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INTRODUCTION

By a relational structure or, briefly, a structure we shall here mean
a system 2 = (A4, 0, Ry consisting of a set 4, an indexed family of re-
lations R, of finite rank over 4, and a distinguished element 04 which is
reflexive, 1. e., satisfies the condition <0, 0,..., 0>eR; for all teT. In the
principal theorems it will also be assumed that 4 is finite, but it may turn
out to be of some significance for future investigations to observe that
many of the auxiliary results are independent of this condition, and the
finiteness will therefore not be assumed unless it is explicitly stated.

Every finite structure 2 is isomorphic to a direct product of directly
indecomposable structures. 2 is said to have the wumique factorization
property provided this representation is unique up to isomorphism; i. e.,
provided the eondition

A= P B, = P, 6E,

with B; and €; indecomposable for all el and jed, always implies that
there exists a one-to-one map ¢ of I onto J such that B; o< €y for
all 7¢1.

Our primary concern here will be with the question which finite
structures have the unique factorization property. Section 1 is devoted
to a brief summary of earlier results concerning this problem. Sections 2
and 3 describe the terminology to be used in the remainder of the paper,
and they also contain some simple technical results, mostly not new,
that will be needed in the subsequent development. The results in
Sections 4-8 are new, except for some simple lemmas; the principal
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States National Science Foundation Grant NSF-GP 1612.
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results are generalizations of the Birkhoff-Ore Theorem and of the
Jonsson-Tarski Theorem discussed in Section 1. In the ninth and final
section we mention some open problems connected with the results pre-
sented here.

1. ASUMMARY OF EFARLIER RESULTS

The meaning of the various technical terms used in this survey will
be only roughly indicated here. In many cases the same concepts will
be needed in the subsequent development, and more precise definitions
can then be found in the next section, but in other cases the reader
must be referred to the original sources.

There are three principal methods that have been used to attack the
unique factorization problem. The first method is based on the notion
of an inner direct product. Any representation

(1) 2A %Piel%i

of a structure A = <4, 0, Ry p gives rise to a system of substructures
B; of 2, isomorphic to the factors B;. Suppose that among the relations R,
there is a partial binary operation -+ such that, for all xed, 240 and
0+« exist and are equal to z. We then say that U is a structure with
a zero element. For such structures it is possible to give an infrinsic
characterization of those finite systems of substructures B; that correspond
to representations of 2 as a direct product. This makes it possible to
introduce the concept of an inner direct product of substructures of 2,
and to use this notion in place of the more combersome idea of an iso-
morphic representation of 2 as a direct product. This is the method used
in the earliest proof of the unique factorization property for (finite)
groups, and in Jonsson-Tarski [7] inner direet products were used to prove
that every finite algebra with a zero element has the unique factorization
property. Actually it requires only minor changes in the argument given
in [7] to prove the following: _

THEOREM 1.1. Every finite structure with a zero element has the unique
factorization property.

Since the conditions in the definition of a zero element seem to be
as weak as one can make them and still obtain a workable notion of an
inner direct product, this is a highly satisfactory result, and apart from
the fact that the finiteness assumption can be replaced by weaker cond-
itions the theorem seems to be the best that one can hope to obtain by
this method.

The other two methods use the notion of a factor relation. With the
representation (1) there is associated a system of homomorphisms of 2
onto the factors B;, and with each such homomorphism there is asso-
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ciated an equivalence relation F; over A, and these relations essentially
characterize the representation. By a trivial generalization, for an ar-
bitrary equivalence relation Z over A one associates with each direct
product representation of the quotient structure 2 /E a system of
equivalence relations over A, and one arrives in this manner at the
notion of a direct product,

E:!;[FQ- or F=FxF,
of a system of equivalence relations F,, or of two equivalence relations ¥
and F'. F is called a factor relation of E, in symbols
FeFR(YU, B),
if ¥ = FxUF' for éome F’. For simplicity let
FR(2) = FR(X, id),

where id 4 is the identity relation over A.

The second method is based on Ore’s theorem for finite dimensional
modular lattices. As developed by Birkhoff in [1] this method applies
to algebras 2 with a one-element subalgebra (a reflexive element) and
having the property that all the congruence relations over 2 are per-
mutable, i. e.,

F|G@ =G|F for all F,GeO(2).

Here ©(2) is the lattice of all congruence relations over 2, and F|G is
the relative product of F and @. In this case the lattice addition in e2A)
coincides with relative multiplication,

F+@G = P|@,

and from this it follows that @ (2) is modular. It also follows that the
notion of direct product of congruences relations over 2 is a lattice
theoretic notion, in fact, for B, F, F' <0 (),

B=FxF iff F~F —Fand F+F =24,
where %4 is the universal relation over 4. The last observation needed

for the application of Ore’s theorem is true in every structure 2 with
a reflexive element: For any equivalence relations B, F, G and H over A4,

B =FxG=FxH implies /G =~ 2A/H.

’Ising these facts, Birkhoff inferred:

THEOREM 1.2. Every finite algebra with a one-element subalgebra and
tth permutable congruence relations has the unique factorization property.
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The third method uses, in addition to the factor relations, the
decomposition function and the decomposition projections associated
with a given decomposition

1) idy = FxF.

If (1) holds, then F~ F' = id, and F|F' = 24. Hence, for all z,yeA
there is a unique element zeA such that xzFzF'y. The decomposition
function associated with ¥ and F’ is the function f that correlates to each
ordered pair <{x, > this unique element z, and the decomposition projec-
tions associated with F and F’, or with f, are the maps f and f* of 4 into
itself such that, for all x,yed, f(x) = f(x,0) and f'(y) = f(0,y). Let
DF(2) be the set of all decomposition functions and DP(2) the set of
all decomposition projections associated with direct decomposition of id .

Various conditions are known, expressed in terms of these concepts,
which imply the unique factorization property. The most general results
of this kind are probably the ones announced in Chang [2] and Jénsson-
Tarski [6] and [8], with detailed proofs appearing in Chang-J6nsson-
Tarski [3]. Among these results are the following:

THEOREM 1.3. For any structure 2 = (A,0, R .r the following
conditions are equivalent to each other, and they imply that 2 has the unique
factorization property:

(i) FR(A) is a Boolean algebra under the operations | and ~ .

(ii) For all f, geDP(A), fg = gf.

(iii) For all f, geDP(A) and xed, if fg(x) = 0, then gf(x) = 0.

Observe that in this theorem no finiteness assumptions are made,
Actually the three conditions imply that any two decompositions

id,=[[r:i=]]6

tel jedJ

have a common refinement

= [[H:; 6 =][]Hy,

jed rel

and from this it follows that id, has, apart from the order of the factors,
at most one decomposition into indecomposable factors. Of course it may
happen that there is no such decomposition. Incidentally, in (i) and (ii)
our hypothesis that 0 be reflexive can he replaced by the weaker assump-
tion that R; O for all teT.

Among the consequences of 1.3 are the following two theorems:

THEOREM 1.4. Suppose in the structure 2 = (A, 0, R));.p one of the
relations Ry is a binary relation < that satisfies conditions (i)-(iii) below:
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(i) For all xed,x < .

(ii) For all xeA,x <0 < x implies x = 0.

(iii) For all z,yeA there exist a positive integer n and elemenis
Bo = Xy ByyRayeeey @y =Y tn A such that for each t<<n either 2z <z;.,
or 2;.q < 2.

Then A has the wnique factorization property.

THEOREM 1.5. Suppose in the structure 2 = (4,0, R .p one of the
relations Ry is a binary operation -+ with the properties that, for all z,yeA,

(i) 042 =ax+0.
(ii) z+y = 0 tmplhiesx =y = 0.
Then 2 has the unique factorization property.

2. NOTATION AND TERMINOLOGY

The notation and terminology used here are to a large extent the
same as in Chang-Joénsson-Tarski [3]. Bx C and P, .;4; are the Cartesian
products, respectively, of the sets B and C and of the sets 4; (iel), and
74 ig the set of all maps of I into A. We also write f: T —~ A for felA.
A natural number # is identified with the set {0,1,...,n—1}, and "4 is
therefore the set of all m-termed sequences x = <@y, %y, ..., 2, ;> all of
whose terms belong to A.

If F is a binary relation we write «F'y for (x, y)eF. F |G is the relative
product of the binary relations ¥ and G, ¥ is the converse of F, and id,
is the identity relation over A. If f: A — B, then ker f is the kernel of
of f, i. e., the set of all <z, y)> €24 such that f(x) = f(y). From the calculus
of binary relations we recall the modular laws:

F|H c H implies (F|G) ~ H < F|(G ~ H),
H|F < H implies H ~ (G|F) < (H ~ G)|F.

Also, if F and G are equivalence relations over the same set 4, then the
conditions F|G = G|F and F|G = @|F are equivalent to each other
and are necessary and sufficient in order for F'|G to be an equivalence
relation over A. If these conditions are satisfied, then F |G is equal to
the lattice sum F -G of F and G in the lattice of all equivalence relations
over A. ,

As was mentioned in the introduction, the word “structure” will
here be understood to mean a system

U= <A’ 09 Rt>t;T

where A is a set, R, is for each teT a relation of some finite rank p(?)
over A, i.e., a subset of ®4, and 0 is an element of 4 such that
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<0,0,...,0>¢R; for all teT. We shall actually confine ourselves to struc-
tures of some fixed similarity type; i. e., the relations in all the structures
are assumed to be indexed by the same set 7, and the ranks o(f) are
assumed to be the same for all the structures involved.

The Cartesian product of a system of structures

B; = {(Bi, 0;, 8w, el
is defined, as usual, to be the structure
A =<4,0, R

where A = P; ;B;, 6(¢) = 0; for all iel and, for each te1', R; is the set
of all xe*®4 such that

(@o(8)y @1 (8)y -y Boy_r (D)) € Sie  for all el

The Cartesian product B xC€ of two structures B and € is defined in a
similar manner.

Given a map f of a set 4 onto a set B, the various maps induced
by f will usually be denoted by the same symbol f. Thus if X is a subset
of A, then f(X) is the image of X under f, and if #: I — A, then f(z) is
the superposition, fx or fox, of f on 2. In particular, for an n-termed
sequence & = {Lgy X1y ...y Tp_10€ A, f(x) is the n-termed sequence

fow = {f(wg), f(@1)y .oes f(@n_1)>e"B.

In this manner n-ary relations B = "4 are mapped onto n-ary rela-
tions f(R) < "B, and structures 2 = (4, 0, R;>;.r are mapped onto struc-
tures f(A) = <B, f(0), f(R)>t.r.- Similar conventions apply to functions
in several variables, e.g., if f:AxA > A and g,h: A — A, then
flg, h): A — A. When considering maps of a fixed set A into itself we
sometimes identify the elements of A with the corresponding constant
functions. Thus if aed and f: A > 4, then af = a and fa = f(a).

Given an equivalence relation K over a set A, for xed we let a/E
be the E-class to which x belongs; i. e., /F is the set of all ¥ such that
2Ey. The same notation is applied to the various maps induced by the map
¢—>wfE. E.g,if X < A, then X/F is the set of all F-classes x/E with
xeX, if = {®yy ®yy...,&p_1>e"A, then x/Eis the member {x,/H, =, [E,
vy Ty /[EY of "(A[E), if R = ™A, then R/E is the subset of "(4/E)
consisting of all sequences #/E with zeR, and if A = (4,0, R r is
a structure, then 2/E is the quotient structure <A /[E, 0/E, Ry/E>.p.

Given a structure 2 = (4,0, R);.» and a system of equivalence
relations F; (ieI) over A, the canonical epimorphisms of 2 onto 2U/F;
induce a homomorphism f of 2 into the structure

23 == <B, 9, St>teT == PieI ?I/F,-.
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The kernel of f is the equivalence relation
E = N {Fg:iel},

and f therefore induces a one-to-one map fz of A/E onto B. We say that I
is the direct product of the relations F;, in symbols
E =[],
iel

provided this map fz is an isomorphism of 2/E onto B. In order for this
to hold it is necessary and sufficient that the following two conditions
be satisfied :

For each xe’A there ewists ueA such that x; Fiu for all iel.

For each teT and ze°OA, if x|F;eRy[F; for all iel, then z[EeRy[E.

In the case of two equivalence relations F and F’ over 4, the direct
product, if it exist, is written F x F’. Applying the above criterion to this
case, we see that H = F ~ F' is the direct product of F and F’ if and
only if F|F’ = %4 and for all teT and ze°®4, the conditions «[F eRy/F
and z/F'eR;/F’ jointly imply that x[EHeR;/H.

We say that F is a factor relation of E provided E = F x F’ for some
F’, and we let FR(2[, E) be the set of all factor relations of E. In parti-

cular, we let
FR(AU) = FR(AU, id ).

F is-said to be indecomposable provided FR (2, H) has precisely two
members, F and 24.
~ The importance of factor relations is due to the fact that with any
isomorphism
f: QL/E = Pi;I%i

there is associated a system of epimorphisms g;: 2 — B; with g;(»)
= (f(a)); for all zeA, and that

E = H(kergi) and Ufkerg; = B; (iel).
tel
For this reason one can work interchangeably with representations of /K
as a Cartesian product of structures and with representations of ¥ as
a direct product of factor relations. In particular, %/F is indecomposable
if and only if ¥ is indecomposable.

3. DEOOMPOSITION FUNCTIONS AND PROJECTION MAPS

We henceforth consider a fixed structure A = (4,0, Bpi.r. With
a decomposition id, = F x F” there is associated a unique map f:24 — A4
such that, for all x,yed, «Ff(x,y)F'y, and we obtain two maps
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fsf + A — A by letting f(x) = f(x, 0) and f'(y) = f(0,y) for all ©,yeA.
The maps f and ordered pairs {f,f) obtained in this manner can be
characterized intrinsically, and either one of them completely determines
the decomposition. :

Definition 3.1. By a decomposition function over 2l we mean a map
f:24 — A with the following properties:

(i) For all zed, f(z,x) = x.

(ii) For all «,y, ZGA,f(f(w, Y), z) zf—(m’ 2) = f(maf(yy z))

(ili) For all teT, f(R;, R)) < R.. : c

We let DF(2) be the set of all decomposition functions over 2.

Definition 3.2. (i) By an orthogonal pair of projections over A
we mean an ordered pair {f,f'> of maps f,f : 4 — A with the following
properties:

(i1) fz :f’flz-:fla Jff=0 :flf

(i) For all z,yed, if f(x) = f(y) and f () = f'(y), then » = y. |

(iy) For all #,yed there exists zeA such that f(2) = f(z) and f'(2)
=f(9).

(i,) For all te7 and xe®A, xR, iff f(x)eR, and f'(x)ekR;.

(i) By a decomposition projection of 2 we mean a map f: 4 > A
such that, for some map f': A — A, {f,f'> is an orthogonal pair of pro-

jections over 2. We let DP(2) be the set of all decomposition projections
of 2.

COROLLARY 3.3. Let <7 be the set of all ordered pairs {(F,F'> with
idy = Fx F', and let # be the set of all orthogonal pairs of projections over
A For (F,F'>esd let o(F,F') be the unique map f:24 —~ A such that

cFf(x, y)F'y  for all x,yed,
for feDF () let p(f) = (f,f> where f,f : A — A,
fl@) =f(x,0) and f'(x) = f(0,x) for azi wed,
and for {f,f'>eA let
n(f,f) = <ker f, ker f'>.

Then ¢ is a one-to-one map of sZ onto DF (), y is a one-to-one map of DF ()
onto &, 7 is a one-to-one map of # onto <7, and

mwo(F, F') = (F,F'> for all <(F, F>est.

Definition -3.4. In the notation of 3.3, a member (F,F’) of &/
and the members f = ¢(F, F') of DF() and (f, f'> = p(f) of B are said
to be associated with each other.

]
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One can gignificantly increase the generality of many results by
observing that the set FR(2) is unchanged if we adjoin to 2 certain
additional relations, provided the new relations are obtained from the
old ones by means of certain admissible constructions. Alternatively,
we associate with 2 a family A4(2) of relations, and observe that FR(2)
depends only on this family. To describe 4(2) we introduce some addi-
tional notation. If x is an m-termed sequence and y is an n-termed sequence,
then we let xy be their juxtaposition, i. e., the sequence

{(Xoy @yy-vey Tin1y Yoy Y1y o003 Yn—17-

- If §, and 8, are relations we let S,8; be the set of all xy with xS, and
yeS;. If n >1 and § < "4, then we let P(S) be the (n— 1)-ary relation
such that, for all ze" 4, zeP(S) iff x(y>eS for some yed. If Sc ™4
and ¢ is a permutation of n, then we let Sp be the set of all sequences
of the form wop = (@yq), L)y - - -1 Lpm—1y> With zeS. Finally, if 4, j and »
are natural numbers with ¢ < j < n, then we let I;;, be the set of all
xe™A with x; = «;. :

Definition 3.5. We let A(2) be the intersection of all families #
with the following properties: .

(i) RieZ for all teT, "A eZ for every positive integer n, and I;;,e#
whenever ¢,j and » are natural numbers with ¢ < j < ».

(ii) For every integer » >1 and every S8e¢"4, if Se#, then P(8)e#
and Spe# for every permutation ¢ of n.

(iii) For all §,, S,e#, 8,8,¢%.

(iv) For every non-empty subfamily &' of #, () F'e¢F.

(v) For every directed subfamily #' of F, | J F e F.

COROLLARY 3.6. Suppose F; (iel) are equivalence relations over A,
and let

E =\ {F;:tel}.

E=”F,;

tel

Then

iff the following conditions hold:

(i) For each xe’A there ewists weA such that x;F;u for all iel.

(ii) For all SeA(2) and xe™A, where n is the rank of 8, if x/F;eS|F;
for all iel, then x|/E<S|E.

COROLLARY 3.7. A map f:24 —~ A belongs to DF(A) 4ff 3.1(1), (ii)
hold and f(8,8) = 8 for all SeA(A).

COROLLARY 3.8. In order for an ordered pair {f,f'> of maps f,f : A
— A to be an orthogonal pair of projections over U it is necessary and suffi-
cient that 3.2(i,)-(i;) be satisfied, as well as the following condition:
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(i) For all SeA(U) and we™A, where n is the rank of 8, xe8 iff f(x)eS
and f'(x)eS.

We conclude this section with a short list of additional properties
of decomposition functions and of decomposition projections. These
properties will be frequently used in the subsequent sections without
being explicitly referred to.

CoROLLARY 3.9. If feDF (), anf if <{f,f> is the orthogonal pair
of projections associated with f, then for all x,y,z,uecA the following
conditions hold:

(il) f(x,y) = f(z, w) iff f(x) =f(2) and f'(y) = f'(w).
(iii) f(f(@), f (@) = .

(iv) f(a,y) = 2 iff f(x) = f(2) and f'(y) = f'(2).

(v) ff(z, y) = f(z) and ff(x,y) =f(y).

(vi) f(x) = = iff f'(x) = 0.

4. DIVISIBILITY AND SET-INCLUSION

In the proof of the unique factorization theorem for finite algebras
with a zero element a fundamental lemma asserts that if 4 = Bx B’
= (Cx (0" and B < O, then B is a factor of C. In other words, among the
factors of A the relations of set-inclusion and divisibility coincide. If &
is an algebra with permutable congruence relations, and if ¥ and G are
members of FR(2) with F < G, then GeFR (2, F). Thus it is also the
case here that set-inclusion and divisibility coincide. Although these two re--
sults sound similar, it is easy to see that in situations where both of them
apply they do not say the same thing. In fact the former, when translated
into the language of factor relations, is a special case of 4.2 below, a result
that applies to arbitrary structures. On the other hand, in generalizing
the second result, in 4.6, we are forced to retain at least one instance of the
permutability assumption.

LemmaA 4.1. If <{f,f'> and {g, g > are orthogonal pairs of projections
over 2, then the conditions ker f < kerg and gf = g are equivalent, and
they imply that ‘

o' =0, gf=f and gfg =fq.

Proof. By 3.2(i), f(»)=f(f(»)). Hence, if kerf < kerg, then
g(x) = gf (x). Conversely, if g = gf, then kerg = kergf = kerf.

Assuming that gf = g, we have gf = ¢gff’ = g0 = 0. Also, the con-
ditions ¢’'(x) = « and g(x) = 0 are equivalent, and applying this with x
replaced by f'(x) we find that ¢'f' = f'. The same argument with x
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replaced by fg'(x) yields the formula g'fo’ = fq’, since we know that
afg’ = 99" = 0.
TureoreEM 4.2, If

dy=FxF =Gx@ and F =G,

and if {f,f'> and <{g,q"> are the orthogonal pairs of projections associated
with (F,F'> and {G,G"), then

G’ = (kerfg’) x (kerf’q’).

Proof. Let H and H' be the kernels of fg' and f’g’, respectively.
Obviously the kernel G’ of ¢’ is contained in both H and H’. On the other
hand, the conditions f(x) = f(y) and f'(x) =f'(y) jointly imply that
x = vy, and applying this with 2 and y replaced by ¢'(x) and ¢'(y) we see
that H ~ H =< @'. Thus ¢ = H ~ H'.

To prove that H|H' = 24 we consider two elements z,yed and
wish to find zeA such that zHzH'y. By 3.2(i;) we can find zeA such
that f(2) = fg'() and f'(2) = f'9'(y). Consequently, by 4.1, ¢(2) = gf(2)
= ¢f¢’ (#) = g¢’ (#) = 0, whence it follows that g¢'(?) ==z. Thus fg'(2)
= f(2) = fg' () and f'g'(?) = f'(2) = f'9'(y), and therefore wxHzH'y.

Finally suppose Se4(2) is of rank k, and @ *4 is such that x/H S/H
and «/H'eS/H'. Then there exist y,zeS such that z/H = y/H and
2/H' = z[H'. Thus fg'v =fg'yeS and f'¢x = f'g'zeS, which implies
that g'weS, x|/G' = g'x|/G' «8/G’. This proves that ¢’ = H x H', as was
to be shown.

LevvaA 4.3. Assume that the hypothesis of 4.2 s satisfied. Then
kerfg' = @' iff F =idy, and kerf'g’ =G iff O/F =0/G. In case A s
finite, kerfg' =G iff ¥ =@

Proof. If kerfg' = G’, then kerf'g’ = 24, hence f'g'(z) = f'g'(v)
for all x,yeA. Since f'g’(0) = 0, this implies that f'¢" = 0. But then,
by 4.1, f' =fg¢f =0f =0, F' =24, F =id,. Conversely, if F =id,,
then f =id,, f¢' = ¢, kerfg’ = kerg’ = G'.

If ker f'¢' = G', then ker fg' = %4, f¢' = 0. From this it follows that
if g(x) = 0, and therefore ¢’ (x) = x, then f(x) = 0. 1. e., it follows that
0/@ < 0/F. But F < @, so that 0/F = 0/G. Conversely, if 0/F = 0/G,
then for all ze A the condition g(x) = 0 implies that f(xz) = 0. Thus from
the fact that g9’ = 0 we infer that fg' =0, f'¢’' =¢', kerg'f' =G'.

Finally, if A is finite, then all the F-classes have the same number
of elements, and all the @-classes have the same number of elements.
Under these conditions, if 0/F = 0/G, then it cannot happen that z/F
is a proper subset of x/G, and we must therefore have I = @G.

Suppose idy = G xG'. If @' is not indecomposable, then G' = H x H’
with G -+ H, H'. Hence it follows that @ c H<?4 and id;cG~H <G,
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and that both H and G ~ H are members of FR(2). In other words, re-
garding FR () as a partially ordered set under set- -inclusion, we see that
if either G’ is covered by 24 or G covers id, then @ is indecomposable.
For finite structures we are now able to obtain a converse of the second
implication. A partial converse of the first implication will be given in 4.7.

COROLLARY 4.4. If A is finite, idy = Gx &, and G is mdecomposable,
then G covers id 4 in FR ().

Proof. According to 4.2 and 4.3 the existence of a factor relation ¥
with id4 ¢ F =« @ would yield a direct decomposition G’ = H x H' with
H,H #@&.

Observe that if every element of 4 is known to be reflexive, then
the finiteness condition in the preceding corollary may be omitted. In fact,
if FeFR(YU) is such that id, = ¥ < G, then «/F < u/G for some ued,
and we may apply 4.2 and 4.3 with 0 replaced by u to infer that G’ is not
indecomposable.

LEMMA 4.5. If idy = FxF =Gx Gy and if {f,f'> and <g,¢'y are
the orthogonal pairs of projections associated with (F,F’> and (G,G">,
then the following conditions are equivalent:

(i) (' ~@)|F" = F'|(F ~ Q).

(i) F ~ (F'|(F ~ Q)| F) < @Q.

(111) FAG=Fn kergf’.

(iv) kergf’ = (F ~ Q)| F".

Proof. That (i) implies (ii) is an easy consequence of the modular
law. Assume (ii). If (z,y>e¢F ~ @, then

f (@) F'aF ~ GyF'f'(y) and f'(2)Ff(y),

which by (ii) implies that f'(x)Gf’ (v), gf (x) = gf (y), <@, ¥)> ekergf’. On the
other hand, if (@, y>eF ~ kergf’, then |

2F'f' (x)F ~ Gf' (y)F'y and aFy,

- and an application of (ii) yields {x, y>e@. Thus (ii) implies (iii).
Assume (iii). If a(F ~ G)|F'b, then there exists an element z such
that aF ~ GrF'b. Since F'|F = 24, there also exists an element y such
that aF'yFb. In order to prove (i) it suffices to show that yGb.
We have

fla) =f(x), g(a) =g(x), [(2)=f(b),
fla) =1, [fly)=fb).

From the first two of these formulas we infer by (iii) that gf’(a)
= ¢f'(x). In view of the third and fourth formulas in (1) thls can also
be written gf’(y) = gf’ (b), and from this and the last formula in (1) we
infer by (iii) that yGb, as was to be shown.

(1)
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Obviously P’ is contained in the kernel of gf’, and if (iii) holds, then
F ~ @ < kergf’, and hence

(F ~ G)|F' < kergf'.
On the other hand, if gf' (x) = gf'(y), then

xF'f(x)F ~ Gf' (y) F'y.
Thus
kergf’ < F'|(F ~ G)| I,

and reference to (i) completes the proof of (iv). Finally, if (iv) holds,
then (F ~ G)|F’ is an equivalence relation, and this implies that (i) holds.
THEOREM 4.6. If idy = FxF =Gx@, F =@ and F|G¢ =G'|F,
then F = Gx (F|G).
Proof. By 4.5, kerfg’ = F|G', and by 4.2,

ids = G x (kerfg') x (kerf'q’).
Therefore Gx (kerfg’) exists. Furthermore, by 4.5,

F=F~G =G n (kerfg’),
so that
F = Gx (kerfg') = Gx (F|&).

COROLLARY 4.7. If, for all F,@,& <FR(X) with idy = GX &, the
condition F < G implies that F'|G' = G'| F , then the indecomposable members
of FR () are precisely the members covered by *A.

Proof. Obviously every member of FR(2l) that is covered by 24
is indecomposable. On the other hand, if ¥,G<FR(%) and F <« G < *4,
then it follows from 4.6 that GeFR (2, F), so that F is not indecompo-
sable.

5. A GENERALIZATION OF THE BIRKHOFF-ORE THEOREM

Most of the known unique factorization theorems make use of the
fact that if two factor relations F and @ of a structure 2 (with a reflexive
element) have a common complement, then 2/F, and /G are isomorphic.
This is usually combined with some kind of an exchange property in order
to show that in two decompositions into indecomposable factors the
factors can be paired off in such a way that corresponding quotient struc-
tures are isomorphic. In the next lemma we formulate a rather weak
exchange property that still turns out to be sufficient for this purpose.
The fact that it involves decompositions into two factors only turns out
to be convenient, although probably not essential, for the applications
both in the present section and in Section 8. ’
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LeMMA 5.1. Suppose A is finite, and assume that the conditions
idy = FXF =GxG, F is indecomposable,
always imply that there exists H such that idy = HX F' and either H 2 G

or H2G'. Then U has the unique factorization property.
Proof. We shall prove by induction on m that if

dy = FoX FiX ... X Fpy (XK = Gex G,X ... X Gy X K,

where all the factors F; and @; are indecomposable, then m — n and
there exists a permutation ¢ of m such that 2A/F,; == QI/G,,,@) for i=0,1,...,
m—1.

Let G' = G1X GyX ... X G,_,x K. By successive applications of the
hypothesis we obtain H,, H,, ..., H,,_,, each of them containing either
G, or (', such that

(1) Wy = Hyx HyX o.. X Hi_ (X F;X ... X F,_x K
for i =1, 2, ...y m. In particular, for ¢ = m,
dy =HXH,X ...xH, xK.

Consequently the direct product of all those factors H; that contain G,
- must be Gy, and the direct product of all the remaining factors (including K)
must be G'. Since @, is indecomposable, this implies that B, = @, for

some p << m. Thus '

idy = Hyx HiX ... X Hy_yX Hp X ... X Hy 1 X (Gyx K)
== GIX ng eee X Gn_IX (Gox K).
By comparing two successive values of 7 in (1) we see that UA/F; = UA/H,;
for 4 =0,1,...,m—1 and, in particular, 2/F, == 2A/@,. The proof is
therefore easily completed by induction. ‘
LEMMA 5.2. If A is finite, and if

id—AZ-FXF’:GXG’:GK\F,:FK\G,,

then id, = Gx F".
Proof. From the fact that

FAF =idy, and F|F =24

it follows that each F-class has exactly one element in common with
each F'-class. Consequently, if the number of F-classes is m and the number
of F'-classes is m’, then the order of A4 is mm/, each F-class has exactly
m’ elements, and each F'-class has exactly m elements.

Since ¢ ~ F' = id4, each G-elass has at most one element in common
with each F'-class. Consequently the number of elements in each G-
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is at most m’, and the number of G-classes is at least m. Hence, and by
symmetry, the number of @-classes and the number of elements in each
@'-class must be equal to m and m’, the corresponding numbers for F.
Now the m’ elements in each G-class belong to distinct F'-classes, and
each G-class therefore has an element in common with each F’-class.
Thus

(1) G| F =

To complete the proof it suffices to show that if SeA(2) is of rank
k, and if x,y,ze"4 are such that

(2) x|G =ylG, ylF' =z[F, w,ze8,

then yed.

Let f be the decomposition function associated with {(F', F'). Consi-
dering a fixed sequence z¢S, let ¥ = f(x, y) for all ye “A. The correspon-
dence y —y' maps “4 onto x/F. When restricted to #/G this map is
one-to-one because the conditions /G = y/G and y[F’ = y’'[F’ completely
determine y when ¥’ is given. Thus /G is mapped in a one-to-one manner
onto «/F. Also, 8 is mapped into itself, and 8 ~ (/@) is therefore mapped
into 8 ~ (z/F). Thus the number of sequences in 8 ~ (#/G) cannot exceed
the number in § ~ (z/F). By symmetry, the two sets must contain the
same number of sequences, and the correspondence y — %’ therefore
maps the former onto the latter.

Assume now that relations (2) holds. Then yez/G and y' = f(z,y)
— f(z, z)eS8. Consequently yeS8, as was to be shown.

LEMMA 5.3. If, for each iel, F; and G; are equivalence relations over
A with F; < G;, and if the direct product

n F;
exists, then the direct product

[]é:

tel
also exsts.

Proof. By hypothesis, for each we’A there exists wed such that
x; F;u for all ieI. Clearly this implies the corresponding property with F;
replaced by G;; in fact, we use the same element «. Also by hypothesis,
if Sed(2A) is of rank %k, and if xe®A is such that S ~ (z/F;) # O for all
1el, then
S~ N{z|F;:iel} #0,

and in order to complete the proof it is sufficient to establish the corres-
ponding property with F; replaced by G;.
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Suppose therefore that 8 ~ (¢/G;) # O for all iel. For each iecl
we can then find a sequence y”e§ such that z|G; = y"|G;. There exists
a sequence z¢ “4 such that z/F; = y© [F; for all ieI. Thus § has an element
in common with each of the sets z/F;, namely the sequence y, and it
therefore has a member in common with their intersection. Inasmuch
as x/G; = z/G,, it follows that

B~ N {@/G:iel} 28 ~ () {2/F;:iel} + 0.

We now prove the promised generalization of the Birkhoff-Ore
Theorem, essentially by following step by step the proof given by Birkhoff
in [1], pp. 94-95.

THEOREM 5.4. Suppose A is finite, and let F be the smallest family
of equivalence relations over A with the properties that id 4% and that, for
all BeF and F,GeFR(U, B), F ~ GeF. If, for all EcF and for all
F,F',GeFR(U, B), the condition E = Fx F' implies that (F ~ G)|F’
= F'[(F ~ G), then 2 has the unique factorization property.

Proof. We shall establish the following property, which includes
the hypothesis of 4.1 as a special case, and therefore implies the theorem:

If Fe&# and

(1) E=FxFxK=GxGxK,
then there exist H, H' such that
(2) E=HxH xFxK, H=26G, H 2G.

This statement trivially holds when E — 24 and, more generally,
it is true whenever F — K. Proceeding by induction we may therefore
assume that it holds whenever F is replaced by a larger member of &,
and also that for the relation B under consideration it holds whenever K
is replaced by a smaller relation. We consider three cases.

Case 1. FmG'r\K=Gr\F'r\K=E.

In this case E =Gx F'X K by 5.2, and (2) therefore holds with
H =@ and H = 24.

Case 2. FcF~G ~ K.

Let

B, =F~G~K, F,=F, F,=E|F, ¢, =E|G G =¢.

By hypothesis, ', and @, are equivalence relations over A4, and by
the modular law

GG AK =6 ~EK) =F|G G ~K)=E|E =E,.
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Consequently, by 5.3,
B, =FxFxK=6xExK.
Since ¥ < E,¢#, it follows that there exist H, H' such that

B, =H><H'><F{><K, GcH, G c<cH.
/We have

HAH AF AE=BEAF =(F~AF ~K)~F —E,
(HAH' ~E)|F' =(HA~H ~K)|E|F =(HA~H ~E)|F, = 4.

In order to prove (2) for the present case it therefore suffices to show
that if SeA(2A), and if x,y,2¢*4 are such that

$(H~AH' ~AK=y/H~H ~K, 2/F =z/F and Y, 2el,
then there exists uwe”A such that
(3) - /B =ul/E and weS. "
In any case, since z/F; = z/F;, there exists ve “4 such that

z[H, =v[E, and wveS.
Thus
O[F~K=vF~K, zF =zF, ov,zeS,
and because of (1) this yields a sequence u that satisfies (3).
In the above argument H was so chosen that it contains E,, which
is not contained in @. Under the hypothesis of the second case we can

therefore strengthen (2) by requiring H to contain @ properly. This obser-
vation will be used in the treatment of the next case.

Case 3. H c F’ ~nG A K.
According to Case 2 there exist H,, H; such that

E=HXxHxGxK, FcH, F cH.
Apply 4.6 to obtain F such that F' = H|x F. Then
E =FxFx(H,xK) = H,x@; x (H|xK).

If H, #*4, then H;x K < K, so that the inductive hypothesis applies
and yields H 2y H; such that

E=H,xH,x FxHxK, H,cH, G <H,.

Colloquium Mathematicum XIV ) 2
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Again applying 4.6, we obtain G such that @' = H,x G. Thus
(4) E = H,x F'x (Hyx K) = GX Gx (H;X K).

Observe that H, cannot be equal to 24, for this would yield B =
Fx F'x K = H,x F'x K, which is impossible because F < H,. Thus
H!x K < K, and the inductive hypothesis applies to (4), yielding H,, H,
such that

E=HxHxFxHxK, GcH, GcH,.

Consequently (2) holds with H = H, and H' = HyX H,.
It only remains to consider the subcase when H , = 24, and therefore

E=FxFxK=HXGEXK.

If FP~H,~K=E, then F~ K =FH, F' =324, and we may take
H=@ and H =@&. If, on the other hand, ¥ ~ H, ~ K o E, then
Case 2 applies with G and G’ replaced by G' and H,, and yields H,, H,
such that

E=H,xHxFxK, H, cH, G cH,.

Observe that ¥ < H,, so that H, - 2A. By 4.6 there exists G such that
@' = H,x G. Thus

B = H,x F'x (Hyx K) = GX Gx (Hyx K)

with Hyx K < K, and one more application of the inductive hypothesis
yields H,, H, such that

F=HxHxFxH,xK, @G¢cH,;, GcH,.

As before, (2) holds with H = H, and H' = H;x H,.

COROLLARY 5.5. Suppose A is finite, and let F be as in 5.4. If the
lattice of equivalence relations over A that is generated by F 1is modular,
then 2 has the unique factorization property. ‘

Proof. If Ee# and F = FxF' = G@x @&, then F,F', G,G belong
to &, and therefore

PAPIFAAF)sFA(FAOD+F)=F O+ FAF)
=F~Gcq@.

Applying 4.5 to the quotient structure 2[/E we infer that F ~ G and F
commute. Hence 2 has the unique factorization property by 5.4.

In particular, when applied to algebras this shows that instead of
assuming that the congruence relations permute we can make the weaker
assumption that the lattice @(2) of all congruence relations over A i
modular.
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6. STRUCTURES WITH A CANCELABLE IDEMPOTENT

The next three sections will be devoted to the proof of the following
result:

THEOREM 6.1. Suppose A is finite, and assume that there exists a partial
binary operation 4+ in A(2) with the following properties:

(Z,) For all xeA, 0+ and -+ 0 exist and are equal.

(Zy) For all x,yeA, if 0+ax = 01y, then z = y.

Then AU has the uwique factorization property.

The proof of this theorem will be based on a series of lemmas. In
order to avoid repetition we assume once and for all that -+ is a partial
binary operation in A(2) that satisfies (Z,) and (Z,), and that

dy =FXF =6GxG&.

As usual we let f and § be the decomposition functions associated with
F,F') and (@,G), and we let <{f,f> and <g,g¢’> be the associated
orthogonal pairs of projections. An element aeA will be said to be eom-
muting if, for all xed, a+x and 2+ a exist and are equal. If, for all
w,yed, the condition that a+x and a-+y exist and are equal implies
that © =y, then a is said to be cancelable. (In every case where this
property will be used, ¢ will be known to be commuting.)

In this section we list a number of elementary consequences of these
assumptions. Many of these properties can be found in Chang-Jénsson-
Tarski [3], although there they are stated for binary operations only.
It may be of some interest to observe that 6.2 holds for an arbitrary
partial binary operation + in A(2), that the properties in 6.3 depend
on (Z,), and that in proving 6.4 we make use of both (Z,) and (Z,).

LEMMA 6.2. For all x,y,z,uecA, if x-+y and z+w exist, then f(z, 2)
+fly, ) exists and is equal to f( w+y,z—|—u)

Proof. Apply 3.7 with S replaced by .

LeEMMA 6.3. For all x,y,z,ueA, the following statements hold:

(1) z+y exists iff f(x)+f(y) and f'(x)+f (y) ewist.
(i) x4y exists iff f(x)+y and f'(x)+y exist.
(iii) z+y exist iff v+f(y) and x--f (y) exist.
(iv) If @ty exists, then f(z+y) = f(2)+f(y)-
(V) f@)+F (y) = f(@, )+ 0 = f'(y)+f(a).
(Vi) f(@)+f (#) = 2+ 0. ;
(vil) Suppose x+-y and z+u ewist. Then x+y = z+u iff f(x)+f(y)
= f()+f(u) and f(2)+f (y) = f'(2) +f (u).
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(viii) Suppose x+y and y+m exist. Then :c—}—y = y+u iff f(x

= y+f(x) and f'(@)+y =y+f (2
(ix) fof" (@) +fg’f (x) = 0.
(x) fof (x)+gf (@) = f'gf (x)+fg (@)
(xi) fgf’(x) i commuting.

Proof. Assuming that x4y exists, apply 6.2 with 2 =u = 0 to
infer that f(z)+f(y) exists and is equal to f(x+y). Similarly one sees
that f'(x)-+f'(y) exists and is equal to f'(x+4y). This proves (iv) and the
“only if” part of (i). To prove the “if” part of (i), apply 6.2 with =z, v, 2
and u« replaced by flz), f(y), f'(x) and f’ y), making use of the fact
(3.9} that J(f(2), f (z)) = o.

If +y ex1sts, then by (i) the sum of ff(x) = f(«) and f(y) exists.
Since the sum of f'f(z) = 0 and f'(y) also ex1sts, we infer by a second
application of (i) that f(x)+y exists, and a similar argument shows that
f'(z)+y exists. Conversely, if these last two sums exist, then by repeat-
ed use of (i), f(@)+f(y) = ff(x)+f(y) and f'(@)+f (y) =fF @)+ (y)
exist, and hence m+y exists. This proves (ii), and (iii) can be proved
similarly.

The existence of the sums involved in the remainder of the proof
will be guaranteed by (i) and (iii) together with 6.2.

We have
x)+f () = Fx, 0)+1(0,y) = f(x)+, (0+ )
=fw+0 y+0) = f(@,y)+1(0
= f(z, y)+0.

The other half of (v) is proved similarly, and (vi) follows by taking ¥ = x.
(vii) is an easy consequence of (iv). Assuming that z+y and y+o
exist, if x4y = y-+«, then |

f(f@)+y) = fla+y) =fly+o) = fly+f(=),
Flf@+y) = 0+y) = @+0) =f{y+f®),

so that f(x)+y = y+f(z). Similarly f'(#)+y = y-+f (#). Conversely,
if these last two equations hold, then

faty) = F(f@)+y) = fly+F@) = fy+a)

and similarly f(z+y) = f (y+x), so that z+y = y-+a. This proves
(viii). To prove (ix) we compute

faf' (@) +fg'f (®) = f3(f (), f (@))+0 = ff' () +0 = 0+0 = 0.

Both sides of (x) are mapped onto the same element by f, namely fg(x) +0,
and they are both mapped onto 0-f'gf(x) by f'. Consequently (x) holds.
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The element fgf'(¢) commutes with f'(y) by (v), and it commutes
with f(y) by (v) and (viii). By a second application of (viii) we infer that
fof’' () commutes with y. Thus (xi) holds.

LEMMA 6.4. For all x,y,z,uecA, the following statements hold:
(i) f@)+F @) = F@) +F (u) ff f@) =f(z) and f(y) = f (u).
() If z+y and x+z ewist and if f(x)+y = f(x)+2, then z+y
=x+%.
(iii) If @ 4s cancelable, then so is f(x).
(iv) faf'(x) is cancelable.
(v) fof'g = f9'fg-
(vi) ker fgf' = ker fg'f".

(vii) If fg(@) = fg(y) and fg'(x) = fg'(y), then f(x) = f(y).

(viil) If fg(x) = fg(y) and fg'(x) = fg'(y), then fof (x) = fof (y)-
(ix) If fg(x) = fg(2) and fg'(y) = fg'(w), then fg(x, y) = fF(z, u).
(x) If fg(@) = fq(y) and fg'f'(x) = fo'f'(y), then fgf (x) = faf (y).

Proof. Applying f and f' to the first equation in (i) we obtain

f@)+0=f()+0 and O0+f(y) = 0+f (u),

and because of (Z,) this yields f(x) = f(2) and f’'(y) = f’(u«). The implication
in the opposite direction is obvious. :
Under the hypothesis of (ii),

f@+y) =f(f@)+y) =f(f@2)+2) = fle+2),
and applying f’ to the equation f(x)+y = f(x)+2 we obtain

0+F(y) =0+ (@), f)=Ff®, [ty =Ff(z+z).

Consequently, +y = x4 z.

If # is cancelable and f(x)+y = f(2)+=2, then f'(y) =f'(2) and
J(@)+f(y) = f(x)+f(2). From the latter equation it readily follows that
2+ f(y) and 2+ f(z) exist and hence in view of (ii) that -+ f(y) = x-f(2).
Consequently f(y) = f(2), ¥ = 2. Thus f(2) is cancelable.

Suppose f¢f’ (z)+y = fgf’ (x)+2. Then

fof' (@) +f(y) = faf' (@) +f(z) and  O+f'(y) = 0+f(2).

From the latter equation it follows that f'(y) = f'(2), and from the
former we infer with the aid of (i) that f'(z)+f(y) = f'(#)+f(2), whence
it follows by (i) that f(y) = f(2). Thus y = 2. This shows that fgf’ ()
is cancelable.

To prove (v) we observe, with the aid of 6.3(ix), that

fof'9(@)+fg'f'9(x) = 0 = fg'fg(x)+fg'f'g()
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and that fg’f'g(x) is cancelable. (vi) follows from the fact that
fof' (@) +fg'f (@) = 0 = fof () +1F9F (¥),

and that all the summands are cancelable. Hence, if either fgf'(x)
= faf’ () or fg'f' () = fg'f'(y), then both these equations hold. To prove
(vii) it suffices to note that fg(x)+fg'(x) = 04 f(x), Next, under the
hypothesis of (viii),

faf (@) +faf’ (@) = faf (¥)+faf (),

since the two sides are equal to 0+ fg(x) and 0-fg(y), respectively.
Applying ¢° we obtain

g'faf (@) + g'faf’ (x) = g'fof (v)+ g'fof ().

Since ¢'fgf(x) and g’fgf(y) are equal by (vil) and cancelable by (iv), it
follows that ¢'fgf’ (x) = ¢'fgf (y). Similarly, gf¢’f(z) = ¢fg’f' (y), and since

| afg’f’ (®)+ gfgf’ (@) = 0 = gfg’f' (y)+gfaf (¥),
it follows that gfgf’(x) = gfgf'(y). Thus

afaf’ (@) +g'faf' (@) = gfaf (¥)+9'fof' (y),

and using 6.3(vi) and (Z,) we conclude that fgf'(z)+0 = fgf' (y)+0,
fof’ (x) = faf (y).

Finally, (ix) is an immediate consequence of 6.3(v) and (Z,), and
under the hypothesis of (x) we have fgf'(x) = fgf' (y) by (vi) and

fof (x)+faf' (@) = faf (y)+faf (y)
by 6.3(v), and together with (iv) this yields fgf(x) = fgf(y)

7. GENERALIZATION OF THE FITTING-LOS LEMMA

This section will be devoted to the proof of the main lemma on which
the proof of 6.1 is based.

Lemma 7.1. If (fgf)" is idempotent, then it is a decomposition pro-
jection and its kernel is a factor of F.

For the special case when A is an Abelian group with operators
this lemma ecan be found in Fitting [5]. The generalization to algebras
with a zero element is an unpublished result by J. Lo§. Since the proof
of our lemma is rather long and not very intuitive, it may be helpful to
outline firgt a proof for the case considered by X.o$. Let f* and g’ be the
decomposition projections orthogonal to f and g, and let b = (fgf)".
Observe that, for £ =1, 2, 3,

- f = (fof)* +(fgf+fgfgf+fg (faf)2+ ... +fg' (fgh*").
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In fact, if this holds for a given value of k, then the corresponding formu-
la with %k replaced by k-1 is obtained by making use of the fact that

(faN* = f(faf)* = (faf +fa’f) (fan)* = (fah)***+fo' (faf)*,

and that fg’'(fgf)* maps A into its center. Letting

q = fo'f+fo'faf+ ... +fg (fagH)" ",

we infer that f = h-+¢q. Observe that fgf and f¢’f commute by 6.3(v),
and therefore hg = gh. Consequently

hg = hqf = h*q+hq* = hq+-he?.

Since hq maps A into the center of the algebra, this implies that hq2 = 0.
Next,

¢ = f¢® = hg®*+¢* = 0+ ¢ = ¢,

so that ¢? is idempotent. Furthermore,

= hf = h*+hg = h+hq = (h+hg)+hq = h+2hq,
f=F=h+9? = (h+2hg)+¢* = h+¢.

It is now easy to see that (&, ¢2+f’) is an orthogonal pair of projections,
and a straightforward argument completes the proof of the lemma for
the special case of an algebra with a zero element.

Proof of Lemma 7.1. Our proof is to some extent suggested by
the above argument, although many of the details will be considerably
more involved. Let p, = ¢, = f, and for k =1, 2,... let

Pk+1 =fgpr and g,y = F(fy ')
Also let '
h=fgpny, B =(fgqwm)?, k@, 9) =[G(pa(®); ¢ufd 0:.(¥)),
H =kerh, H' = kerh'.

We shall show that ¥ = Hx H'. The proof will be based on a series of
statements. '

STATEMENT 1. For k =1,2,..., f = fG(px, qx)-

Proof. For k¥ =1 this follows from 3.1, 3.2. Assuming that it holds
for & we have

TG (Prs1s Qs = f3(fopr, F(f5 0'an))
= 17 (fope F(f3 (x> 02)5 ') -
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We wish to show that this is equal to f7(p:, ¢x), and hence to f. Actually
it will be shown that, for all x,yeAd,

(1) falfo(@), (fale, 9), ¢’ @) = fale,y).
Observe that, for all z, u,v,wed, the conditions

(2) fg(z, f(w)) = fg(v, f(w)), fo'f (w) = fg'f' (w)
jointly imply that
(3) f3(z, ) = fg(v, w).

To verify this we compute

fa (e, fw))+fo'f' (u) = fa(z, f(w)+17(0, F (w))
= fg(z+0, f(u)+f (w)) = f7(z+0, u+0)
= fg (=, u)+fg(0’ 0) = fg(z, w)+0.

Of course the corresponding formula with 2 and « replaced by » and w
also holds. Consequently (2) implies that fg(z,u)+0 = fg(v, w)+0,
which in turn yields (3).
We now take
zzfg(w), uzﬂfg(wﬁy)’g'(y))a v=2x, /w:g'(y)-

Since, by 3.9(ii), f7(», ¢’ (¥)) = f3(x,y), (1) is equivalent to (3), and it
is therefore sufficient to show that (2) holds. Since f(#) = fg(x,y) and
f'(w) =f'g'(y), the second equation in (2) is obviously true, and the
first one can be written

fg(fg(w),fg(w, f‘/)) =f§(w7fg’(?!))-

To prove this we compute

f7(fg (@), fg (@, v)+0 = f7(fg(x), f3 (x, y))+f3(0, 0)
= f§(fg(x)+0, fF(z, ¥)+0) = 7 (fg(x)+ 0, fg(x)+fg’ (¥))
= fg(fg (@), fa(x)+f7(0, fg' (v)) = fo(@)+fo'fq’ (v)
= f§(x, fo' (1)) +0,

and then cancel 0.

STATEMENT 2. For k, 1 =1, 2, ..., (fopx) (fo'a) = (f9'0) (fopr).

Proof. Since fgpi, = (fgf)*, it is sufficient to show that fgf commutes
with fgg;. For 1 = 1 this follows from 6.4(v). Assuming that it holds for
! = m, we wish to show that it holds for I = m+-1. Observe that fg'fgm.,,
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is equal to fg'f, which is already known to commute with fgf. Also f¢'f'qm.1
= f9'f'9'q¢m, and using 6.4(v) and the inductive hypothesis we find that

Jaffa'f mr = fof9’f' 9" @m = fafafq’ am
= fafg' anfaf = f9'F 9 anfaf
= f9'f qm 1 Sof -

Thus fgf commutes with both f¢'fq,,., and f¢'f'¢n,,, and hence commutes
with their sum fg'¢,,,,+0. Canceling 0 we see that fgf commutes with

J9' Gy - .
STATEMENT 3. (fgp.)(fq.)* = 0.

Proof. We shall actually prove the stronger assertion that
Japnfq'qng’ = 0 or, what by Statement 2 is equlvalent fo'qnfgpng = 0.
Using Statement 1 we find that

fapng' = ffapag’ = f9(Dny @) fgPng’
= fG(PufaPn9’s GufIDn9") = fT (P09’ s @ FAPnY') -

The last step uses 6.4(ix) and the hypothesis (fgpn)* = fgp.. Adding 0
we obtain

Japng +0 = fapng 19 anfapng’ -

Since fgp,g' is cancelable, the conclusion follows.
STATEMENT 4. (f¢'q.)® = (f9'qn)?.
Proof. By Statement 1,

(f9'92)* = f(f9'qn)?* = J3(Dns qn) (G qn)?
= fJ (D (f9'@)?) € (f0'0n)?).
Hence, by 6.4(ix) and Statement 3,
(f'qn)* = f3(0, ¢u(fo'qn)?) = (f9'qn)*-

STATEMENT 5. For all zeA, h(z, x) = f(x).
Proof. This is equivalent to the formula

(4) fopn+ (f9'qn)? = f+0

which in turn is equivalent to the conjunction of the two equations obtained
by applying fgp, and fg'q, to (4), i. e., the equations

(5) (f9p2)? + 1900 (f9'40)* = f9pPn+0,
(6) [0 @nfgpn+ (f9'0n)® = f9'qn+0.
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That (5) holds follows from Statement 3 and the hypothesis. By Statements
4 and 2 and 6.3(v) the left-hand side of (6) is equal to

f7(Pns @)f9' a0,

and hence (6) follows by Statement 1.
STATEMENT 6. For all xz,y,z2¢A,

7i(;;(a-"'y Y), z) = ﬁ(wy R) = E(CL‘, _E(y: z))
Proof. It is clearly sufficient to show that, for all wed,
fg(pnz(wa Y), u) :fg(p,,,(a:), '“');
13 (wy gnfg'anh(y, 2)) = f3(u, @ufa'an(2))
and by 6.4(ix) these equations hold provided
(7) fgpnﬁ(wy Y) = fap.(x),
(8) (f9'ex)?h (Y, 2) = (fg'qn)?(2)
By 6.3(v) together with Statement 3,
fapnb(@, ¥)+ 0 = (fgpn)* (@) +fgpa (f9'qn)?(y)
= fgpa(2)+0,

and we cancel 0 to obtain (7). Using, in addition, Statements 2 and 4
we find that

(f9'0:)%h (Y, 2)+ 0 = (fg'q.)gpn(¥) + (f9'qn)* ()
= 0+ (f9'q)%(2),
whence (8) follows.

STATEMENT 7. F = HxX H'.

Proof. Since hf =h and A'f = h', the condition f(cv) f(y) always
implies that

9) h(z) = h(y) and B'(x) =1'(y).
On the other hand,
h(@,y)+0 = fagpa(@)+ (f0')* () = h(x)+b'(y).
In particular, taking # = y and applying Statement 5 we find that
h(@)+ b (x) = f(@)+0.

From this and the corresponding formula with x replaced by y it is clear
that (9) implies that f(x) = f(y). Thus

F=HnH,.
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For all x,yed, if 2 = h(x,y), then
h(z) = h(k(z,y), 0) = k(z, 0) = h(z)
and, similarly, »'(y) = h'(2). Therefore xHzH'y. This shows that
H|H" =734,

Since, obviously, for all Se4(2) and =, yeS the sequence hA(x,y) belongs
to §, the conclusion follows.

According to Statement 7 the kernel of the map fgp, = (fgf)" is a
factor of F Furthermore, if ze4d and y = fgp,(2), then fgp,(y) = fgp. ().
Also f'(y) =0 and h'(y) = (fggn)*fgpn(x) = 0, so that yeO)(F ~ H').
Consequently fop, is a decomposition pI‘OJLGblOH This completes the
proof.

8. PROOF OF THE FUNDAMENTAL THEOREM

We now complete the proof of 6.1 by showing that 2 has the exchange
property described in 5.1.

LemMA 8.1. If (fgf)" is idempotent and F is indecomposable, then
(fof)* =f or (faf)" =

Proof. By 7.1 the kernel of (fgf)" is a factor of F = ker f, and must
therefore be either 24 or E. In the former case it is obvious that (fgf)"
= 0, but in the latter case we claim that (fgf)" = f. In fact, (fgf)"(x)
is in this case a member of the range of f which is in the relation
ker(fgf)" = F to x, and the only element with this property is f(x).

LemmA 8.2. If F is indecomposable and A[|F 1is finite, then there
exists a positive integer n such that either (fgf)" = f or (fg'f)" =f.

Proof. The range of fgf is contained in the range 0/F’ of f and is
therefore finite. Hence some power of fgf must be idempotent. Similarly,
some power of fg'f must be idempotent, and we finally infer that there
exists a positive integer » such that both (fgf)" and (fg’f)" are idempotent.
According to the preceding corollary, the proof will be complete if we
show that (fgf)" and (fg’f)" cannot both be 0. The proof of this is based
on a simple set-theoretic observation:

STATEMENT. Suppose h and b’ are maps of a set U into itself with
the properties that hh' = k'h and that, for all xz,yeA, the conditions h(x)
= h(y) and h'(x) = h'(y) jointly imply that x = y. Then, for every positive
integer k and for all m,yeA, the conditions h*(x) = h*(y) and h"™(x)
= 1'"(y) jointly imply that © = y.

In fact, assuming that the conclusion holds for %k = m, consider
the case k = m-+1. Given x,yed, with A™(x) = k™' (y) and A" (x)
= ™ (y), let

w=Hh"r"(x) and o ="r"""(y).
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Then h(u) = h(v) and h'(u) = h'(v), so that » = v. Thus A"h™(z) =
R"R'™(y). Certainly we also have ™1™ (x) = h'™h'™(y), and it follows
that "™ (x) = k"™ (y). Similarly A" (x) = k™(y), and we infer by the in-
ductive hypothesis that x = y.

LemMA 8.3. If, for some positive integer n, (fgf)" =f, them id, =
(F~@)6G)xF.

Proof. We first prove that ¥ ~ @ and G permute:
(1) (F~G)|G=G|(F ~&F).
By 4.5 this is equivalent to the assertion that
(2) G' ~ F =@ ~ kerfg.

According to 6.4(vii), the right-hand side of this equation is contained
in the left-hand side, and to prove the opposite inclusion it suffices to

show that if fg' () = fg’(y) and f(z) = f(y), then fg(x) = fg(y). In fact,
we have

99 (x)+gfg’ (®) = afg(y)+gfg’ (v

the two sides being equal to gf(x)+0 and gf(y)-+0, respectively. The
second summand is the same on both sides of this equation, and since
it is cancelable we infer that gfg(x) = ¢fg(y). Consequently

fg(@) = (faf)"g(x) = (faf)"9(y) = fg ().
Next we show that '
(3) (B~ @) G) ~F =idy.
From (2) it follows that
(F ~G@)|G < ker fg.
fi?herefore, if (x,y> belongs to the left-hand side of (3), then
(4) fg(@) =fg(y) and  f'(x) = f'(y).

Consequently

fof (x)+faf (@) = faf (y)+ faf (v),

since the two sides are equal to fg(x)10 and fg(y)--0, respectively.

Canceling fgf' (#) = fgf’ (y) we infer that fgf(z) = fgf (y), and since f = (fgf)",
this implies that f(x) = f(y). Together with the second equation in (4)
this implies that # == y. Thus (3) holds.

We now wish to show that

(5) (F~G)|G|F =24.
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Consider arbitrary elements x,ye.d, and let

(6) w = F((fah)" gl f ), F' (), v = Gla, ).
In order to prove (5) it is sufficient to show that, under these conditions,
(7) xGv, vlfw, oG'u, ul'y.
All these formulas except the second are trivially true, and in view of -
(2) that one will hold provided fg(u) = fg(v) or, equivalently, fg(u) = fg(x).
To verify this we compute
fg(w)+0 = fg(fgf)"~'g (=, f' ) +fof (v)
= (fof)"q (e, " () + ol ()
= fg (=, f () +faf' (¥)-

Since the sum x--f'(y) need mnot exist, we rewrite f7(x,f'(y)) as
J7((fo)" (@), f'(y)). This is justified by 6.4(ix) and the fact that (fg)"*(x)
= fg(x). Thus

ot = fg((fa)" (@), f W) +13 (f (), 0)
=fg((fg)” w)+f ), f' (1) +0)
= fg ((fg) (@)1 (), 0+1 ()
= f3 ((fg)" (), O)+Fa (f" (), F' ()
= (fg)”“(w)-i-ff'(y)
= fg(®)+0

Canceling 0 we infer that fg(u) = fg(x). Thus (7) holds.

To complete the proof of the lemma we need only observe that if
SeA(A) and z, yeS, and if the sequence « is defined by the formula (6),
then ueS. This is true because f(8), f(S), g(S), (S, 8) and 7(S, 8) are
all contained in 8.

Proof of Theorem 6.1. Under the hypothesis of 6.1, if id y = FxF’
—= @Gx G and F is indecomposable, then it follows by 8.2 and 8.3 that
id, = Hx F’" where H is either (F ~ G')|G or (F ~ G)|G'. Consequently,
by 5.1, 2 has the unique factorization property.

9. OPIIN PROBLEMS

Although the unique factorization problem has been settled for large
classes of structures, a great deal of work still remains to be done. We
have here concentrated on finite structures. In the case of infinite struc-
tures (with a distinguished reflexive element) it is perhaps more natural
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to consider the weak direct products rather than the full direct, or Cartesian,
products. Also, since an infinite structure need not be isomorphic to a
direct product (either weak or full) of indecomposable structures one
usually replaces the unique factorization property by the so-called refi-
nement property. A structure 2 is said to have the refiniment property
if for any two representations

|

11
g
&
i
P
g
@

there exist structures D;; such that

w ~ —Jw
i I Dy; and C,~ 1] Diag
jed

for all pel and geJ. Here 11" denotes weak direct products. In the case
of algebras with a zero element, various conditions are known which
imply the refinement property. A reasonably complete account of these
results can be found in Crawley-Jdonsson [4]. In Chang-Jénsson-Tarski [3,
the refinement property is proved for certain other classes of structures]
without any finiteness conditions, but these classes are necessarily rather
restricted, since the methods actually yield a stronger refinement pro-
perty that does not hold except for rather exceptional classes of structures.
It seems likely that most or all of the results on algebras with a zero
element can be extended almost mechanically to structures with a zero
element, although we have not checked this in detail. For other structures
many of these results are not even meaningful, since they involve concepts
that are not defined for such structures, namely the notions of an inner
direct product and of center. The inner direct products of subalgebras
can be replaced by (weak) direct products of factor relations, but so far
no substitute has been offered for the notion of a center. It is well known
that in the case of groups there is in a sense a duality between the center
and the quotient modulo the commutator group, and the new notion
should presumably specialize to this quotient in the case of group.
Lacking a suitable counterpart to the notion of a center, we shail
concentrate on those results that do not involve this concept. As a counter-
part to the exchange property that plays a basic role in Crawley-Jénsson
[4], we propose the following property: A structure B is sdid to have
the dual exchange property if, for any structure 2 and any decompositions

it

B,

id 4 = PRI = ”wGi’

Tel



UNIQUE FACTORIZATION 31

the condition 2/F =~ B implies that there exist equivalence relations H;
such that H; = G; for all 7¢Il and

id, = Hwﬂix .
tel
Consider now structures with a commuting and cancelable reflexive
element. More precisely, consider structures A = (4,0, B);p With
the following property:

@ (A). There exists a partial binary operation -+ in A(2) such that,
for all zeA, 0+ and x+0 exist and are equal and, for all x,yeA, the
condition 0-+x = 0-+y implies that x = y.

We conjecture that many of the results in Crawley-Jonsson [4] —
or, rather, their “dunals” — are valid for structures with the property ®.
In particular:

CoxgucTURE 9.1. Suppose @ () holds. If

idy = []"F: = []" 6,

tel jed
where the index sets I and J are countable and all the quotient structures

U/F; and 2A|Q; have the dual exchange property, then these two decompositions
have isomorphic refinements (P 508).

CoNJECTURE 9.2. If @ () holds, and if

id, =[] 7,

tel
where all the quotients 2[F; have the dual exchange property, then 2 has,
up to isomorphism, at most one representation as a weak direct product of
indecomposable structures (P 509).

CongrcTURE 9.3. If @(2A) holds, if A is countable, and if

idA - leﬂu

iel
where each of the quotient structures 2A|F; has the dual exchange property,
then 2 has the refinement property (P 510).

CONJECTURE 9.4. If B is a finite structure, and if @(B) holds, then B
has the dual exchange property (P 511).

CONJECTURE 9.5. If B is a finite structure and if ©(B) holds, then
the condition BxC >~ BxC’ implies that € = " (P 512).

The results presented here suggest some more technical problems.
The following permutability property played an important role in Sec-
tions 4 and 5:
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V). For all F,F',G<FR), if id, = Fx F', then (F ~ Q)| F’
=F'|(F ~ Q).

According to 5.4, a finite structure 2 has the unique factorization
property provided 2 and certain quotient structures of 2 have this property.
We do not know whether it is sufficient to assume this just for 2 itself:

PrOBLEM 9.6. Is it true that if U is a finite structure and ¥(2) holds,
then A has the uwique factorization property? (P 513).

Perhaps more interesting is the problem of finding a common general-
ization of 1.1 and 1.2, or preferably of 5.4 and 6.1. An affirmative answer
to either one of the next two problems would yield such a generalization.

PROBLEM 9.7. Does every structure 2 with a zero element have the
property W(2A)? More generally, does @ () imply ¥(U)? (P 514).

ProBLEM 9.8. Suppose U is a finite structure with the property that,
for all orthogonal pairs {f,f> and {g,g> of projections over A, (kerfg) ~
(kerfg’) = ker f. Does it follow that 2 has the unique factorization
property? (P 515).

We predict that the answer to 9.7 is negative, but make no conjecture
concerning 9.8,
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