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1. Introduction. A non-empty open subset V' C R" is called a cone if
and only if the following conditions hold:

(i)ifzeV and A > 0, then Az €V,
(ii)ifz,y€V,thenz +yeV,
(iii) if £ € V then —z ¢ V.
Condition (iii) is equivalent to
(iii)’ V does not contain a line.
The dual V* of V is defined as V* = {z €eR": 2.y > 0, Vy €V, y # 0}.

Clearly, V* is also a cone. It is well known that V** = V (see [1] and [5]).
The cone V is self-dual if and only if V = V*,

A cone V defines a partial ordering in R". We write z 5 y if and only

if y— z € V. The cone interval (a,b) is then given by (a,b) = {z € V :
a 5 z 5 b}. The characteristic function ¢y of the cone V is defined by

(1) dv(z) = f e *Vdy, zeV.
ve

Also, the function Ay is defined by

(2) Av(z)= [ dy, z€V,
(0,r)

i.e., Ay(z) is the measure of the cone interval (0, z). Since V is an open set,
any matrix A which maps V onto V is regular. The group of all matrices
A which map V onto V is called the automorphism group of V and denoted
by G(V). V is called homogeneous iff G(V) is transitive, i.e. for every
z,y € V there exists A € G(V) such that y = Az. Throughout this paper
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we will consider only homogeneous cones. We will therefore write “cone”
for “homogeneous cone”.

Denote by |A| the absolute value of the determinant of the matrix A. A
function f : V — Rt is said to be V-homogeneous of order § if f(Az) =
|A|°f(z) for all A € G(V). It can be shown that ¢y is V-homogeneous
of order —1 and Ay is V-homogeneous of order 1. Note that if f is V-
homogeneous of any order then f is either identically 0 on V or f(z) # 0
forallz e V.

The following well-known theorem is an important tool in the proofs of
the norm inequalities below. We therefore include a short proof.

THEOREM 1 [4]. If V is a homogeneous cone, then all V-homogeneous
functions are, up to a multiplicative constant, powers of Ay.

Proof. Assume first that f is V-homogeneous of order 0. For any
z,y € V, there exists A € G(V) so that Az = y. Hence, f(y) = f(Az) =
f(z). So, f(z) = c. Now if f is V-homogeneous of order &, then f/A?, is
V-homogeneous of order 0. Thus, f(z)/A%(z)=c. »

The key to the study of homogeneous cones is the “+-function”. It is de-
fined by z* = — gradlog ¢v(z) and has the following remarkable properties
(see [2], [6], and [7]):

(3) (Az)* = (A*)"1z* for every A € G(V),
(4) pv(z)- pv-(2*) = ¢,

(8) (7)==,

(6) |0:2%| = cd¥(2) = cpy(2"),

where ¢ is a constant depending on V, and |0,z*| is the absolute value of
the Jacobian determinant of the transformation z — z*. From (3) above
and from V** =V, we see that A € G(V) < A' € G(V*).

Let G(V — V*) be the group of matrices mapping V onto V*. A
homogeneous cone is called a domain of positivity (D.P.) if there is S €
G(V — V*) so that S is symmetric and positive definite, i.e., for.each
z€R™ z#0,z'Sz > 0.

Clearly, self-dual cones are D.P. It is shown in [6] that if one such §
exists, then there are many more: if V is a D.P., then for every z € V,
K(z) = —(0;z*) is symmetric and positive definite, mapping V onto V*.

It is known that if V is a D.P., then

(7) 0<z<z &< 0<2"<2z".
vV Vv Ve v
For completeness, we give a proof based on Corollary 3.9 in [6]. The corollary

states that, for all z,y € V,
(8) (z+y)" =27 - K(z)(z* + ¥*)".
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Hence,
z* -2z = K(z)(z*+ (z — 2)*)*.
To prove z 5 z — 2* ‘f_ z*, suppose z —z € V. Then

> =z"-K(z)(z*+ (2 -2)*)* s z*.

The converse follows from V** = V.
In this paper, we will be considering integral operators of the form

(9) Kf(z)= [ Kz v)f(y)dy, =€V,
\ %4

where £k : V xV — Rt and f : V — R*. The kernel k is said to be
V x V-homogeneous of order 3 iff

k(Az,Ay) = |A|Pk(z,y) forall A€ G(V).

A number of important integral operators are of the type described above.
Hardy’s inequality can be considered as an LP-boundedness result concern-
ing an integral operator on R*. The Hardy integral operator has a natural
generalization to R® which is of the form given in (9). In a recent paper,
[4], the following theorem is proved:

THEOREM 2 (Ostrogorski). Let V be a homogeneous, self-dual cone in
R® and 1 < p < 00. Assume that k is a V x V-homogeneous kernel of

order 0 and k(z,y) = k(y*,z*) for all z,y € V. If the integral K A (z) is
convergent (for some a € R), then

(10) J (Kf(z)rPay?(z)dz < c [ f7(2)AY(z) dz
v \ 4

where y = —ap - 1.

As special cases of K on self-dual cones, two operators are considered in
[4): Hardy’s operator, defined by

(11) Hf(z)= [ f(y)dy,

(0,z)

and Laplace’s operator, defined by
(12) Lf(e)= [ e = f(s)dy.
v

Nowlet ¥ = {z € V : |z]| = 1}, ao(V) =inf{a € R: [ AJ(t)dt < .00}
and o(V) = max{-1,00}. If @ > o(V), then both HAg(z) < oo and
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LA (z) < oo. Therefore, if ¥ < —o(V)p — 1, then

(13) [ (Hf(z)PAY P (z)dz < ¢ [ fP(2)AY(z) dz,
| %4 \ 4

(14) J Lf@)yPAV (z)dz < ¢ [ fP(z)AY(z)dz.
1’4 | %4

Note that in R?, self-dual cones are sectors with a 90° opening. The re-
striction to such cones seems unnatural and indeed we can prove the results
above under more general conditions. Thus, we prove the norm inequality
for Hardy’s operator on domains of positivity, and the norm inequality for
Laplace’s operator on general homogeneous cones in R". Further, we allow
more general kernels k, which enables us to include in our discussion the
fractional integral operators of Riemann-Liouville and of Weyl. Finally, we
prove all results as [LP, L9] inequalities, 1 < p < ¢ < oo.

Throughout the paper ¢ stands for a generic constant which does not
depend on the function f.

(

2. Norm inequalities on cones

THEOREM 3. Let V be a homogeneous cone in R™ and 1 < p < ¢ < oo.
Assume that the kernel k : V x V — Rt is V X V-homogeneous of order 3.
If for some 6,7 € R,

(15) KAy (z)= [ Kz,9)A%(y)dy < oo,
v
(16) f k9/7(z, y)A"Y,—q+(5+ﬁ+1)Q/P'(z) dz < o0,
| 4
then
an ([ AF KAy ds)
| 4

1/
SC(ff"(z)Af,""'('H'l)”/q"l(z)da;) p'
v

Proof. Using Holder’s inequality, we have
[ AV (@)K f(2)) da

| 4

= [ a7 @)( [ B0 @)k (z,1)4Y7 (v) dy) ' da
| 4 | 4 :
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< fA;’,'q(z)( f k(z,y)fp(y)A-‘-,6(p—l)(y) dy)@/p
v v

q/p'

x ([ Kznaly)dy)" do
|4

where 1/p + 1/p’ = 1. Now, K Af,(z) is finite and for every A € G(V),

KAy (Az)= [ k(Az,y)A}(y)dy= [ k(Az, Au)A}(Au)|A|du
| 4 \ %4
= AP+ [ k(z,u)AY(u) du
|4

so that K A is homogeneous of order § + 3 + 1. Hence,
[ k(z,9)A}(y) dy = cAF P+ (2).
v

We therefore have

[ AV (z)(K f(=z)) dz

|4

' /
<e fA}',-q"'(“ﬁH)q/p (z)( fk(z,y)fp(y)A",&(p-l)(y)dy)q pd-’ﬂ‘
v v

Since g/p > 1, we can apply Minkowski’s integral inequality to the last
integral. Thus,

[ AV (z)(K f(z)) dz
\ %4

<e( [ @A)

|4

- ' ple  \a/p
X (‘;f kq/p(z’y)A“Y/ g+(6+B+1)q/p (z) d.’t) dy) )

Again, the innermost integral is finite for each y, and is V-homogeneous of

order v + Bq + é6q/p’ — q/p + 1. It therefore equals cA'{,+ﬁq+6q/p"q/p+l(y).
Substituting then yields

f AV (z)(K f(z))dz < c( f fP(y)A(‘;Y+1)P/q+ﬂp-l(y) dy) q/p .
v v

Raising both sides to (1/q)th power gives the result. m
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Note that if V = V*, 8 = 0, and p = ¢, we obtain (10).
The following theorem corresponds to the case ¢ = oo in Theorem 3.
THEOREM 4. Let V be a homogeneous cone and 1 < p < 0o. Assume

that the kernel k : V x V — RY is V x V-homogeneous of order 3. Assume
also that

(18) KA (z) = f k(z,y)A%(y)dy < oo  for some 6,
v
(19) 9(y) = esssup k(z, ) Ay PPV 7 (z) < 0.
z€
Then
(20) ess sup Ay (2)K f(2) < e( Vf £2(2) AP (z) dz)”’.

Proof. For every A € G(V),
9(Ay) = es:es‘tllp k(z, Ay)A$+ﬂ)(p-1)-1(z)

= ess sup k( Az, Ay)A(Vﬂ.ﬁ)(p—l)-l(Az)
z€V
= |A|5(P-1)+Bp-1 ess es:}p k(z,y)ALHAP-D-1(g)

So, g is V-homogeneous of order é(p — 1) + 8p — 1 and therefore,
9(y) = cAyPIHPN(y).
Now, by Holder’s inequality,
Ayl (z)K f(2)
=47) [ K2(2, )45 (4) f)kM7 (2, 9) AV (3) dy

< 83@)( [ a7 @) ) dy) " ( [ Henab)d)”
v v
= AP ( [ kA ) dy)
|4

- - - —6(p— 1/p
= [ Ka,9)agmC+HHED ) AT () pr(y) dy)
v

N _ Cal 1/p
<o [ APl ag e () rr(y) dy)
| 4
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=< [ 4 wro) i) =

The conclusion of Theorem 4 can also be proved under somewhat differ-
ent conditions.

THEOREM 5. Let V be a homogeneous cone and 1 < p < oo. Assume
that the kernel k is V x V-homogeneous of order 3. Assume also that

(21) 1@ = ( [ ¥ @Al ) a)"” < oo,
| %4
Then
(2  essupaT @KS@) <o [ P@AF W dy)
z€V v

Proof. Applying Holder’s inequality, we get
AN (2)K f(z) = AF*(z) [ k(z,9)A VP (4) f() A7 7(y) dy
| 4

<a7@( [ Pwa W) " ( [ ¥ @Al g )
| %4 |4

Since g(z) < oo and is V-homogeneous of order 1, we have g(z) = cAy(z),
and the conclusion follows from (21). =

The following theorem corresponds to the case p = o0 and ¢ = oo in
Theorem 3.

THEOREM 6. Let V' be a homogeneous cone. Assume that the kernel k is
V X V-homogeneous of order 3. Assume also that

(23) KA (z) = f k(z,y)AY(y)dy < 0o for some §.
o A
Then
(24) ess sup A",l's'ﬁ(m)Kf(z) < cesssup f(z)A;%(z).
z€V €V
Proof.

AP (2)K f(z) = AF 0P (2) [ K(=,9)AY(9) f(4) A4 (y) dy
\ 4

< 877(@)( [ Kz,9)A%(3) dy) ess sup £(4)A7%(v)
v yev

= cesssup f(y)A7°(y).
yeV
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Another reasonable generalization of Ostrogorski’s theorem is to consider
kernels k : V* XV — Rt. The kernel k : V* x V — RY is said to be V* x V-
homogeneous of order (3 iff k((A!) 'z, Ay) = |A|Pk(z,y) for all A € G(V).
The following discussion shows that all results concerning such kernels can
be deduced from results on kernels V x V — Rt.

DEFINITION 1. We define an operator S mapping measurable functions
on V onto measurable functions on V* by S f(z) = f(z*) where z € V™.

THEOREM 7.

(25) f (Sf(z))?A%.(z)dz = c f f1(9)A7° 2 (y) dy.
v v

Proof. Using (4) and (6), we obtain

[ ($f(2)) 4. (x)de = ¢ [ f1(z*)Ay*(c")|0s2] dz*
v* | %4

=c [ fU(z")A (e AP (") dz" = ¢ [ (1A (y)dy. »
v v
Applying Theorem 7, we obtain the following versions of Theorems 3-6 for

V* x V operators.

THEOREM 8. Let V' be a homogeneous cone in R™ and 1 < p < q < o0.
Assume that the kernel k is V* X V -homogeneous of order 8. If

(26) [ k(z,9)A}(y)dy < o,
|4
(27) f kQ/p(z,y)A;:’+q—2—(6+ﬁ+l)Q/p‘(Z) dz < 0,
-
then
(28) ( [ Ks@yasrt(z)ar)"
F

- 1/p
< [ P@aprerrieig)ay) .
| 4

Proof. We will apply Theorem 3. Define k : V x V — R* by
k(u,9) = k(u",y).
Clearly, kisV x V-homogeneous of order 8 if and only if k is V* x V-
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homogeneous of order 3. Then

SKf(u)= [ k(u,9)f(y)dy.
\ %4

By hypothesis,

J K, )Ab(v)dy= [ k(u*,9)A}(y)dy < 0.
v v

Also, by Theorem 7 and (27),
f 'ic'q/p(u’ y)A“YI—q+(5+ﬁ+1)G/P'(u) du
1%
=e f (Sk)/*(z, y)A‘-/:v+q—2—(6+ﬂ+l)q/p'(z) dr
V-

=c f k9/?(z,y) Ay T I 2O+ 4y 4y < oo
V.

Note that S(f,, k(u,y)f(y)dy) = K f(u). So by Theorems 3 and 7,
1/
( [ ®f@)yagrt(wde)
V.
~ 1/q
= o J ( [ Huuf@)dy) a¥(w) du)
v v
1
< c( f fp(z)Aep'l'(‘Hl)P/q-l(z) d:l:) /» m
1%
The following theorem corresponds to the case ¢ = 0o in Theorem 8.

THEOREM 9. Let V' be a homogeneous cone and 1 < p < 0o. Assume
that the kernel k : V* x V — Rt is V* x V-homogeneous of order 3. If

(29) fk(z, y)A%(y)dy < 0o for some 8,
(30) ess sup k(z,y) Ayt ) ¢ o,
zevV"
then
Bp-1 /p
(1) esswpav-(2)KSf(@) < o [ @AY w)dy)
T - v

The conclusion of Theorem 9 also follows from different conditions.
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THEOREM 10. Let V' be a homogeneous cone and 1 < p < oco. Assume
that the kernel k is V* x V -homogeneous of order 3. If

(32) [ ¥ (z,)45 "%~ (y) dy < o0,
v
then
Bp—1 1/p
(33) esses‘;lpAv-(z)Kf(z)Sc( [ rway (y)dy) :
F 4 b \

THEOREM 11. Let V be a homogeneous cone. Assume that the kernel
k:V*xV = Rt is V* X V-homogeneous of order 3. If

(34) f k(z,y)A%(y)dy < oo  for some &,
1%
then
(35) esssup AVLHP(2)K f(z) < cesssup f(y)A3%(y).
T€EV* yev

3. Applications. As a first application, we consider norm inequalities
in R™ for the Riemann-Liouville and Weyl fractional integral operators. See
[3] for some related recent results.

The Riemann-Liouville operator is defined by

(36) R.f(z) = %r) (o{) ANz -t)f(t)dt, z€V.
The Weyl operator is defined by

37  Wif(z) = 3,% ) ofo | At - 2)f(t)dt, zEV,

where r > 1. |

Note that the Weyl operator is the dual of the Riemann-Liouville oper-
ator: for any non-negative measurable functions f and g defined on V,

(38) [Reg)-f= [g-(W.f).
v 1%
We also note that the cases r = 1 in Theorems 12 and 13 below provide

generalizations of the well-known Hardy’s inequalities from R to R™.

THEOREM 12 (Riemann-Liouville’s Inequalities). Let V be a domain of
positivity inR™. If 1 <p<qg< oo andy < —o(V)q/p' —a(V*)+ q(1/p -
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r+1) -2, then

3 ([ @RSy )"
V .
< c( f fp(z)A(‘;‘-l)ﬁ('Hl)p/q—l(z) dz)l/”.
\ %4
Ifl<p<oanda<2-(1+a(V))/p' —r, then
(40) es:;gpAG”"(z)Rr(fA;")(w)

1
< c( f fP(z) AL P 7 (2) dz) /P.
1%
Ifa<1l-r—o0(V), then
(41) esssup A1 (z)R.(fAy*)(z) < cesssup f(z)AY(2).
z€V zeV
Proof. We prove (39) as an a.pplica.tion of Theorem 3. The kernel
k(z’t) = I'( )Ar l(z t)X(O,z)(t)

is V x V-homogeneous of order r,— 1.
Now, since z Sy implies Ay(z) < Ay(y) for all z,y € V, we have,

R.AY(z) = [ Az - nal(t)dt

m«,
Ar 1(3)

< F(r) f AT (2)AY (1) dt = f Ad(t) dt

and the last integral is ﬁmte if § > o(V). Moreover, since V isaD.P., t< z
iff z* < t*, see (7). Therefore,

I'q/p(,.) f k"/”(z,t)A"V,"”'("""')"/P'(z) dz
v

- f A(V"-I)G/P(z _ t)A;I,-9+(5+")Q/P'(z) dz
(t,00)
< f A(‘;'-I)Q/P+‘Y-Q+(5+")¢I/P'(z) dz
(t,00)
=c f A‘-/(_r-l)q/p-'v+q—(5+r)q/p'—2(z-)dz. .
(0,t%)
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Again, the integral on the right is finite if
§'=—(r-1)g/p—7+q-(6+1)g/p'-2>0(V").

Now, the condition on 4 in the hypothesis ensures the existence of § € R
such that § > o(V) and §' > o(V*). By applying Theorem 3, the proof is
complete.

To prove (40), we apply Theorem 5 to the kernel

(42) k(z,t) = (1) A% (z)A7()AT (z - t).

1
I’_(r_)x(ovz)
Clearly, k is V x V-homogeneous of order r — 1. Also,

[ A (2)4,°% ()T V7 (z - ) AT (1) dt
(0,z)

AP @) [ AT @ a,
(0,z)
and the last integral is finite since & < 2—(1 + a(V))/p' — r. The conditions

of Theorem 5 are satisfied and we get (40).

To prove (41), we apply Theorem 6 to the kernel k(z,t) of (42). Let
0 =1-rin (23). We have

f A% (2) A% (1) AT Yz — t) AL " (1) dt
r( %
Ag,+r-l(z)

*TTM

[ ayme(t)at.
(0,2)

Now, since @ < 1 — r — o(V), the last integral is finite, and the proof is
complete. ®

THEOREM 13 (Weyl’s Inequalities). Let V be a domain of positivity
in R*. If1 <p<gqg<ooandy > aV)+aV*)/p + 29— q/p,
then

@) (AT @W ) dz)

|4

1/
< c( f fp(z)Ag-l)P*'(’H'l)p/q—l(z) d:r:) ‘P.
| 4

If1<p<ooanda>a(V*)/p'+2-1/p, then
(44) esssupAy; T (2)W,.(fAy*)(z)
eV
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<e( f fP(:c)A(V'-‘)P-‘(z)dz)l/’.
| %4

Ifa>2+0(V*), then
(45) esssup Ay ()W, (fA™)(z) < cesssup f(2)AT(z).
z€V z€V
Proof. We will use duality of the Weyl operator and the Riemann-
Liouville operator. Let g be any non-negative function defined on V with

v g% (z)dz = 1, where 1/¢' + 1/q = 1. Applying Hélder’s inequality we
have

[ &Y (2)g(x)W, f(x)dz = [ f(2)R(9AY/* 7 )(z)dz
\ 4 v

1/
< ( ffp(z)A(vf-l)p+(‘v+l)P/q-1(z)dz) P
12

—(r=1)p' - ' ’_ _ ' 1/p'
X (J‘AV( 1)p' —(v+1)9' /a+p l(z)(R,.(gA'{,/q Y(z))? da:)

We now apply Theorem 12 to the last integral. Note that ¢ > p iff p* > ¢/;
alsoy > (V) + a(V*)q/p’' + 2¢ — q/p implies that

(=(r=1)p' = (v+ 0 /g+p - 1)+ 7
<-o(V)p'/qg—0a(V*)+p'(1/¢' —r+1)-2.

Therefore, using (39), we see that the last integral is majorized by

- ' ' _ ' o llq‘
o( [ (o(2)aY (@) A -7 ) dg)
v

' 1/‘1'
= 7(z)d =c.
c(‘}fg (z m) c
Hence,

[ &Y @)g(2)W, f(2) da
| 4

1/
<e( [ fre)ag IR ORIl g 4g) T
\ 4

Taking supremum over all g > 0 so that [, g% (z)dz = 1, we get (43).
To prove (44), let g be any non-negative function on V so that
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J 9(z)dz = 1. We have

[ A7 (2)g(z)Wo(fA7°)(2)dz = [ f(2)A7°(2)R(9 A7 **)(2) do
|74 \ 4

< ([ P@AGPN=)dz)”

| 4

A1)’ (RS Y _ ’ I/P'
X (‘}I‘AV(r p'+(p'-1)-ap (z)(R,-(gAVl+°)(a:))” da:) )

Now, the condition a > o(V*)/p' + 2 — 1/p implies that
—(r=-1)p'+ (@ -1)—ep' +p < —0o(V*)+p(1-r+1)-2
and hence using (39), the last integral is majorized by

c f g(z)A‘-;1+a(z)A(‘;‘-1)+(-(f-1)P'+(P'-1)—GP'+P'+1)/P'-1(z) daz
| %4

=c f g(z)dz =c.
1%
Therefore,

[ AP+ @e@W A7) @) de < o [ @A @)dz)
|4 \ 4

Taking supremum over all g > 0 so that [, g(z) dz = 1 completes the proof
of (44).
Finally, to prove (45), let g be such that f, g(z) dz = 1. We have

[ A7 (2)g(z)Wi(fAG*)z)dz = [ f(2)A7*(z)R. (947" °)(x) do
\ 4 v

< esssup(f(2)A77(2)) [ Ay (@)RA(9 A7) () da
z 14

By Fubini’s theorem

[ Aye+(z)R, (9 A7 o) (z) dz
\ 74

=7,-(1r—) Joswagte@)( [ AF'-0A7""(z)dz) dr.
| 4 (t,00)

Now, since a > 2+ o(V*), it can be shown that the integral in parentheses
is finite and V-homogeneous of order —a + 1; it therefore equals cAy*+1(¢).
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Hence, the last expression is a constant, and therefore

[ A7 (2)9(2)Wo(fA7*)(z) dz < cesssup f(2)AT 7\ (<).
v z€eV

Taking supremum over all g > 0 with f;, g% (z)dz = 1 gives us (45). m

Note that Theorem 13 could also have been proved directly.

We remark that Riemann-Liouville’s and Weyl’s inequalities were proved
for domains of positivity. Laplace’s inequalities, however, will be proved in
the more general setting of homogeneous cones.

THEOREM 14 (Laplace’s Inequalities). Let V' be a homogeneous cone in
R*. If1<p<g<oandy < —-a(V)g/p'—a(V*)+ q/p—2, then

(46) ([ AT @@s@)ds)"

v
(v+1)p/a-1 1r
<e( [ (2149 (2)dz) .
v
Ifl<p<ocoanda<1l/p—oa(V)/p, then

4D s a7 @LIATNE < o [ P@ATE) az)”.

Ifa < —o(V), then
(48) esssup Ay (z)L(fAy*)(z) < cesssup f(z).
€V z€V
Proof. We will consider the kernel k(z,y) = e~* '¥. Since (Az)* =

(A*)~'z*, k is V x V-homogeneous of order 0. We will apply Theorem 3.
To verify (15) we note that it is shown in [4] that if § > o(V'), then

[ e VAL (y)dy < .
| %4

To verify (16) we note

f e-(z' »y)q/pA“V,-9+(5+1)Q/P'(z) dz
\ 4

=c f e—(:l."-y)q/pA‘-,‘.H'q-(“'l)q/P"’z(zt)dz:-
ve
We therefore need é§ which satisfies both
o(V)<é and -—v4qg-(6+1)q/p'-2>0a(V*).
Our condition on v implies the existence of such §, and (46) is proved.
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To prove (47), we verify that the kernel
(49) k(z,y) = e VAH(2) A" (v)
satisfies (21). The kernel k is V x V-homogeneous of order 0 and

[ 9% A% (2)47°7 ()4 (y) dy
|74

= A% (z) fe‘(""y)”'A",“P'*'P"l(y)dy,
1%

and the last integral is finite since & < 1/p—a(V)/p’. The result now follows
from Theorem 5.

Finally, to prove (48), we verify that the kernel (49) satisfies the condition
(23) with 6 = 0. Thus,

[ ="V A%(z)A7%(v) dy = A% (2) [ == VA (y)dy.
\ 4 |4

The latter integral is finite since —a > o(V) and the result follows from
Theorem 6. =
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