

1. Definitions. All undefined terms and notions are as in [4]. The
symbol f: X— Y denotes a continuous mapping of X onto Y. All spaces
are assumed to be infinite Hausdorff.

1.1. A family N of subsets of X is called a net in X if, for every
xeX and its neighbourhood U, there exists an Ne R such that zeN < U.

1.2. We adopt the following symbols:

w(X) — the weight of X,

nw(X) — the net weight of X, i.e. the minimal cardinality of a net in X,

|A| — the cardinality of A,

Xe MTR means that X is metrizable,

L(X) — the Lindeléf number of X; i.e. min{meCard: every open
covering of X admits a subcovering of cardinality not greater than mj},

I =T[0,1].
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1.3. A space K is called a topological ordered space if K is linearly
ordered and is equipped with the topology induced by this order. Every
topological ordered space is hereditarily collectionwise normal [14]. In
what follows, the space denoted by the symbol K is assumed to be a topological
ordered space.

1.4. A set A < K is conver if, for every z, yeA, the interval [z, ¥]
is contained in 4. If 4 <« B < K, then A is called a convex component
of Bif Ais a maximal convex subset of B. Convex components of any set
B are disjoint and closed in B. If B is open, then its convex components
are also open.

1.5. A mapping f: K—» Y is said to be zero-dimensional in the sense
of ordering (abr. order-zero-dimensional) [9] if, for every yeY, convex
components of f~'(y) are one-point sets.

1.6. A pair of non-isolated points {#~, z*} is called a proper jump
in Kifo~,a%veK, s~ < 2" and (¢~, 7) = @. The points #~, #* are called
proper jump points in K. The set consisting of all proper jump points
in K is denoted by #(K).

For f: K—» Y the symbol #(K, f) denotes the set of all proper jump
points corresponding to those proper jumps {z~, ¥} which satisfy f(z~)
= f(z"). Thus #(K,f) = F(K).

- L1.7. A space K is order-dense if for every two distinct points of K
théi,"e exists a point in K lying between them.

. 1.8. A mapping f: X—» Y is quasi-open if Intf(U) #0O for every
non- empty, open set U < X.

1.9. A subspace A = X is o-discrete in X if A = UF,,, Where F,
are closed and discrete. n=1

1.10. Let us recall that if f: X—»Y is perfect, then w(X)> w(Y)
and the metrlza.blhty of X implies the metrizability of Y (cf. [4], Prob-
lem 4.8).

2. Inverse invariance of metrizal_)i]ity. The following lemma is a partic-
ular case of Theorem 5.3 from [6], but its proof given here is much simpler
and avoids introducing superfluous notions.

LEMMA 2.1. A topological ordered space i3 metrizable if and only if
it has a o-discrete net.

Proof. Assume that

$=03m

n=1

where the families §, are discrete and consist of closed sets, is a net in K.



METRIZABILITY OF ORDERED SPACES 213

For every k = 1,2, ... let

k
Rk = L_._Jl%n
and for Fe K; let
Vi(F) = ENU{F'eK: F'nF = 0}.

As the families &, are locally finite, the sets V. (F) are open and
F < V,(F). Let U,(F) be the union of all convex components of V,(F)
intersecting F.

Since K is collectionwise normal (see, 1.3), for every n =1,2,...
and k>n we can find a discrete family B(n, k) = {B, ;(F): Fe§,}
of open sets such that ¥ < B, ,(F) c U,(F).

It is easy to check that the family

B=UUBmnk)
n=1 k=n

forms a o-discrete base in K, and hence K is metrizable. The inverse
implication is obvious.

The following theorem can be easily deduced from Lemma 2.1 and
the result of Proizvolov [11]:

THEOREM 2.2 ([8], Proposition 4.13(c)). Let f: K— Y be finite-to-one
and open. If Ye MTR, then K¢ MTR.

LeEMMA 2.3. Let Y be metrizable. If f: K—» Y satisfies the conditions

(i) F(K,f) i8 o-discrete in K,

(ii) for every a, be K, if (a, b) # O and f([a, b)) = {y} or f((a, b)) = {g},
then y is an isolated point and f~'(y)e MTR;

then Ke MTR.

Proof. We show that K has a o-discrete net. Let
Y, = {yeY: y is an isolated point and f~'(y)e MTR}.

Since Y, is a o-discrete subset of Y, there exists in K a o-discrete
family 9, which forms a net in f~!(Y,).

Put € = {{z}: z¢ # (K, f)}. According to (i) the family € is o-discrete
in K. For every n =1, 2,... let U, be a o-discrete covering of Y consist-
ing of non-void, open sets with diameters less than 1/2n.

From every

e,
n=1

let us choose an element y(U). We have U < B(y(U),1/n), where
the symbol B(y, r) denotes the ball in ¥ with the radius r and the centre
at the point v.

4 — Colloquium Mathematicum XXVIII.2
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Let Wy = {W (U, $)}4es, be the family of all convex components
of the set f“(B(y(U), 1/n)) and put:

23U = {W(U’ s)nf—l(U)}scSU; %n = U{%U: Ue un}; B = L=)l$n'

As for every U the family B, is discrete in K and U, is a o-discrete
family in Y, the family B is o-discrete in K.

It suffices to show that the family § = AUBUC forms a net in K.

Let ze(a,b) « K.

1. If z¢f~'(Y,), then there exists 4 ¥ such that xeA < (a,b), for
A is a net in f~1(X,).

2. If ze #(K, f), then the set {} belongs to {.

3. If x¢f (Y, U f(K,[), then there exist ¢, deK such that a <e¢
<z<d<b and f(c) # f(x) # f(d).

Suppose for example that f([a, 2]) = {f(2)}; then according to (ii)
we would have (a, ) =@ and one of the points a, x should be isolated,
say a. Then there would exist a predecessor a’ of a satisfying f((a’, z])
= {f(«)}, and we would have f(z)eY,, which is impossible. _

Choose m such that f(c), f(d)¢B(f(z), 2/n) and a U<, containing
f(z). We have

1 2
1)U < By, ) < B, 5)

and therefore the convex component W (U, s) of x lies in the interval
(¢, d) and we W (U, s)nf'(U)eB.

We have shown that K has a o-discrete net which, together with
Lemma 2.1, completes the proof.

LEMMA 2.4. If K is metrizable, then the set #(K) is o-discrete.

Proof. Let {{x;, #7}},.4 be the family of all proper jumps and B
a o-discrete base in K. For every aeA there exist B;, B ¢®B such that
z; eBy = (—oo,2;] and xf eB} < [}, +00). As different B (B})
correspond to different a, therefore #(K) is o-discrete in K.

Lemmas 2.3 and 2.4 imply the following theorems:

THEOREM 2.5. Let Ye MTR and f: K—» Y ; assume that

(a) f 78 quasi-open and - inverse images of isolated points are metri-
zable; or

(b) tnverse images of points by f are nowhere dense.

Then, K e MTR if and only if the set # (K, f) is o-discrete in K.

THEOREM 2.6. Let f: K—»Y be order-zero-dimensional. If Ye MTR,
then Ke MTR.

COROLLARY 2.7. Let K be order-dense and f: K—»Y open with metri-
zable or compact inverse images of points.
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If Ye MTR, then K< MTR.

Proof. If inverse images of points are metrizable, then Corollary 2.7
follows immediately from Theorem 2.5(a). In the case of compact inverse
images of points one can easily observe that Y has to be dense-in-itself
and once more Theorem 2.5(a) can be applied. We recall that all spaces
are assumed to be infinite.

COROLLARY 2.8. Let K be order-dense and f: K—»Y have nowhere

dense inverse images of points.
If Ye MTR, then Ke¢ MTR.

Remark 2.9. All assumptions in 2.5-2.8 are essential. The projection
of the square I x I, with the lexicographic order topology, onto I shows
the necessity of assumptions (a) and (b) in Theorem 2.5, of openness of f
in Corollary 2.7, and of nowhere density of inverse images of points in
Corollary. 2.8.

The projection of the “double arrow” of Alexandroff (see [1], p. 97,
or [4], Exercise 3.9.C) onto the interval I shows that the assumptions
of o-discretness of # (K, f) in Theorem 2.5 and of order-density of K in
Corollary 2.8 are essential.

The conditions imposed on inverse images of points in Corollary 2.7
cannot be omitted. Let X be the square I x I with the lexicographic order
topology without the end points and K = N X X, where N is the space
of natural numbers. Consider K with the topology induced by the lexi-
cographic order. The projection f: K = N x X—»N is open and contin-
uous, and K is an order-dense, non-metrizable space.

The example given in section 4 shows the essentiality of the assump-
tion of order-density of K in Corollary 2.7. A

3. Inverse invariance of weight.

LEMMA 3.1. For every topological ordered space K we have w(K)
= nw (K).

" Proof. It suffices to show that w(K) < nw(K). Let § be a net in K
of cardinality nw(K). We may assume that § consists of closed sets.
For every triple of disjoint sets ¥,, F,, F,e { let B(F,, F,, Fg) denote
the union of all convex components of K\ (F,u F;) intersecting F,.
It is easy to see that the family

B8 ={B(,F,, F,): F,, F,, Fy are disjoint and belong to &}
forms a base in K and has cardinality nw (K).
THEOREM 3.2. If f: K—Y is finite-to-one and open, then w(K) = w(Y).

Proof. We have only to show that w(K)<w(Y). For k¥ =1,2, ...
let Y, ={yeX:|f'(y)| = k}. According to [11] we have w(f~'(Y,))
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<w(Y) and therefore nw(K)< w(Y). Lemma 3.1 implies that w(K)
= nw(K) < w(Y), which completes the proof.

LEMMA 3.3. If f: X—» Y is closed, then
L(X) < max{L(Y), su})L(f‘l(y))}.
ye

The validity of Lemma 3.3 is obvious.

LeMMmA 3.4. If f: K—» Y 48 quasi-open, then for every open U c Y
the family of all convex components of f~'(U) is of cardinality not greater
than max {w(Y), supL(f~'(y))}.

yeY

Proof. Let W be the family of all convex components of f~!(U)
and
m = max{w(Y), su}I)L(f'l(y))}.
Ve

According to 1.4, elements of IB are open. For every yeY - we have
W e: Wnf ' (y) 0} < L(f(y) <m.

Therefore the family B = {Intf(W): WeW} is pointwise of cardi-
nality not greater than m. It follows that |B| < m and hence |W| < m.
The proof of the following lemma is similar to the proof of Lemma 2.4:
LEMMA 3.5. For every topological ordered space K we have | (K)|
< w(K).
LEMMA 3.6. Let f: K—» Y satisfy the conditions:
(i) 17 (&, f)l < w(Y);
(ii) for every a,beK, if (a,b) O and f([a, b)) = {y} or f((a,d])
= {y}, then y is an isqlated point and w(f~'(y)) < w(¥);
(iii) for every open U < Y the family of all convex components of f~*(U)
is of cardinality not greater than w(Y).
Then w(K)<w(Y).
Proof. By Lemma 3.1 we have only to show that nw(K) << w(Y).
Let \
Y, ={yeY:y is an isolated point and w(f~'(y)) < w(¥)}.

As Y, = w(Y,) <w(Y), we can find in f~'(X,) a net U of cardi-
nality not greater than w(Y).

Let € = {{z}: z¢ ¢ (K, f)} and ® be a base in Y such that |G| = w(X).
According to (iii), for every Ue ®, the family W, of all convex compo-
nents of f~!(U) is of cardinality not greater than w(Y). Put

% == U SIBU.
Ue®

To show that the family § = AUBUC forms a net in K we argue

similarly to the proof of Lemma 2.3.
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Lemmas 3.3-3.6 imply:

THEOREM 3.7. If f: K—»Y 1is _
(a) quasi-open, w(f~"(y)) < w(Y) for every isolated y< Y and L(f(y))
S w(Y) for every yeY; or .
~ (b) closed and for every yeY we have Int(f~'(y)) =@ and L(f'(y))
<w(Y); .
then, w(K) < w(Y) if and only if | £ (K, f)| <w(XY).

THEOREM 3.8 (cf. [9)). If f: K— Y is perfect, order-zero-dimensional,
then w(K) = w(Y).

COROLLARY 3.9. Let K be order-demse. If f: K—»Y 1is open and
w(f~(y)) < w(Y) for every ye¥, then w(K) = w(Y).

COROLLARY 3.10. Let K be order-dense. If f: K—»Y 18 open and has
compact inverse images of points, then w(K) = w(Y).

COROLLARY 3.11. Let K be order-dense. If f: K—»Y 1is perfect and
has nowhere dense inverse images of points, then w(K) = w(Y).

Remark 3.12. All assumptions in 3.7-3.11 are essential (cf. Remark
2.9). The necessity of the assumption of order-density of K in Corollaries
3.9 and 3.10 follows from the example given in section 4. The assumption
of perfectness of f in Theorem 3.8 and Corollary 3.11 cannot be omitted
as can be shown by the projection of the space [0,1]x% (0,1), with the
lexicographic order topology, onto (0, 1).

4. Non-metrizable inverse images of metric spaces. Since every
+ countable subset of a topological ordered space is metrizable, Corollaries
2.7, 2.8, 3.9, 3.11 and the Baire theorem imply the following

COROLLARY 4.1. Let K be order-dense. If f: K-—»Y is open (or perfect)
and countable-to-one, then:

(i) of Ye MTR, then Ke MTR;

(i) w(K) = w(Y).

The assumption of order-density of K is essential as the following
theorem shows:

THEOREM 4.2. There exists a compact, perfectly normal and non-metri-
zable topological ordered space K and an open, perfect, countable-to-one
mapping f: K—»C of K onto the Cantor set C.

LEMMA 4.3. Let L be a compact topological ordered space and g: L—»Y
an open, countable-to-one mapping of L onto a metric separable space Y
satisfying the following conditions:

(1) there exists an uncountable subset P of L such that for every xeP
and zeL, if x # 2z, then there exists a p P lying between x and z;

(ii) for every x, zeP, if x < 2, then the set g([x, 2]) is open in Y.
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Under these conditions, there exists a compact, perfectly normal and
non-metrizable topological ordered space K and an open, countable-to-one
mapping f: K—»Y.

Proof. Consider K = L x {0}JuP x {1} =« Lx{0,1} with the order
induced by the lexicographic order in L x {0,1}. Introduce in K the
order topology. It is easily seen that the projection 2 of K onto L is con-
tinuous and perfect. Therefore the space K is compact.

As w(K) = | f(K)| > N, (cf. Lemma 3.5), the space K is non-metri-
zable. The mapping f = goh: K—»Y is perfect and countable-to-one.
Using conditions (i) and (ii) one can show that f is open. It is easy to notice
that K is separable. By Theorem 2.2 from [7], K is perfectly normal,
which completes the proof.

To prove Theorem 4.2 it suffices to give an example satisfying the
conditions of Lemma 4.3 with ¥ = C. Such an example has been given
by R. Pol.

Example 4.4. (R. Pol). Let C be the Cantor set in the interval I,
i.e.,

C = {meI:w =Z§%, where z, equals 0 or 2 for n =1, 2, }

n=1

For £ =0,1,2,... put

oy
F, ={weI:m =23—:, where z, equals 0, 1, or 2
n=1
and x, # 1 for n =1,2,...,k}.

Therefore,
ok

-Fk = Lgl [u(k7 m), ”(ky m)]

and the intervals [u(k, m), v(k, m)] are components of F,.
Put

1 1
a(k,m) =u(kym)+ gy, bk, m) = ok, m) — ZEr

1 1
c(k, m) = a(k, ’m)-i—w, d(k, m) = b(k, m)_y‘:ﬁ

Let Z(k, m) be the Cantor set constructed in an analoguous way in
the interval [c(k, m), d(k, m)]; S(k, m) = Cn[u(k, m), v(k, m)], and
Gr,m: Z(k, m)—»8(k, m) < C be a homeomorphism of Z (k, m) onto S(k, m).
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u(0,1) a(01) c(01) d(g1 b(o v(01)
F : [ - 1 — 1 ]
o 1 zZ@n 2 1
u(1L,1) a(tt) b(t1) v(11) u(1,2) a(42)5(1,2) v(1,2)
F: 1 =3 L ] L 1 : 1 [}
! o zn 1 3  zu» 1
u(21) v(2) u(22) v(22) u(23) v(23) u(24) v(24)
Fa: 1 2 1 _é 7 8 ;
0 v § 3 5 7 037
Since
00 2k
L=cCvu U U Zk,m)
k=0m=1

is a compact subspace of I, its topology coincides with the topology induced
by the natural order of I.
Let us define the mapping g: L»C = Y by
z if zeC,

gtz) = Gom(®)  if weZ(k, m).

As the family
{Lu(k, m), o (ky m)]OCYo s
forms a base in C and
[w(k, m), v(k, m)INL = g~Y([u(k, m), v(k, m)]nC),

therefore g is continuous. Similarly, it is easy to prove that g is open and
countable-to-one. The set

o 2k

P =0NU U {a(k, m), b(k, m)}
k

=0m=1

satisfies condition (i) of Lemma 4.3. It suffices to show that condition (ii)
is also satisfied.

Assume that xz, zeP, x < 2. Let k, be the largest &k = 0,1, 2, ... such
that [z, 2] < F,. Choose m, such that

[z, 2] = H = [u(ky, my), v(ko, mo)].
Then [z, 2] o Z(k,, m,) and we obtain

HNC = g(Z(ky, my)) = g([®,2]NnL) = g(HNL) = HNC,
whence '
g([z, 21N L) = [u(ky, my), v(ky, me)]NC

and this set is open in C.
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