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TWO INEQUALITIES FOR STARLIKE FUNCTIONS

BY

RENATE McLAUGHLIN (FLINT, MICHIGAN)

Suppose the function f belongs to the class §; that is, f is normalized
(f(0) =0 and f'(0) =1), analytic and univalent in the unit disk D =
= {2: 2| < 1}. Set
J'(2) (=)

f(2) fl@)

The analytic function f is said to be starlike in D if the image domain
f(D) is star-shaped with respect to the origin; that is, f is univalent in D
and argf(re¢®®) is a non-decreasing function of 6 for 0 < r < 1. The last
two conditions are equivalent to the inequality Reg,(2) >0 (|2| < 1).
The class of all starlike functions fe S will be denoted by S*.

The analytic function f is said to be convexr in D if the image domain
f(D) is convex; that is, f is univalent in D, and if € (re*’) denotes the argu-
ment of the vector tangent to the image curve of |2| = r, then @ is a non-
-decreasing function of 6 for 0 < r < 1. Thus the function f is convex
if and only if Rey,(2) = 0 (J2| < 1).

It is well known that if a function is convex, then it is starlike of
order 1/2 ([1], - 44, and [4]). In other words, the inequality Rewy,(z) > 0
(l2] < 1) implies the inequality Reg,(2) > 1/2 (2] < 1). This leads to the
topic of this note: whether there exist further inequalities linking the
quantities Regy(2) and Rewy,(2).

Our tool is the following result due to Robertson ([2] and [3]):

LEMMA. If F(u,v) is analytic in the v-plane and in the half-plane
Reu > 0, if P(z) is analytic with positive real part in D, and if P(0) = 1,
then, on the circle 2| =r <1, the minimum

minmin Re F(P(z), 2P’ (2))

P |g|=r

@r(R) =2 and  yy(2) =1+2

18 attained only for a function P = P, of the form

1+al+z® 1—al4ze® "~
2 1—ze¥ 2 1—2ze %’
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where —1 < a<1l and 0<t<2xn. These ewtremal functions P, can also
be described by the equaiion

P,(z)—1 b—z

P, @)1 _zl—l_az (b = cos0+ aisin0).

THEOREM 1. Suppose fe 8* and 0 < k< oo. The relation
| Rey,(2) —Regy(2)| < k
holds in the disk
Vid+1—1
< —".
|2| 2
The equality occurs for the Koebe function.
COROLLARY. If fe 8* and |2| <, then

2r
1—r2

|Rey,(2) — Regy(2)| <

Proof. We prove first that the inequality
(1) Reyy(2) < Regy(2)+ %

holds for |z| < (VA*+1—1)/k. Since f belongs to §*, the function P(z)
= @,(2) satisfies the conditions of Robertson’s lemma. Set « = P(z) and
v = zP’(2). Then inequality (1) is equivalent to the inequality

(2) Re(k—1)>o.
u

Since the function F(u,v) = k —v/u satisfies the conditions of Ro-
bertson’s lemma, the minimum

minmin Re F(P(z), 2P’ (2))
P |zg|=r

is attained only for a function P = P,, as described in the Lemma.
Set w = w(2) = (Py(2) —1)/(Po(2)+1). Then

14w , 2zw’
u=Po(Z)=m- and ’0=zPo(z) =m.

Thus inequality (2) holds if and only if

2w’ k
< —

(3) Rel—wz <35
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Since
‘ Re 2w < 2w 2w’ —w| 4+ |w| ,
1—w? 1—w? 1—|w|?
inequality (3) will hold if the last quantity does not exceed k/2. But
0 =2 b—z
T 1%
so that
2__ 2
aw' —w = —(1—1b|2)22(1—b2)"®> and |ew’ —w| = M.
A 1-—|z)®
If we write |2| = r and |(b—2)/(1 —b2)| = @, we see that (3) holds if
r3(1 — x?) k
ﬁa— +re < E (1 —r’w’),
that is,
(4) r3o3(k(1 —r2) —2) +2r2(1 —r2) + 2r2 — k(1 —22) < 0.

Consider the left-hand side of (4) as a function of z, say h(z). It is
easy to see that h(1) < 0 if and only if

r<< 7]‘;-(1/702 +1 —1).

A straightforward computation now shows that this last condition
insures inequality (4) for all # (0 < # < 1). -

The equality in (4) occurs if # =1 and rk = V¥ +1—1. But & =1
only if |b] = 1, so that w(2) = ¢%z, and the extremal function is a Koebe
function. It is easy to verify that the equality also occurs in (1), namely
for the function f(z) = 2(1 —2)~% at the point

1 -
2= z(1/702 +1-1).
To complete the proof of Theorem 1, we need to show that
VEE+4+1-—1
3 .

Regp(?) —k < Reyy(z) (J2] < ).

This is done with the same method, but using the function F(u, v)
= k+wo/u. The equality occurs again for the Koebe function, this time
at the point

1 =ty
z = —7(1/1‘: +1-1).
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THEOREM 2. Suppose fe 8*. For each k> 1 there ewisls a radius
r(k) > 0 such that the relation

(5) Rey,(2) < kRegy(2)

holds in the disk 2| < r(k). For k = 2, we have the explicit expression

k-1

W=V ia

and, for k = 3, the radius r(k) satisfies the condition

1 k-1
< r(k) <

1— —.
k—2 k+1

Proof. We use the same method as in the proof of Theorem 1. Again
we set u = P(2) = ¢q(2) and v = z P'(2). Then inequality (5) is equivalent
to the inequality

(6) Re((k—l)u—-v—)> 0.
U

The function F(u,v) = (k—1)u—v/u satisfies the conditions of
Robertson’s lemma, so that we know the structure of an extremal function.
Setting again P(z) = (14+w(2))/(1—w(2)), we see that inequality (6)
holds if and only if '

ReK(z) >0, where K(z) = (k —1)(1 +w(2))* — 220’ (2)].

l—w(z)zl

But ReK(2)>0 if and only if [K(2)—1|/|K(2)+1| <1, so that
inequality (6) is equivalent to the condition

(7Y k(1 4+w)2—2(zw' —w) — 4w — 2|
< k(14 w)2—2 (2w’ —w) — 4w — 22| .

A simple calculation shows that the inequality |4 —2| < |4 —2uw’|
holds if and only if 1— |w|*< Re(4 —A%"). Hence (7) is equivalent to
the condition

1—|jw*<k(1—|w*)+2(k—2)(1—|w*)Rew—2Re[(2w' —w)(1—&)].
In the last summand, we replace the real part by its absolute value
and obtain the stronger inequality
212 — [wi? |11 — a2

2 2 - -
(8)  1+|w2< k(14 |w|*)+2(k—2)Rew —2 1R 1—fwop

Inequality (8) holds for 2 = 0. Hence there exists a positive r(k)
such that (8) holds for all z (|z| < r(k)) and all w (|w| < |2|).
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The functions

fo(2) =

2 (l-l-iz

B
0 1
1422 l—iz) .( <8<l

belong to 8* and have the properties that

1 2
¢p,ﬁ(iﬁ) =1 and wfﬁ(iﬁ) =Ti_z2_'

This shows that, for all ¥ > 1, r(k) can at most have the value
V(k—1)/(k+1).

For k = 2, we replace |1 —w?| by *+ |w|2 in (8), and we use the esti-
mate (72— |w|?)/(1 — |w|?) < r?, where |2| = r, to obtain the stronger ine-
quality

1—172

0<(k—1— )(1+le”),
which is satisfied if »2 << (k—1)/(k +1).
For k # 2, we compute the minimum of the right-hand side of (8),

assuming w to have a fixed absolute value but a variable argument. For
k>3 and 2 <1—(k—2)""2, this minimum turns out to be

k(L + |w|2) —2(k—2) |w)| P Sl o
1—r2

Hence (8) holds if

r2

2
(9) 0<k—1— —2(k—2)|wl+(k—1+ - r,)|w|2.

1—1r2
The right-ha.nd side of (9) is a quadratic equation in |w| that is non-
-negative for |lw| =0 if r* < (k—1)/(k+1) and that has no real root if

Wk—1-1
Wk—1+1

r2g

But since
1—(k—2)"" < ——-2'/k__1 —1 ,
2Vk—1+1
Theorem 2 is established.
It would be interesting to know (P 964) whether inequality (5)
holds for

k—1
2] < 1
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Finally, the fact that convexity implies starlikeness of order 1/2
leads to the question whether there exists a number ¢ > 0 such that every
normalized analytic function f with Rey,(2) > —e¢ (|2] < 1) is starlike
(of order 0) in D. We answer this question in the negative.-

THEOREM 3. For each number ¢ > 0 there ewisis a normalized analytic
Junction f. such that Rey, (2) = —c for every ze D and Reg, (2) < 0 for
some ze D.

Proof. The function w,(2) = [1+(2¢+1)z]/(1 —2) maps D onto
the half-plane Rew > —ec. If we set '

1 1—(1—gyH
T 241 (1—z)t

fe(2)

it is easy to see that f, is analytic and normalized in D and that y, (2)
= w,(2). A computation shows that

1
2 1—(1—z)’+’

97, (2) = (2¢+1) 1i

and that Reg, (2) > 0 if and only if
(10) Re(z— 2|2 —2(1—2)***) > 0.

But inequality (10) can be violated by some ze D, regardless of the
choice of c.
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