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§ 1. Introduction. To study the decompositions of algebras into
direct sums of their subalgebras, different frameworks have been pro-
posed. The most general seems to be the one used by B. Jénsson and
A. Tarski in [1]. They deal with algebras of arbitrary type with the only
restriction that among primitive operations there is a constant 0 which
is a one-element subalgebra and a binary operation -+ with the property
that for all #’s there is -+ 0 = 02 = 2. The authors show that under
this assumption the relation “4 is a direct sum of its subalgebras B and ¢
may be defined in such a way that projections o, g, of 4 onto B and ¢
are unique and @ = g,a+ g,a holds for every a in A.

Let us remark that:

(I) If we restrict ourselves to algebras of a fixed similarity type,
then the algebras studied by Joénsson and Tarski form an equational
class. Hence this class is closed with respect to direct (outer) products
of any power, and every direct (outer) product Bx C of algebras belonging
to this class is decomposable into a direct (inner) sum of its subalgebras
B, and C,, isomorphic respectively to B and C.

(II) To built the theory of direct sums in the way proposed by
Jonsson and Tarski we do not need to assume that among primitive
operations of the algebra are 0 and . It is enough to assume that there
exist “terms”, i. e. operations {* and a”, defined by compositions of
the primitive operations, such that

) =y, e, (@) = «?(t4(2), 0) = @,

and that the value ¢%(z) is a one-element subalgebra. If it is so, we may
define 0 = ¢*(2) and @4y = a(x, y), and the whole theory of direct sum
holds.

Both remarks are rather trivial, but they seem to have some expla-
natory meaning for what follows.

* Presented to the Conference on General Algebra, held in Warsaw, September
7-11, 1964.
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The most important freature of direct sums are projections. In many
special cases (groups, rings and so on) we know how to define the direct
sum by means of projections. Usually, in order to prove that the definition
by means of projections defines really what we want to call direct sum,
we use special properties of algebraic operations (in fact these assumed
by Jénsson and Tarski). We do not know whether such properties are
really essential. To answer this question we should give a definition
of the direct sum by means of projections only and with no assumption
on operations, and then check what we can infer on operations from
assumption of the existence of direct sums in this sense.

In the following sections we present a partial answer to this
question. First we give a definition of the direct sum and then we show,
that if a class of algebras has the properties mentioned in the remark (I),
then there are two terms, { and «, having the properties mentioned
in the remark (II) in every algebra of that class.

§ 2. Definition and lemmas. Let 4 be an algebra and let B,, B, be
subalgebras of A.

Definition. A is a direct sum of B, and B,, A = B, ® B,, if there
exist two endomorphisms (projections) p;: A > B;, ¢ = 1, 2, such that

(1) Q,;b,; = b,ﬁ for bi in Bi’ % = l, 2;

(2) if b; is in B;, i = 1, 2, then there exists a unique element a in A
such that g,a = b; and g,a = b,;

=3
(3) if B} is a subalgebra of B;, ¢ =1, 2, then [B}, B}] = ¢, B} ~
=1

~ 0,By ([BY, By] denotes the subalgebra of A generated by
B} and B)).

In the following lemmas we shall always assume that 4 = B, ® B,
and that o,, g, are endomorphisms with properties (1)-(3). By C; and C,
we shall denote the subalgebras ¢, B, and g, B,, by B,X B, the (outer)
direct product of B, and B,, and by z; the homomorphism B;xX B, - B;
defined by T, . <b1, b2> —> b’i? 1 = 1, 2.

LeMMA 1. The mapping ¢ : a — {o,a, o,a> is an isomorphism of A
onto B, x B, such that for each © = 1,2 both diagrams

B;4 A4 % B,x B, B,

. A -1 0

Bzél le Bz(p—> A —‘—;qu
commaute.

Proof follows from the usual properties of homomorphisms and
the property (2).
LemMA 2. O; is for i = 1,2 the minimal subalgebra of B;.
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Proof. Let B] be a subalgebra of B,. Following (3) we have
, -1 -1 -1 -1
[B], B;] = 01 B} ~ 02 B, = QIB(I) ~ A =g,B.

Hence B, c g;B‘l’ and therefore o, B, = ¢, « B!Y.

LeEmMMmA 3. There is either B, ~ B, = 0y = C, and then it is a one-
element subalgebra minimal in A, or By ~ B, = 0.

Proof. Obviously, B, ~ B, =« C; for ¢ =1,2 and therefore if
B, ~ B, # 0, then by Lemma 2 the equality holds.

Let us suppose that ¢, and ¢, are two elements in ¢; = C,. Following
(2) there exists an element a in A with g,a¢ = ¢;, g,a = ¢,. By virtue
of (3) a belongs to [C,, (,] = C;. Hence and from (1), g, = 00 = @
== iy B i

Now let ¢ be the only element in ¢, = C, and let A° be an arbitrary
subalgebra of 4. Since 0,4° being a subalgebra of B, contains e,

g;cm A’ = B, ~ A° is not empty and as a subalgebra of B, contains e.
Let us call a direct sum A = B, @ B, with €, = €, a normal one.
LuEMMA 4. If the direct sum A = B, P B, is normal, then the

projections g,, p, are wnique.

Proof. Let us suppose g, g, to be a second pair of endomorphisms
with properties (1)-(3). It follows from lemma 3 that o}B, = oiB,
= g, By = 0, B, = {¢}. Let us construct isomorphisms

g:a—>{ot,0a> and ¢ :a >{ga, ga).

It b, is in By, then ¢(b;) = <b,, ¢) = ¢'(b,). Similarly, if b, is in B,,
then ¢(b,) = ¢ (by).

As B, and B, generate A, then ¢ =¢’. From Lemma 1 it follows
that o, = o] and o, = o,.

Lemma 5. If B,y ® By, =B, and A = B, ® B,, then the direct
sum By, @ B, is normal.

Proof. It follows from Lemma 2 that B, has a minimal sub-
algebra, and therefore B,; ~ By, # 0.

Example. Let B = {b,, by,...,b, = by} be an algebra with one
unary operation F(b;) =b; , for ¢ =0,1,...,n—1. In the direct
product 4 = BX B, the sets

By = {<bg; bo)y -y by 1500 1>} and
B, = {<b17 b0>’ <b2’ b1>5 ceey <b0; bn-l)}
are disjoint subalgebras of 4. The mappings g, : <b;, b;> — <(b;, b;> and
02t <biy bj> > <{bj 1, b;>, where ¢,j =0,1,...,n—1, are endomorphisms

of A. For n > 2, ¢, and g, have properties (1), (2) but not (3). For n = 2
all three properties hold and 4 = B, ® B,. :



§ 3. Terms in equational classes. Let 2l be an equational class of alge-
bras, i.e. a class of similar algebras closed with respect to taking sub-
algebras, homomorphic images and direct products of any power. Without
loss of generality we shall assume that the operations in algebras of |
are finite.

Let to every algebra A in 2 be assigned an n-ary operation 74: 4" > A
in such a way that if h: A — B is a homomorphism and both 4 and B
are in 2, then hd (g, .oy @) = P (hay, ..., ha,) for @y, ..., ®, in A.
Then 7 is called an n-term in 2.

LeMMA 1. If F is a free algebra in A freely generated by fy, ..., fn,
then to every element v in F there exists one and only one n-term 7, such
that 2 (fo, .o fo) = 0.

Proof. Let 4 be an arbitrary algebra in U and let a,,...,, be
arbitrary elements in A. Since F is free, then there exists a unique homo-
morphism h:F — A such that hf; =a;, ¢ =1,...,n. Let us define:
(@, ..., @) = hv. Since A and as have been arbitrary, 7, is well de-
fined. We shall prove that it is a term. Let futher h: A — B be a homo-
morphism and let x,,...,#, be elements in A. Let hy: F — A and
hy: F — B be homomorphisms with &, f; =x; and hyf; = ha;. The
diagram ‘

gy hy

B2rpalsn
commutes. It follows that hh,o = hyv. By the definition of 7,,
T;:l (@19 00vy Tp) = Ry, ‘L’f(hﬂ?” veny hi,) = hyv,

hence htd(wy, ..., x,) = v&(hay, ..., hxr,) as required. To prove the
unicity of 7,, let 7 be a term with "z(f,,...,f.) = v. Then for every
h:F A we have

TA(hfy, .oy b)) = ho = 7 (hfy, ..., W)

Since hfy, ..., hf, may be arbitrary in an arbitrary algebra in 2, we get
By B

An easy consequence of Lemma 1 is the following

LeEMMA 2. If an algebra A in A is generated by a set of ils elements X,
then to every a in A there exist a number n, an n-term v in 2, and n elements
@y, ...y &, 0 X such that a = v (@1, ..., @,). In particular, if A is generated
by two elements b and ¢, and a belongs to A, then ©(b, ¢) = a for a swilable
term T.

Let us remark that the Lemma 1 states that we can identify n-terms
with elements of a free algebra with » generators and therefore that
terms defined as above are identical with operations defined by compo-
sitions of primitive operations of algebras in the considered class.
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§ 4. Direct sums in classes of algebras. Let 2l be an equational class
of algebras and let F be a free algebra in 2 with two free generators,

THEOREM 1. If the dirvect product Fx F is decomposable inio a normal
direct sum Fx I =F, ®F, of algebras F,, F, both isomorphic to F,
then there exist two terms in 2A: one 1-term & such that *(x) = *(y) for
every algebra A in U, and another one, a 2-term a such that

oz, (@) = a* (C4 (@), 2) = @

for every algebra A in 2. Moreover, the value of & (which is unique) is
a one-element subalgebra of every algebra A in 2.

Proof. Let f,,fi and f,,f, be free generators in F, and F,,
respectively. Let ¢ be the unique element in the common part of F,
and F,, and let @ be an element of A with o, = f, and g,a = f,.

It follows from Lemma 2 of § 3 that there exists a term ¢ such
that zF1(f,) = e. In view of symmetry, (¥1(f;) = ¢ and therefore (F1(f,)
= "1(f;). Now let us remark that, as it is well known, an equation holding
for free generators of a free algebra in a class holds also for arbitrary
algebras in that class. Hence ¥ (x) = 4(y) for x, y in arbitrary algebra
A in A,

From the assumption (3) on the direet sum and Lemma 2 of §3
we draw the conclusion that there exists a term « such that «"1®2(f,, f,)
= a. Applying homomorphisms o, and o, to this equation we obtain

Wiy o) = afy, ) =F and @ e, fo) = L), f) = S

By the same argument as before we have

a! (;I‘, CA('T’)) == aA(CA {®); .1') =

in every algebra A in 2(.

Let x be an element in an algebra 4 in 2[, and let h: F; >4 be a
homomorphism with &f, — x. Since he = hF1(f) = EL(hf,) = 4m),
we infer that £4(x) is a one-element subalgebra, because it is the homo-
morphic image of ¢ which is such a one. Moreover, since - (z) does not
depend on z and belongs to every subalgebra of A generated by one
element, it is a minimal subalgebra.

Remark. The assumption that F is a free algebra with more than
one generator is essential. Let 2 be a class defined by the equations
(x+x)+y =y and o+ (y+2) = (r+y)-+2. The free algebra with one
generator in this class is simply a group of order 2, and therefore its
direct product is decomposable. But since every algebra with x4y =y
belongs to 2, the free algebra with two generators contains no minimal
subalgebra.
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TuEOREM 2. If 2, is a class of algebras closed with respect to direct
product of arbitrary power and such thai the dirvect product of any two its
algebras B and C is decomposable into a direct sum Bx C = B, @ U, of
algebras B, and C, isomorphic to B and C respectively, then in the least

o

equational class 2 containing U, there exist two terms 5, a such that
CA (@) = CA (y) and (lA((L’, CA(Q})) == aA(CA (), !1;) —

in every algebra A in 2.

Proof. Let us observe that the assumption and Lemma 5 of § 2
implies that every direct decomposition of an algebra in 2, is normal.

Following a known result of Tarski [2] that the algebra F' with two
generators free in U may be embedded in a direct product of algebras
from 2,, and therefore in an algebra B from 2(,, let us decompose the
product Bx B into a direct sum of isomorphic copies of B: BX B =
B,®B,. B contains F, and B, and B, contain isomorphic copies of #.
Denoting them by F, and F, we conclude that the algebra generated
by both #, and F, is a direct sum of ¥, and F,. Hence the assumptions
of Theorem 1 are fulfilled for 2[ and therefore the thesis of Theorem 2
follows from Theorem 1.
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