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1. Introduction and statement of results. The authors are concerned-
with the class S(b,) of bounded univalent functions of the form

f(2) =bie+be+..., 0<b <1, ¢|<1,

which map the unit disc into itself. This class has often been studied in
the equivalent form of functions F = (1/b,)f, whose coefficients will be
denoted by a,. Both classes have been developed quite extensively since
1950 (cf., e.g., [5], [1], [6] and [4]). In this paper the authors investigate
the problem of finding the sharp estimate for the functional of the fifth
order '
B = |as—pa,a,—qa;+raa,—saz], P, q,7,8 real,
in dependence on p, g, r, s and b,, where f ranges over S(b,). In particular,
the authors obtain the sharp estimates of the fourth coefficients
B, = 4a5—4a,a,— 202+ 4aia, — a}
and
0, = 20a;—32a,a,—18a -+ 48a,a, — 16a3
of g(2) = 2" (2)[f(2), l2| <1, and h(z) = 1+2f"(2)[f'(2), |2| <1, respec-
tively, for b, sufficiently close to 1. Actually, these classical functionals
(cf. [3]) gave a reason to consider a more general functional B. Let

A =[30—-p+ip*)—(1=p)g—rP,
C =%(11—-6p+2p2—p%)—(1—p)2q—2(1—p)r—4s,
t(b;) = A[(logb;) '—34+¢17'+0C, exp[—-1/2—9)]1<b <1, q <3,
T(by) = (1—b,)"*[(2—4p)*b] — (1 —3p)?].

Obviously, we put T'(1) = + oo for p < 3 and T'(1) = — oo for p > 3.
The main result of this paper is the following
THEOREM 1. If p, q, 7, 8, b, are real numbers which satisfy the conditions

¢<3} A<(G-90C, exp[—-1/—q@I<b <1, b)) <T(by),
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and f belongs to S(b,), then the corresponding B does mot exceed
B* = }(1-b}).

The estimate is sharp for every p, q,r, 8,b,. All the extremal functions
are given by the formula

fi(2) = e ®P7 (b, P(e¥2)), P(2) =z2/1—2""? |s|<l, —w<e< .

Remark 1. The function ¢ is strictly decreasing for A = 0 and
constant for A = 0. The function 7', restricted to the interval 0 < b, < 1,
has exactly one extremum (minimum) at

bl = (1—4p)2/(2—}p)?
provided that p < 3 and is strictly decreasing otherwise. Therefore
t(b)>t(1) =C and T(b)<T(0)= —(1—14p)®
for
exp[—1/(3—¢)] < b, < min (b7, 1).

On the other hand, since ¢<3 and 4>0, ¢ >(3—¢)'4>0.
Consequently

t(by) >T(b,) for exp[—1/3—¢)] < b, < min(bj, 1).

Thus, given p, ¢, r and 8, Theorem 1 leads to a very simple set of
numbers b, such that the estimate B < B* holds; this set is the interval
b* < b; < 1, where b* is the only solution of the equation T(b*) = ¢(b*),
b* > by, i.e.

oxp [ t(d*)—C ]
-0t +4—-(G—9C
_ 0N —[B—p)t(d") + (1 —$p)*(2— }p)' 1"
t(b*) — (2 —4p)*

It is easily seen that b* is always positive. If b* = 1, the interval
in question reduces to the point b, = 1; if »* > 1, it is the empty set.

Remark 2. The condition 4 < (}—¢)0 may be rewritten in the
equivalent form

, b*>0b].

< $(4—4p—p*—4pY)—(8—3p+p?—1p%)q+4(14+p+ tp?)r— 32,

The authors confine themselves to calculating b* effectively in three
cases of a considerable theoretical importance.

THEOREM 2. The following sharp estimates hold:
lagl < 3(1—3}), 0.698<b,<1,
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IB4I < 2(] —b:), 0.603 < bl < 17
10, <10(1—0b}), 0.460<b,<1.

The estimate |a;s| < 3 (1 —b3), 0.75 < b; < 1, has been established in [4].
Finally, the authors prove in the case » = 5 a conjecture posed in
conclusion of [3]:

THEOREM 3. In the Euclidean (p, q,r,s)-space there is a meighbour-
hood D of (0,0, 0, 0) such that if the point (p, q,r, 8) and a function f cor-
responding to (@y, @3, a4, a;) belong to D and 8 (b,), respectively, then B < B*
for by in an interval b(p,q,7,8) < b, <1, 0<b(p,q,1,8) <1.

2. Proof of Theorem 1. The proof is analogous to that given in [4]
for B = |ag|.
Consider the power series

and

—log[1—f(2)f(2)] = D Buzs™

m, k=1

in the bicylinder |2] < 1, |2o] < 1. The fact that f belongs to S(b,) guaran-
tees evidently that these power series converge in that bicylinder and,
conversely, the fact that these power series converge there and that
Ay, = logb, guarantees that f belongs to 8(b,). The numbers 4, and B,,;,
are polynomials in b,, b,, b,, b,, .:.; they form a symmetric and hermitean
matrix, respectively. If z, is a real number while «,, ..., z, are complex
numbers (in particular, real), then the following inequalities hold (the
so-called gemeralized Grunsky-Nehari inequalities):

n

(l) Re Z Amkwmwk+ ZBmk$m§k< 2(1/m)lwml2’

m,k=0 m,k=1 m=1

We let n = 2 and apply (1) to a function f of S(b,) for which we
assume

(2) as—Pay 8y — qa; +raja; —sa; > 0;

this normalization can always be achieved by a properly chosen rotation.
Hence we get

(3) Re(Aoowg+Anxi'l‘Azzwg+2Ao1wo$1+2Aozwowz+2A12a71972)
< (1 —Byy) 2424 (3 — By) |24|2 — 2 Re (B, 7).
Direct calculation gives

Aoy =logh,, Ay =a,, Ay = aa—‘}agy
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2 3
Ay =a3—a;, A = ay—2a50;34ay,

3 2 2 3 4
Az = a5—20,a,— 305+ 40303 — 50,
and

B,, =b}, B,, =bla,,
By, = blay[2 4 3B4.
If we insert these expressions in (3), we obtain
(4) logh,x}+ Re[(as—al) @} + (a5 — 2a,a, — 305+ 4ala; — 2ad) @} +
+ 28,202, + 2 (@, — 3 a2) T Ty + 2 (ay — 20,05 -+ 63) X, 2, ]
< (1 —b}) |24 (4 — b} |@a]2 — 3 13) |@.|* — 2 Re (b] @, @, Fs) -
Inequality (4) simplifies considerably for the particular choice x,

= &4y, T, = |B,|, ¥, = |@,] #~ 0, and reduces to
Re as— (1 —b})
< Re[2(1—2,2;")a,a, +§a§— (4 —4a,2; ' +210; ) agay +
+ (3 — 22,03 +-ata; %) ag] + [(1 — b)) wia;  — 207 @005 — bY] @yl +-
+logbi 7wy * —2Re [ay + (4,25 — 1) @3]y

Now we choose z, so that 2(1—z,2;!) = p, ie. @, =(1—3ip)w,.
Hence, by (2), we get

(6) B—B* = Re(a;—pa,a,— qai+raia, —saj) — (1 —b?)
< Re{(;—a)a;—[(1+1p)*—rlajas + [(3p)+ 1 —slaz} +
+[(L— 1) — (2 — $p)*bi]la,|*+1oghy oy * —
—2Re[as+ }(1—p)ad]zea; .
We minimize then the right-hand side of (5) by choosing
Towy ' = (logby’) ' Re[a;+ (1 —p)az].

Consequently, choosing A'? so that AY* =3 for p =¢=7r =0,
we have

B—B*
<Re{}—q)m+3(1—p)a) -
—[3(6—p+1p*)—(1—p)g—rlaj[a;+ (1 —p)a]+
+1[3(A1—6p +2p*—p®) — (1 —p)2q—2(1L —p)r — 48]a3} +
+[(1—%p)*— (2 — 4p)2b3] |as|®— (logbi ) ' Re’[ay + 3 (1 — p) a3]
= Re{(;—q)[as+}(1—p)a;T — A a}[as+ } (1 —p)a3]+ } Cal} +
+[(1—3p)2— (2 —}p)2bi]|az|®— (logh; )~ ' Re’[a; + 3 (1L —p) az].
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We further introduce the notation ay+3(1—p)a: =u-, a2 = U+
+ V. Therefore we arrive at the estimate
(6) B—B*<(—q)(ut—v2)—A"(uU—vV)+10(0* -V +

+[(1—3p)*—(2—$p)?b]]as|? — (log by ")~ ut.

Suppose first that in the conditions under which Theorem 1 is assert-
ed to hold, the first three signes < are replaced with <, respectively.
The remaining cases will follow from our particular result by a simple
passing to the corresponding limits.

Now we observe that (:—gq)v?— A0V +3}CV?*>0, since, by our
hypotheses, ¢ <3 and 4 < (}—g)C. Hence we may replace (6) by the
simpler inequality

B—B*
< [f—g—(logbr") " ut— AV uU + §CU*+ [(1 - 3p)?— (2 — §p)?b{]|a,|®
= —[(logby ") —3+q1{u+ 34" [(log; ") - +417' U} +
+1{4[(logh7") ' —3+q17" + C} U* + [(1 — $p)* — (2 — $p)*bi] [asl?,
where, by our hypotheses, b, >exp[—1/3—gq)], ie., (loghy")*—3+
+¢q > 0. Therefore
(7) B—B*<3{A[(logh;") ' —3+¢I7'+C}U*+
+[(1—3p)2— (2 —$p)2bi]las|2.
On the other hand, we have U < |a,|? and |a,| < 2(1—0,) (cf, e.g.,
[3], formula (6)). Consequently, for b, # 1, (7) becomes
B—B* < |a,/* ({4 [(logdy )" —3+¢17 +CH1 —by)* +
+[(1—3p)*—(2—3p)3b1)),
1.e.
(8) - B— B* < |a,|*(1 —by)2[t(b,) — T'(b1)]-

Since, by our hypotheses, ¢(b,) < T'(b,), we get B— B* < 0, as desired.

Finally we notice that, since (2) gives no loss of generality, in order
to demonstrate that B = B* can only hold for f = f;, it is sufficient
to show that B = B* with the additional condition (2) can only hold
for f = f,. To this end we observe first that if

4<3 A<(G—9C, exp[-1/G—@l<b <1, ¢(b)<T(d),

then the expression (1 —b,)%[¢(b,) — T'(b,)] in (8) is negative. Consequently,
(8) yields that B — B* can only vanish for a, = 0. Hence we must seek
for the extremum functions in the subeclass of S(b,) with a, = 0. Here,
by (2), we assume that a;— pa,a,— qai+raia,—sah >0, i.e. az—qai > 0.
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Now we shall prove that if f belongs to S(b), ¢ <32, A <(—9q)C,
exp[—1/3—¢)]< b, <1, a, =0 and a;—qaj >0, then f =f;.

The proof is completely analogous to that given in [7] (p. 16-17)
in the case where ¢ = 0. On the other hand, for any f;, —nt<c¢< =,
we have B = B”*, as it can easily be verified by direct calculation. Thus
the proof is completed.

3. Proof of Theorem 2. Consider first |a;]. Wehavep = q =r =38 =0,
whence

A=2%2 0=1 b)) =25[4(loghi) ' —6]'+L,
T(b,) = (1—b,)"?(4b] —1).
Therefore
2t(b,) —117  T'(b,) —n[3T(b,)+ 41"
by = - = =1or —1.
1 eXP[ 3t(b1)—4] T(b)—4 y 7 or

By Theorem 1 and Remark 1, |a,| < (1 —b%) for b* < b, < 1, where b*
is the only solution of the equation

[_ 2t(b*)—11] _H(b") —[3t(b%) 41

(9) s :
(b*) —4 $(b*) —4

considered in the interval exp(—%) < b* < 1. Since, by [2] (p. 65),

2-10.39—-11
3:10.39 — 4

0.6977 < exp (— )< 0.6978

and, on the other hand,

10.39 —(3-10.39 + 4)'"
0.6978 .
< 1039 —1 < 0.6980,
we have 0.697 < b* < 0.698. Thus, by (9), we have found the best possible
value of b* for our method.
Similarly, for |B,| we get A =2, ¢ =2, and 0.603 < b, < 1, while

for |Cy] We obtain 4 = 22, ¢ = L., and 0.460 < b, < 1, as desired.

4. Proof of Theorem 3. Theorem 3 is an immediate consequence of
Theorems 1 and 2 and of the fact that (p,q,r,s, b;) = (0, 0, 0, 0, b*),
where b* is the same as in Section 3, is a regular point for the equation

[ t(b,) —C ]
exp| —— :
2~ D)+ A4—-(G—9C
_ t(b) —[(3—p)t(by)+ (1 —3p)2(2— }p) ]
(b)) —(2—}p)?

which is itself a straightforward analogue of (9) for (p, ¢, 7, s, b;) close to
(0, 0,0,0,b* (cf. Remark 1).
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5. Conclusions. In view of the results obtained in [5], [3] and in
the present paper it seems to the authors natural to pose the following
two conjectures:

ConJECTURE 1 (P 800). For every integer n, n > 2, there is an interval
bhr<b, <1, 0<b<l1,
such that if f belongs to S(b,), then the n-th coefficient B, of the corre-
sponding function ¢ satisfies the inequality

B, < 2(1—b7Y).
The estimate is sharp for every b,, and all the extremal functions
are given by the formula

(10)  frole) = 67 P (b, Pu(62)),  Pu(2) = 2/(1—2 ") ¥
lz|<17 '—‘75<0<7t.
CoNJECTURE 2 (P 801). For every integer », n > 2, there is an interval

br<b <1, 0<biF<l1,
such that if f belongs to S(b,), then the n-th coefficient C, of the cor-
responding function & satisfies the inequality

|0, < 2n(L—077Y).
The estimate is sharp for every b, and all the extremal functions are
given by formula (10).
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