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DIMENSION INEQUALITIES FOR UNIONS AND MAPPINGS
OF SEPARABLE METRIC SPACES

BY
A. LELEK (WARSZAWA)

Some inequalities involving the dimension of a space and the di-
mension of its image under a closed mapping were discovered by Arhan-
gel’skii [8], Freudenthal [17] and Keesling [30]. In this paper we shall
show how, in the separable metric case, all of them follow from two ine-
qualities of Vainitein [83]. We shall also obtain new inequalities and
describe an example. In addition, the present paper is intended to survey
the field outlined by the title, and this is why we shall discuss a number
of other related results. Our attention is given to separable metric spaces
which, from the topological point of view, coincide with subsets of the
Hilbert cube. Because the Hilbert cube is infinite-dimensional, it is na-
tural that some topics of infinite-dimensional topology approach our
area and can be treated as infinite-dimensional analogues of dimension
inequalities. However, we shall restrict ourselves to the finite-dimensgional
case which seems to bring root ideas of the matter. The classical book
of Hurewicz and Wallman [23] serves as a general reference for readers
not acquainted with dimension theory. All mappings throughout are
meant to be continuous; all spaces and their images under mappings
are assumed to be separable metric and non-empty.

Let us recall two fundamental theorems which used to appear in
any course in dimension theory (see [23], p. 28-32). Both of them will
be applied in the sequel.

" TueorEM 1 (K. Menger and P. S. Urysohn). If 4; (i =1,..., k)
are subsets of a space, then

k k
(i) dimUAi<2dimAi—|—k—1.
i=1 i=1
Note that sometimes inequality (i) becomes the equality. Actually,
each k-dimensional space can be represented as the union of ¥+ 1 disjoint

0-dimensional subsets(!).

(1) Theorem 1 has several analogues for non-metrizable spaces, and its proper
range seems to be the class of hereditarily normal spaces (see [15], p. 306 - 307). See
also AdnadZevi¢ [3], Egorov and Podstavkin [13], de Groot and Nishiura [19] and
{60], Smirnov [76] and [77], Zarelua [85].
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' THEOREM 2 (W. Hurewicz and L. A. Tumarkin). If 4, (1 = 1,2,...)
are closed subsets of a space, then

dim | J 4; = Sup{dim4,:¢ =1,2,...}.
i=1 -

A collection {4,: seS} of subsets 4, of a space X is called locally
finite (or locally countable) provided each point e X has a neighbourhood
U, in X such that U, meets only finitely many (or countably many,
respectively) sets 4,. Since the notion of dimension for separable metric
spaces has a local character, the next theorem(2) follows directly from
Theorem 2.

THEOREM 3. If Ag (se€8) are closed subsets of a space such that the col-
lection {A,: 88} 1is looally countable, then

dim {4, = Sup{dlmA 8eS}.
8eS

In the following theorem (3) we consider subsets indexed with ordinal
numbers less than a- given fixed ordinal = which, besides, is quite
arbitrary.

TuEOREM 4 (M. Katétov and K. Morita). If 4, (a < 7) are closed
subsets of a space and there exist open subsets @, (a < t) such that A, < G,
for a <t and the collection {@,: a < B} is locally finite for B < 7, then
(ii) dim ( J A, = Sup{dim4,: a < 7}.

a<lT

We now mention a theorem (%) showing that, in some cases, formula
(i) remains true without assumption that the sets A, are closed. The
proof of Theorem, 5 essentially utilizes Theorem 3 (see [68], p. 18) and is
much easier to accomplish, via Theorem 2, provided r is countable.

THEOREM 5 (K. Nagami). If 4, (a < ) are subsets of a space such
that
4, =U4,

a<f a<f

for B< v, then (i) holds.

() Theorem 3 can be generalized to cover the class of non-separable metric
spaces (see [58], p. 17) as well as a class of non-metrizable spaces (ibidem, p. 195).
See also Dowker [10], de Groot and Nishiura [19] and [60], Hemmingsen [20], Kimura
[32],- Lifanov [46], Lokucievskii [47], Pasynkov [63] and [65], Smirnov [76].

(®) Theorem 4 possesses generalizations which cover normal spaces and here-
ditarily paracompact spaces (see [58], p. 193 and 199). See also Dowker [11], Okuyama
[61] and [62], Zarelua [84].

(%) Theorem 5 holds for non-separable metric spaces as it has been proved by
Nagami [53] and Nagata [57]. See also Arhangel’skii [4], Mc Auley [51].
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Suppose that f is a mapping defined on a space X. Then X admits
the decomposition ‘
X=U '
vef(X)
into pairwise disjoint closed subsets f~!(y), and Theorems 2-4 motivate
introducing the sympbol

dimf = Sup {dimf~*(y): y ¢f(X)}.

In an attempt, however, to connect dimX with dimf one needs
to involve dimf(X) and put a condition on the mapping. We say f to
be a closed mapping provided, for each closed subset A < X, the set f(4)
is closed in f(X). The mapping f is said to be finite-dimensional provided
dimf < oo. We define

Ci(k) = {yef(X): k < cardf'(y)},
Dy(k) = {yef(X): k< dimf~'(y)},

for k an integer, and we have the following theorem, (5) of Vain¥tein [83].

THEOREM 6 (I. A. VainXtein). If f is a finite-dimensional closed mapping
of a space X, then

(iii) dim X < Max {dimf(X), d;},
(iv) dimf(X) < Max {dim X, dimC,(2)+1, d;+1},
where d; = —1 for dimf = 0, and

d, = Max {d&imD,(k)+k: k =1, ..., dimf}

for dimf > 0.

We shall deduce several dimension inequalities from Theorem 6;
we start with a result(®) of Keesling [30] whose special case was discovered
earlier by Jung [25].

THEOREM 7 (J. E. Keesling). If f is a closed mapping of a finite-di-
mensional space X, then

(v) dim X < dim D, (dim X — dimf (X)) + dimf.

(®) Theorem 6 has been generalized for paracompact spaces by Skljarenko [73]
and [74]. Actually, this generalization offers even an inequality stronger than (iv);
we shall write it down at the end of this paper (see Theorem 49). Let us mention that
although inequalities (iii) and (iv) are not explicitly written in [83], they are clearly
equivalent to those from [83]. '

(6) Theorem 7 in the form of Keesling [30] has been proved also for non-sepa-
rable metric spaces.
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Proof. If dim X < dimf(X), then D,(dimX—d.imf(X)) = f(X) and
(v) trivially holds. If dimX > dimf(X), then dimX < d,;, by (iii). Let
d; = dim D,(ko)+ ko, where k, = 1, ..., dimf. Since D,(k,) = f(X), we bave

dim Dy (k,) < dimf(X),
and thus we obtain the inequalities
dim X — dimf(X) < dim D;(k,)+ ky— dimf(X) < k,,

which imply the inclusion D,(k,) = D,(dimX—dimf(X)). But also
ko, < dimf and dim X < dim D,(k,)+ %,, whence (v) follows and Theorem 7
is proved.
The next theorem(?) is a well-known result (see [23], p. 92); it is
a simple consequence of inequality (iii) from Theorem 6. '
THEOREM 8 (W. Hurewicz). If f is a closed mapping of & space X,
then

(vi) dim X < dimf(X)+ dimf.

For mappings of compacta onto polyhedra, some additional infor-
mation concerning inequality (vi) is given in the work of Boltjanskii
and Soltan [9] and [78].

THEOREM 9. If f is a closed mapping of a space X such that dimf(X)
< dim X, then
(vii) dimf(X) < dimCy (k)4 dimf—1
for k =1,2,...

Proof. If f is infinite-dimensional, then inequality (vii) is trivial.
If f is finite-dimensional, then so is X, by Theorem 6. Thus D,(dim X —
—dimf(X)) <. C;(k) for every k =1,2,..., and (vii) follows from (v).

Clearly, the condition saying that dimf(X)< dimX cannot be
omitted in Theorem 9. A symmetrical situation will be discussed in
Theorem, 18 below. However, for k¥ = 2, we have the following easy pro-
position (to be generalized in Theorem 19).

THEOREM 10. If f is a closed mapping of a space X, then
(viii) dimf(X) < dimC,(2)+dim X+ 1.

Proof. Let A = X\ f'((;(2)). Since the mapping f is closed, the
partial mapping f| 4 is a homeomorphism of A onto f(A4). Thus dimf(4)
= dim4 < dimX. But we have f(X) = (,(2)Uf(4), and (viii) follows
from (i).

() Theorem 8 has been extended to cover non-separable metric spaces (see [58],
p. 63) as well as non-metrizable spaces (ibidem, p. 216). See also Katétov [26].
Pasynkov [64], Sersnev [68], Skljarenko [73], Zarelua [84], Zaremba-Szczepkowicz [88].
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Let us mention that the set (;(2) occurs in a result of Eilenberg [14]
concerning embedability in Euclidean spaces. As a corollary to Theorem, 6,
inequality (iv), we obtain the following theorem.

THEOREM 11. If f is a finite-dimensional closed mapping of a space X
such that dim X < dimf(X) and d,41 < dimf(X) (see Theorem 6), then

(ix) dimf(X) < dimC,(2)+1.

We are going to use Theorem 11 in the inductive proof of the next
theorem. Theorem 12 itself generalizes Theorem 11 and leads to further
results, especially interesting in the case of zero-dimensional mappings
(see Theorem 14). In the case of finite-to-one mappings, Theorem 12
was proved by Hurewicz [22] (compare also Theorem 48).

THEOREM 12. If f is a finite-dimensional closed mapping of a space X
such that d; < dimf(X), then

(x) dimf(X) < dimCy(k)+k—1
for k =1,..., m;, where
m; = Min{dimf(X)—dimX+1, dimf(X)—d,;}.

Proof. Let us observe that dim X < dimf(X), by (iii). Hence m; > 1.
If dimX = dimf(X) or d;+1 = dimf(X), then m; = 1 and irequality (x)
for k¥ =1 is trivial, as we always have C,(1) = f(X). We therefore can
assume that dim X < dimf(X) and d,+1 < dimf(X). Thus m; > 2 and,
by Theorem 11, we get inequality (ix) which coincides with inequality (x)
for k£ = 2. Consequently, if m; = 2, the conclusion of Theorem 12 is
already verified. Let us assume that m; > 3.

We shall find a finite sequence of subsets X, = X, where 0 < k < m;,
such that X, satisfy the conditions

(1), Xy = Xy and f(Xpy)) © f(XN Xyyy),
(2), v = f1 Xy, is a closed mapping,
(3 dimf(X,) < dimf(Xy,,)+1,

for k =1,...,m—2. Put X; = X. Before defining X, for k¥ >1, let us
make two remarks. First, it follows from (3), and from the definition
of m; that
dimf(X) = dimf(X,) < dimf(X,,,)+ ¥
< dimf(Xpy,)+mi—2 < dimf(X,,,)+ dimf(X)—dimX—1,
whence dimJX,,, <dimX < dimf(X,,,). Second, by same argument

we get
dimf(X) < dimf(X,,,)+ dimf(X)—d,—2,
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whence d;+1 < dimf(X, +1) However, we have dimf, < dimf and Dy, (5)
< Dy(j) for every j =1,2,... Thus d, < d,, according to the definition
of d;, and we obtain d,k—i-l < dim f(X, +1). This, together with (2),, enables
us to apply Theorem 11 to the mapping f, (k < m;,—2) when, in our defi-
nition of the sets X,, we proceed by induction on k. The k-th step will
be essentially the same as the first step, so that we shall give a detailed
description only of the first step.

To find X,, we need a decomposition of the set (,;(2). Since the
mapping f is closed, the sets

= {yef(X): 1/j < diamf~' (y)}

are closed in f(X) for j =1, 2, ... And, clearly, the set (;(2) decomposes
into the union B,uUB,U... Then

dimf(X) < dim{JB;+1 = Sup{dimB;:j =1,2,...}+1,
=1

by Theorem 11 and Theorem 2, and there exists a positive integer j,
such that dimf(X) < dimB,-0—|— 1. For each point pef~'(B; ), the set

= {zef1(B;,): dist(p, @) < 1/3jo}

is a closed neighbourhood of p in f~'(B,; ,)- Since f is a closed mapping,
so is f|f~*(B;,), and therefore f(A (p)) are closed subsets of B; . But X
being separable metric, there exist points p;e f“(B,-o) (1 =1, 2, ...) such
that
(B, = U A,
i=1
and thus we obtain

dimf(X) < dim C)f(A () +1 = Sup{dimf(4 (p;)): i =1,2,...}4+1,

by Theorem 2. Consequently, there exists a positive integer ¢, such that
dimf(X) < dimf(4 (p;,) )—|—1 ‘We define X, = A(p,;) and we see condition
(3), is fulfllled Since f |f~Y(B; ,) 18 @ closed mapping, so is f|4(p;), and
condition (2), holds. It follows readily from the definitions of B,-0 and
A (p) that condition (1), holds too.

Repeating successively the procedure just described, we construct
the sets X, ..., X, ,, (where n = m;,—2) which satisfy conditions (1),-(1),,
(2):-(2),, and (3),-(3),. Moreover, by (2),, we can apply Theorem 11 to
the mapping f, and as a result we get the inequality

(4) dimf(X,,,) < dim¢C, (2)+1.
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Itk =1,...,n and yef(X,,,), then it follows from conditions (1),-(1),
that the set f~!(y) meets each of the sets

XN KXoy ooy XpNXpy1y Xy _
whence f(X,,,) = C;(k+4+1). On the other hand, conditions (3),-(3),
imply that
dimf(X,) < dimf(X,,,)+% < dim0,(k+1)+k,

which means that inequalities (x) are true for ¥ =1, ..., m;—1. Since
0, (2) = f(X, 1), we conclude also that if yeC, (2), then the set f~'(y)
has at least one point in common with the set X\ X, , for¢s =1,...,n
and f~'(y) has at least two points in common with the set X, ,. Thus
C; (2) = C;(n+2) = Cy(m,;) and

dimf(X) < din1f(Xn+1)+n < dimC; (2)+n+1 < dimCy(mg)+m,—1,

by (4). Consequently, inequality (x) is true for ¥ = m,, and the proof
of Theorem 12 is complete.

THEOREM 13. If f is a finite-dimensional closed mapping of a space X,
then

(xi) dimf(X) < Max{¢,, d,},
where ¢, = —1 for dimf(X) < d;, and
¢, = Min{dim ¢, (k)+k—1: k =1,..., m}

for dimf(X) > d; (see Theorem 6 and Theorem 12).

As a consequence of Theorem 13 we obtain an older result of Freuden-
thal [17] concerning zero-dimensional mappings.

THEOREM 14 (H. Freudenthal). If f is a zero-dimensional closed map-
ping of a space X, then

(xii) dimf(X)<Min{dimC,(k)+k—1: k =1, ..., dimf(X)— dim X +1}.

Proof. By the definition of d;,, we have d; = —1. Hence we get
my; = dimf(X)—dimX+1 and (xii) follows from (xi).

We mention a result, due to Vainitein [82], which is stronger than
Theorem 14. Suppose f is a closed mapping of a space X and ye<f(X).
If Uc X is open and f'(y) = U, then f(U) is a neighbourhood of y
in f(X). Let C;(k) (k =1,2,...) denote the set of all points yef(X) such
that there exists an open subset U < X for which we have

k—1<card Unf'(y)

and f(U) is not a neighbourhood of y. Thus if f is closed and cardf*(y)
< k—1, the point y does not belong to C;(k). In other words, we have
Cy(k) < Cy(k) for k =1,2, ...
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THEOREM 15 (I. A. Vainitein). If f is a zero-dimensional closed mapping
of a space X such that, for every point yef(X) satisfying

. 7 (y) < d[XN\f(y)],
there exists anm isolated point in f~'(y), then
(xiii) dimf(X)< Min{dimC}(k)+k—1: k =1, ..., dimf(X)— dim X +1}.

Some ideas related to Theorem, 15 are contained in the paper of
KaZdan and Vaindtein [27]. The next theorem is a classical result (see
[23], p. 93, and [35], p. 97).

THEOREM 16 (W. Hurewicz). If f is a closed mapping of a space X,
then

(xiv) dimf(X) < dim X + Sup {cardf'(y): yef(X)}—1.

Proof. Inequality (xiv) is trivial for dimf > 0. If dimf = 0, then

we have

dimf(X) < dim 0, (dimf(X)— dim X 4 1)+ dimf(X)— dim X,
by Theorem 14. It follows that the set C,(dimjf(X)—dimX+1) is non-
empty, which implies (xiv).

We shall see in inequality (xxxv) of Theorem 38 below that —1 in
(xiv) can be replaced by —2 provided the space X fulfils some extra
conditions. Also, a slightly stronger version (8) of Theorem 16 is the fol-
lowing theorem (see [58], p. 68).

THEOREM 17 (J. Nagata). If f is a closed mapping of a space X such
that f(X) is non-discrete, then

(xv) dimf(X) < dim X+ Sup {cardf~" (y)nel[ X\ f~(9)]: yef(X)}—1.

Proof. It is not difficult to check that f|X’, where

X = U fTyne XN ()],
ve/(X) .

is a closed mapping. Moreover, each point of f(X)\f(X') is isolated
in f(X). Since any set consisting of isolated points is open and countable,
it follows from Theorem 2 that dimf(X) = dimf(X’), and applying
Theorem 16 to f|X' we obtain inequality (xv).

THEOREM 18. If f is a closed mapping of a space X such that dim X
< dimf(X), then
(xvi) dimf(X) < dimCy (k)4 dimf+4+k—1
for k. =1,...,dimf(X)—dimX41.

®) Th—eorem 17 as proved by Nagata [58] holds for non-separable metric spaces
and has an analogue for non-metrizable spaces (ibidem, p. 218). Thus the same can

be said about Theorem 16. See also Keesling [28], Morita [52], Nagami [53] and [54],
Skljarenko [70], Zarelua [87].
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Proof. If f is zero-dimensional, then Theorem 18 follows from
Theorem 14. If f is infinite-dimensional, then inequality (xvi) trivially
holds. Thus we can assume that 0 < dimf < oco. Let d, = dim.D,(k,)+
+ k, where k, =1, ..., dimf. We always have D,(1) = C/(k) for k =1,
2,... If dimf(X) < d,, then

dimf(X) < dimD, (ko) + ko < dim D, (1)+ dimf < dim ¢, (k) + dimf,

which is even more than inequality (xvi) for every k¥ =1, 2, ... Conse-
quently; we can also assume that d, < dimf(X) so that the conditions
of Theorem 12 are satistied. If ¥ < m,, then (xvi) is a consequence of (x).
On the other hand, if

m, < k < dimf(X)— dim X +1,

then dimf(X)—d; = m; < k—1, by the definition of m,;, and we get
again

dimf(X) = d,+ (dimf(X)—d) < d,+k—1
= dim D, (ko) + ko+ k—1 < dim 0, (k) + dimf+ k—1,

which completes the proof of Theorem 18.

Let us now formulate a theorem (see Theorem 19 below, compare
Theorem 10) giving, in the separable metric case, a solution to a problem
raised by Arhangel’skil [8]. Observe that if f: X — f(X) is a closed map-
ping, then the set C,(k) is of type F, in f(X), for k¥ = 1, 2, ... In our proof
of Theorem 12 we have shown this for ¥ = 2, and the argument for ¥ > 3
is quite analogical. Thus, by Theorem 2, the set C;(k) contains a set A
such that A is closed in f(X) and dim4 = dimC,(k). Consequently,
the relative dimension which appears in Arhangel’skii’s question coincides,
in our case, with the usual dimension.

THEOREM 19. If f is a closed mapping of a space X, then
(xvii) dimf(X) < dimCy(k)+ dim X+ k—1
fo;' E=12...

Proof. The inequality dimf< dimX is trivially true. If dimf(X)
< dim X, then we can apply Theorem 9 and (xvii) follows from (vii).
If dimf(X)> dimX, then we use Theorem 18 to establish (xvii) for %
< dimf(X)—dimX+41. Finally, for % > dimf(X)—dimX-+1, we have

dimf(X) < dimX+%k—2 < dimC,(k)+ dim X+ k—1.

THEOREM 20. If f is a closed mapping of a space X such that dim X
# dimf(X), then

(xviii) dimf(X) < dimC,(2)+ dimf+1. '
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Proof. If dimf(X)< dimX, then (xviii) follows from Theorem 9.
If dimf(X) > dimX, then we can apply Theorem 18 for k¥ = 2.

Remark. The requirement. that the mapping is closed has been
a standing assumption in Theorems 6-20. It can, however, be replaced
by a condition imposed on the space. A space X is said to be an F -space
(or a G4-space) provided X is homeomorphic to a set of type F, (or type Gy,
respectively) in a compact space. Thus F, -spaces coincide with spaces
representable as countable unions of compact spaces. Since each mapping
of a compact space is closed, it might be checked with the help of Theorem 2
that a good deal of Theorems 6-20 can survive when we take arbitrary
mappings of F,-spaces to replace closed mappings of arbitrary spaces.
We will see in an example below that the analogical replacement by
means of Gs-spaces does not work.

Let X be a space. A compactification of X is a compact space hX
together with an embedding % of X into hX such that the image h(JX)
is dense in hX. The deficiency def X of the space X is defined by the formula

def X = Min{dim (hX\ h(X)): hX C(X)},

where C(X) dendtes the collection of all compactifications of X. Thus
X is compact if and only if def X = —1. It is known that def X < dim X
(see . [23], p. 65). Let us write subcom X = —1 provided there exists
a compact subset ¢ < X such that dimC = dimX. The inductive defi-
nition of the number subcom X resembles the definition of dimension.
Namely, we write subcom X < n provided each point of X has arbitrarily
small open neighbourhoods U in X such that

subcom(cl U\ U) < n—1

(n > 0). It is rather easy to check that subcom X < def X (see [41], p.
224). For xeX, let C(X, ) denote the component of X at z, that is the
union of all connected subsets of X that contain x. Three theorems which
follow have been proved in [41].

THEOREM 21. If X is a space, then
(xix) dim X < Sup{dimC (X, z): #¢X}+subcom X +1.
THEOREM 22. If f is a mapping of a space X, then
(xx) dim X < dimf(X)+ dimf+ subcom X+ 1.

THEOREM 23. If f is a mapping of a space X such that, for every point
yef(X), the set f~'(y) is locally compact, then

(xxi) dim X < dimf(X)+ Max {dimf, def X}.

We recall that the quasi-component Q (X, x) of a space X at a point
xveX is the intersection of all closed-open subsets of X that contain .



DIMENSION INEQUALITIES 79

The following theorems were proved by Nishiura [59]. In the case of

deficiency zero, Theorem 25 has been treated in [39]. Since C(X, z)

c Q(X, z) for every point xeX, inequality (xix) implies inequality (xxii)

and thus Theorem 24 is a direct consequence of Theorem 21.
THEOREM 24 (T. Nishiura). If X is a space, then

(xxii) dim X < Sup{dim@Q (X, z): veX}{ def X+ 1.

THEOREM 25 (T. Nishiura). If X is a space such that every quasi-com-
ponent Q (X, x) of X s locally compact, then

(xxiii) dim X = Max{Sup{dim@Q (X, z): veX}, def X}.

Proof. There exists a mapping g of X into the Cantor set such that
g 'g(x) = Q(X, x) for xe X (see [35], p. 148). Thus we can apply Theorem
23 for the mapping g. By (xxi), we obtain dim X < Max {dimg, def X}.
Because the inverse inequality is trivial, we get (xxiii).

Note. In the same manner, inequality (xx) implies inequality (xxii)
and thus Theorem 24 is a consequence of Theorem 22 as well.

We say a space X to be totally disconmected provided all quasi-com-
ponents of X are degenerate. Zero-dimensional spaces are totally discon-
nected, but not conversely (see the example below). It was proved by
Mazurkiewicz [50] that if X is a non-compact totally disconnected space,
then the dimension of X is equal to the deficiency of X. The latter theorem
is now a simple corollary to Theorem 25, and so is the following propo-
sition (°).

THEOREM 26. If X is a non-compact space such that every quasi-com-
ponent of X is zero-dimensional and locally compact, then

(xxiv) dimX = defX.

The theorem, (!°) which follows is due to Arhangel’skil [7].

. THEOREM 27 (A. V. Arhangel’skil). If f is a closed mapping of a totally
disconnected space X such that, for every point yef(X), the set f~'(y) is
compact, then

(xxVv) dim X < dimf(X).

We say a space X to be lacunar provided all compact subsets of X
have empty interiors. Another estimation of the deficiency is given by
the next theorem which was proved in [37].

(°) Theorem 26 in the case of totally disconnected spaces with deficiency zero
has been extended over non-metrizable spaces by Flachsmeyer [16].
(1) Theorem 27 as given by Arhangel’skii [7] holds for non-metrizable spaces.
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THEOREM 28. If f is a mapping of a space X such that f(X) is a lacunar
G,-space and, for every point yef(X), the set f~'(y) is compact, then

(xxvi) Min {dimf~(y): yef(X)} < def X.

Since the space P of irrationals is lacunar and P is a G4-space, it
follows from Theorem 28 that dimX = def Px X for every compact
space X. Indeed, one has only to apply (xxvi) to the projection f of P x X
onto P. However, a more general theorem holds as proved in [42].

THEOREM 29. If X and Y are spaces such that X is compact and Y
is not locally compact, then

(xxvil) dimX < defX X Y.

Another proof of Theorem 29 as well as some further research is
done by Aarts [2]. He has proved, among other things, that just no con-
dition is necessary for a space X in order to satisfy inequality (xxvii)
provided Y is a lacunar G,-space (compare Theorem 28). On the other
hand, if Y is not a Gs-space, then we get a stronger version of Theorem, 29.
Namely, the deficiency in inequality (xxvii) can then be replaced by
the dimension of remainders in completions rather than compactifi-
cations (see [1], p. 29).

Now, suppose X is an n-dimensional totally disconnected space,
where n > 0. Let us take the mapping ¢ of X into the Cantor set such
that inverses of points under g coincide with quasi-components of X
(see [35], p. 148). In such a case g is one-to-one, and we have

dimX =n >0 = dimg(X)-+dimg,

which shows that the condition for the mapping to be closed is an essential
hypothesis in the Hurewicz theorem (see Theorem 8). The first example
of an n-dimensional totally disconnected G;-space was found by Mazur-
kiewicz [48]. We give here another construction, following some idea of
Knaster [33]. Our construction was earlier mimeographed in [43].

Example. This will be a subset of the Euclidean (n-1)-space R™*'.
For every pair of distinet points # and y in R"*', where

X = L1y ey Tpy1)s Y = Y1y ooy Ynt1)s
let x—,y denote the first non-zero number in the sequence
C1—=Y1y ooy Tpy1— Ypta-
We see that x—,y = —(y—;x). Write <,y if and only if

x—;y < 0. Then <, is the so-called lexicographic order in the product
R™*! of n41 real lines R each carrying the ordinary order. Observe that
every compact non-empty subset of R"*! contains a uniquely deter-
mined minimum point with respect to the order <.
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Denote ¢, = (0,0,...,0), ¢s =(3,0,...,0), and let 8¢ be the n-
dimensional sphere in R"*! with center ¢, and radius 1+ ¢, where ¢ is
a number in the Cantor ternary set C in R. Let B be the closed (n+ 1)-
dimensional ball in R"*! with center ¢, and radius 4. Denote by = the
projection

n: UK -0,
ceC
defined by =(x) = ¢ for xeS8?. Let us consider the collection K of all
continua joining ¢, and ¢, in B. The set K with the Hausdorff distance
is a compact metric space. Let f: C — K be a mapping of C onto K. Since
each sphere S? cuts R"*! between ¢, and q,, we have f(e)nSr # @ for
ceC. Let p(c) be the minimum point in f(¢)n 87 with respect to the order
<;. We prove that the set

X = {p(c): ceC}

is an n-dimensional totally disconnected @G,-space.

In fact, the mapping »|X: X — C is one-to-one, thus X is totally
disconnected. Clearly, X is a boundary set in R™*!, whence dim X < =.
From the Mazurkiewicz theorem (see [35], p. 466) we know that if V
is a connected open subset of R™ and dim A < n— 2, then each two points
in Y\ A can be joined by a continuum contained in V\ A. Therefore,
since the interior of the ball B is a connected open subset of B**! and X
contains at least one point of each continuum joining ¢, and ¢, in B,
we get dimX > (n+1)—2. Hence dimX = n. By the continuity of f,
the set

Y = Uf(e)n Sz

ceC

is compact and X < Y. To prove that X is a G4-space, it suffices to show
that Y\ X is of type F, in Y. Consider the sets

Fy ={yeY: 1/j <y—, pn(y)}
for.j =1,2,... By the definition of the points p(c), we have
Y\X c F,UF,v...

and it remains to prove that cl¥; « Y\ X for j =1, 2, ... Fix an index j
and take points ¥, y? ... from F; which converge to a point y ¢ Y. Denote
¢; = n(y*). Thus the numbers ¢,, ¢,, ... converge to the number ¢ = z(y),
and

1/j<y*—ip(c)
for¢ =1, 2, ... It follows that there are integers &, such that 1 < k; <n-+41
(¢ =1,2,...) and the coordinates of y* and p(c;) satisfy the conditions

1j< ?/;;i—P(ci)ki’ Yi = pehn

6 — Colloquium Mathematicum XXIII. 1
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forl<h<Fk;and® =1, 2,... Let us choose positive integers ¢, < i, < ...
and k such that k;, =k for m = 1,2, ... and the points p(c; ), p(c;), --.
converge to a point z¢Y. Since y%, y*, ... converge to y, we get

0<1i<¥Yr—2 Yn==2

for 1<h<k. Thus z2—,y = 2,—vy,<0. Moreover, the numbers Cis
Ciyy -+ cORVerge to ¢, whence zeS;, and also zef(c), by the continuity of f.
Consequently, we have 2<(;y and zef(¢)nS;, which gives y # p(c).
If ¢'eC and ¢’ # ¢, then

n(y) =c¢ #¢ = zmp(c),

and so y # p(¢’). We have proved that the point y does not belong to X,
which completes checking on the properties of the example.

Given a mapping f of a finite-dimensional space X, we define the
set D; by the formula

D, = {yef(X): dimX— dim,f(X) < dimf~(y)},

where dim,, f(X) denotes the local dimension of the space f(X) at the
point y. The theorems which follow are due to Keesling [31] and they
may constitute local analogues of Theorem 7.

THEOREM 30 (J. E. Keesling). If f is a closed mapping of a finite-
dimensional space X, then

(xxviii) dim X < dim D+ dimf+1.

THEOREM 31 (J. E. Keesling). If f is a mapping of a finite-dimensional
compact space X, then

(xxix) dim X < dim D;+ dimf.

As applications of Theorems 30 and 31 we obtain the following
theorems which are classical results (see [35], p. 113). Indeed, for f the
identity mapping, (xxviii) and (xxix) imply (xxx) and (xxxi), respectively.

THEOREM 32 (K. Menger). If X is a finite-dimensional space, then

(xxx) dmX < dim{reX: dimX = dim,X}+1.

THEOREM 33 (K. Menger). If X is a finite-dimensional compact space,
then

(xxxi) dimX =dim{reX: dimX = dim, X}.

We recall that a Cantor manifold is meant to be a finite-dimensional
compact space X such that if 4 <« X and

dim4d < dimX—-1,
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then X\ A is connected. It follows from inequality (xxix) that, for each
mapping f of a compact space, the set D; is non-empty. However, in most
cases of mappings of Cantor manifolds, the set D, turns out to be positive-
dimensional. This is our next theorem which was proved in [44]. Weaker
results were obtained by Jung [24] and Skljarenko [75].

THEOREM 34. If f is a non-constant mapping of a Cantor manifold
X, then

(xxxii) 0 < dim D; < dim Dy (dim X — dimf(X)).

In the remainder of the survey we discuss some more special concepts
related to dimension inequalities. Let X be a compactification of a space X.
We say that X is a perfect compactification provided

clh(cl U\ U) = clh(X\ U)nel(hX\clh(X\ T))

for every open subset U < X. It is not difficult to observe that if the
space hX is locally connected, then hX is a perfect compactification if
and only if, for every connected open subset V of hX, the set Vnh(JX)
is connected (compare [72], p. 430). Thus a result from [38], concerning
dense subsets of the nm-sphere, is generalized in two different directions
by the following theorems, the first of which (!!) belongs to Skljarenko [71].

THEOREM 35 (E. G. Skljarenko). If hX and h' X are compactifications
of a space X such that hX is a finite-dimensional perfect compactification,
every compact subset C = hX\h(X) has dimension

dim(C < dimhX—1,
and every connected compact subset of h' X\ h'(X) ts degenerate, then
(xxxiii) dimhX < dimh' X.

THEOREM 36. If hX and h' X are compactifications of a space X such
that hX is a Cantor manifold, hX is a perfect compactification, and
dim (A’ X\ 7' (X)) < 0, then (zxxiii) holds.

- Proof. There exists a mapping f: hX — b’ X such that fh(x) = b’ (x)
for xe X (see [72], p. 434). Thus f(hX) = h' X. If X is degenerate, (xxxiii)
is trivial. If X is non-degenerate, f is non-constant, and the negation
of (xxxiii) would imply the inclusion D; < h'X\1'(X), contrary to
(xxxii). We see that in this way Theorem 36 follows from Theorem 34.

Yet another specific situation allows to connect the dimension of
the space with the dimension of the mapping. By an irreducible continuum
we understand a connected compact space X which contains points a, b
such that if 4 is a closed subset of X and a,bed # X, then 4 is not

(1) Theorem 35 has been proved by Skljarenko [71] also for non-metrizable
spaces and their non-metrizable compactifications.
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connected. Each irreducible continuum X admits a monotone mapping
f: X — R into the real line such that fis the finest mapping in the collection
of all such mappings; this means that if g: X — R is a monotone mapping,
then the set g~'(t), for teg(X), is the union of some sets f~'(¢) (see [35],
P. 200). The following result was proved by Mazurkiewicz [49] and a proof
was also set forth in [45].

THEOREM 37 (S. Mazurkiewicz). If f is the finest mapping of an irredu-
cible continuum X such that dim X > 1, then

(xxxiv) dimX = dimf.

A relation weaker than (xxxiv) is a consequence of Theorem, 8,
namely that dim X < dimf+4 1. Under some additional conditions, an
analogical improvement of Theorem 16 is also possible. This is the fol-
lowing theorem, due to Hurewicz [22]. A special case of Theorem, 38
was recently studied by Sieklucki [69].

THEOREM 38 (W. Hurewicz). If f is a closed mapping of a space X
such that dim X < dimf(X) and, for every closed subset A — X satisfying
dimA = dim X, the interior of A in X is non-empty, then

(XXXV) dimf(X) < dim X + Sup {cardf~ ' (y): yef(X)}—2.

Let f be a mapping of a space X. We say f to be an open mapping
provided, for each open subset A < X, the set f(A4) is open in f(X). The
openness here is a much more restrictive condition than the closedness.
For example, each mapping of a compact space is closed whereas the
mapping which takes only two non-isolated points of a space into one
point of another is not open. Now, similarly to the definition of the set
C;(k) for k an integer, let us denote by C,;(R,) the set of all points yef(X)
such that the set f~!(y) is uncountable. Thus the mapping is countable-
to-one if and only if 0;(R,) = O. We cite two results (%) of Arhangel’skii
[5]. It seems worth noticing that inequality (xxxvii) might be considered
as a strong improvement of inequality (xvii) from Theorem 19.

THEOREM 39 (A. V. Arhangel’skii). If f is a countable-to-one closed
mapping of a space X and there exists a subset A = X such that f(A) = f(X)
and f|A is an open mapping, then

(xxxVi) dimf(X) = dimX.
THEOREM 40 (A. V. Arhangel’skii). If f is a mapping of a compact

space X and there exists a subset A = X such that f(A) = f(X) and f|A
i8 an open mapping, then

(xxxVii) dimf(X) < dimC;(R;) 4+ dim X 4 1.
(12) Theorem 39 has been proved by Arhangel’skii [5] also for non-separable

metric spaces. In the case where the mapping itself is open, Theorem 40 has been
generalized - for non-metrizable spaces by the same author [6].
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The behaviour of dimension under open mappings was iniestigated
by Roberts [67] and Hodel [21]. Two theorems which follow (!3) are to
be found in those papers.

THEOREM 41 (R. E. Hodel and J. H. Roberts). If f is an open mapping
of a space X such that, for every point y f(X), there exists an isolated point
in f~'(y), then
(xxxviii) dimf(X) < dimX.

THEOREM 42 (R. E. Hodel). If f is an open mapping of a space X
such that, for every point yef(X), the set f~'(y) is discrete, then (Xxxvi)
holds.

Since each countable G,-space contains an isolated point, the fol-
lowing results (1) of Taimanov [80] and [81] are corollaries to Theorems 39
and 41, respectively.

THEOREM 43 (A. D. Taimanov). If f is a countable-to-one open closed
mapping of a space X, then (xxxVi) holds.

THEOREM 44 (A. D. Taimanov). If f is a countable-to-one open mapping
of a space X such that, for every point y<f(X), the set f~'(y) is a Gy-space,
then (xxxViil) holds.

Related to Theorems 42 and 44 is a recent result (1%) of Pasynkov [65]
dealing with open mappings of G4-spaces.

THEOREM 45 (B. A. Pasynkov). If f ts an open mapping of a Gs-space X
such that, for every point y<f(X), the set f~'(y) is a countable union of dis-
crete subspaces, then (xxxviii) holds.

What is actually done in Theorems 39-41 and 43-45 when combined
with Theorem 8 gives various generalizations of a well-known theorem,(¢)
of Aleksandrov (see [35], p. 115).

THEOREM 46 (P. S. Aleksandrov). If f is a countable-to-one open
mapping of a compact space X, then (xxxVvi) holds.

The openness of the mapping in Theorem 42 can be replaced by
the closedness if some rather restrictive conditions of another kind are

(*3) Theorems 41 and 42 admit several analogues for non-separable metric
spaces; they have been proved by Hodel [21]. In the case of finite-to-one mappings,
Theorem 42 has been earlier proved by Nagami [54] for non-separable metric spaces
and for a class of non-metrizable spaces. See also Arhangel’skii [5], Keesling [28],
Nagami [55] and [56].

(*4) Theorems 43 and 44 possess generalizations that hold for non-separable
metric spaces according to Arhangel’skii [5]. In the case of finite-to-one mappings,
Theorem 43 has been extended to completely regular spaces by Keesling [29].

(15) Theorem 45 has been proved by Pasynkov [65] for normal Gs-spaces (of
type Gs in the Cech-Stone compactification).

(*6) Theorem 46 as a consequence of either Theorem 40 or Theorem 45 which
have been extended over non-metrizable range also permits such an extension.
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imposed. The following theorem (”) was proved independently by Nagami
[65] and Suzuki [79].

THEOREM 47 (K. Nagami and J. Suzuki). If f is a finite-to-one closed
mapping of a space X such that

cardf~'(y) = cardf'(y’)

for y,y' ef(X), then (xxxVi) holds.
The definition of dimf motivates introducing a dual symbol by the
formula

cardf = Sup {cardf'(y): y<f(X)},

and then inequality (xiv) from the Hurewicz theorem can be rewritten
as dimf(X) < dimX +cardf—1 (see Theorem 16). An improvement of
the latter inequality, inequality (xxxix) below(!), is due to Za-
relua [86].

-THEOREM 48 (A. V. Zarelua). If f is a finite-to-one closed mapping
of a space X such that cardf < oo, then

(xxxix) dimf(X) < Max{dimf~'(C;(k))+%k—1: k =1, ..., cardf}.

The proof of Theorem 48 as given in [87] essentially depends on
methods of algebraic topology. On the other hand, there are results con-
cerning dimension inequalities which involve algebraic concepts more
explicitly. Let CH,(0) denote the set of all points yef(X) such that the
set f~'(y) is not connected, and let CH,(k) (k =1, 2,...) denote the set
of all points yef(X) such that the k-dimensional cohomology group of
f~'(y) with integer coefficients is not trivial. Given a finite-dimensional
set Y < f(X), we define rdim Y to be the maximum dimension of closed
subsets of f(X) which are contained in Y. We have the following theorem (1?)
of Skljarenko [74].

THEOREM 49 (E. G. Skljarenko). If f is a finite-dimensional closed
mapping of a space X, then

(x1) dimf(X) < Max {dim X, ch,+ 1},
where ’
ch; = Max {rdimCH,(k)+%k: k =0, ..., dimf}.

(17) Theorem 47 remains valid for non-separable metric spaces and, as shown
by Nagami [55], a stronger version dealing with boundaries of inverses (compare
Theorem 17) is also possible. See also Keesling [28].

(*8) Theorem 48 has been proved by Zarelua [87] in a more general setting for
paracompact spaces. :

(+°) Theorem 49 has been proved by Skljarenko [75] also for paracompact
spaces.
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Since CH,(0) = C;(2) and CH(k) < D,(k) for k > 0, inequality (xl)
is a stronger result than inequality (iv) from Theorem 6. Another corollary
to Theorem 49 is a theorem(2°) of Dyer [12].

THEOREM 50 (E. Dyer). If f is a mapping of a compact space X such
that, for every point yef(X), the set f~'(y) is homologically trivial, then
(xxxviii) holds.

In the special case where X is an orientable manifold and f(X) is
a polyhedron, some conditions implying inequality (xxxviii) were also
discovered by Frum-Ketkov [18]. Cohomological dimension analogues
of Theorems 8, 16 and 46 were studied by Kuz’minov [36].

Addendum. I give an account of the present status of eight pro-
blems which I proposed in papers [37]-[41] and [44]. Problem P 312
was solved in the negative in [42]. A negative solution of P 313 was given
by Reichaw-Reichbach [66] (see also [42], p. 535). Affirmative solutions
of P 350 and P 373 were given by Jung [24] and Nishiura [59], respectively.
Problem P 390 remains open. Jung [24] and Skljarenko [75] answered
P 391 in the affirmative. Problem P 469 remains unsettled. Kuperberg’s
[34] solved P 614 in the affirmative.

Added in proof. It is now proved by Calvin F. K. Jung that the
condition of compactness of point-inverses can be removed from Theorem,
28. Another Jung’s result answers P 469 in a particular case. Two papers
of him are submitted to this journal as well as a recent paper of Togo
Nishiura who provides a complete affirmative solution of P 469 by means
of some closed extensions of mappings.
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