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1. Introduction. In analysis we use a number of different function
and distribution spaces. For instance, in classical harmonic analysis we
frequently use Lebesgue and Hardy spaces, in partial differential equations
the Sobolev spaces are natural, and in approximation theory Lipschitz and
Besov spaces are important. It has been known for a long time that most of
these spaces share a common underlying structure. More precisely, it is well
known (see [8], [19], [21], and [24]) that by using Littlewood-Paley theory
most distribution spaces on R™ can be characterized through the action of
appropriate families of convolution operators. Here we shall study analogous
characterizations in terms of more general families of operators.

We note that, classically, the Fourier transform is the basic natural tool
for studying Littlewood—Paley characterizations of distribution spaces, since
the operators involved commute with translations. However, in our more
general situation, this tool is not available. Instead we shall rely heavily
on Calderén—-Zygmund operator theory; this is especially reflected in the
definitions of the families of operators we consider. We note that these
families have previously been studied, primarily in the context of L2, by
Christ and Journé [2].

A fundamental result in Calder6n-Zygmund theory is the celebrated T'1-
theorem of David and Journé. A major part of this paper is devoted to the
study of versions of this theorem for general classes of operators and spaces.

A brief description of the contents of this paper now follows. In Sec-
tion 2 we give results on which our paper depends: 1) A description of
the basic scales of spaces we study, the Besov and Triebel-Lizorkin spaces;
and their characterization by a family of convolution type operators, and
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also by developments as sums of smooth atoms. 2) An introduction to the
notions of almost diagonal matrices, almost diagonal operators, and the no-
tions of smooth molecules of the first and second kind. 3) A presentation
of basic notions of Calder6n-Zygmund operators and of the Weak Bound-
edness Property. In Section 3 we present two versions of the T'1-theorem
for Besov spaces of order zero. In Section 4 we consider characterizations
of the Triebel-Lizorkin and Besov spaces in terms of families of operators
(e-families) that are not necessarily convolution operators.

2. Preliminary results. In this section we give the definitions of the
Besov and Triebel-Lizorkin spaces, the definitions and properties of almost
diagonal matrices and operators, and the definitions and basic results for
Calder6n-Zygmund operators in the forms that we will use.

Most of our notation will be introduced as we proceed; but we will make
a few brief comments here. S(R™) = § is the Schwartz space of rapidly de-
creasing test functions and &’ is its dual, the space of tempered distributions.
D(R™) = D is the Schwartz space of compactly supported test functions, and
D' is its dual, the space of Schwartz distributions. The Fourier transform
is defined in the usual way for f € S’ and is denoted by f. Below we will
choose a function ¢ in §. For v € Z we set p,(z) = 2""¢p(2z). Whenever
@ is used as an index, as in ) 4, {-}q@, or supg, this means that Q varies
over all dyadic cubes in R™. The side length of a cube @Q is denoted by £(Q)
and zg denotes the “lower left corner” of Q. The set aQ, a > 0, is the cube
concentric with @ and with side length «£(Q). We only consider cubes with
sides parallel to the axes. For the function ¢ that we choose in Section 2.1
we let

po(e) = 2"*p(2"z - k)
when
Q=Qur={2:27%k;<2; <27k; +1),1=1,...,n}.
For f a distribution and 7 a test function we set

(fim) = f(m).
As is usual, the letter ¢ will denote constants, often different from place to

place.

2.1. Definitions of the Besov and Triebel-Lizorkin spaces. The spaces
we are going to study belong to two basic scales. To define these we choose
a function ¢ with the following properties:

(1) v € S(R"),
(2) suppp C {£€R™ :1/2< |¢| L2},
(3) B(E) 2 e>0 if 3/5< || <5/3,
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(4) D IBOr =1 ifg#0.

Remark. Under these four conditions it is easy to see that the repre-
sentation

=Y (e e

holds in a variety of senses. For example, it holds in the sense of conver-
gence in L? and in S'(R")/P (tempered distributions modulo polynomials).
See [12, §2] and the references given there for details.

The Triebel-Lizorkin space F;”'q, a€ER,1<p<oo,and 1< qg< o0,is
the collection of all f € S'(R")/P such that

Q e = [ (@ low e 12) "] < oo
vel

For ¢ = 00, (5) is given the usual interpretation. When p = oo this definition
requires a modification:

-1 = va /g
) Wllege =swp(IPI7 [ 3 @l x f(=)))7dz)

P v=—log, {(P)

We refer the reader to [12] for a discussion of ||-|| ya.c. If we interchange the
order of summation and integration in these definitions we obtain the space
Bg9, a € R, and 1 < p,q < oo. This is the collection of all f € §'/P such
that

1/q
(7) 1fllsg.e = (3@ llow + flles)?)
vel
The definitions of the Triebel-Lizorkin spaces and the Besov spaces are
independent of the choice of the function ¢ that satisfies (1)—(4). For this
and for other standard facts about these spaces the reader is referred to [24]
and [12].

For our study of the boundedness properties of operators on the Besov
and Triebel-Lizorkin spaces we will use atomic decompositions of these
spaces. Throughout this paper the parameters a, p, and ¢ will be restricted
to the range |a| < 1,1 < p,¢ < 00, and this allows us to greatly simplify
the notion of a “smooth molecule” that follows shortly. In general, one can
consider the range a € R, 0 < p,q < oo; but not in this paper. With this
convention in mind we say that {ag}q is a family of smooth atoms if for
each dyadic cube @, in R", the function aq satisfies:

(8) ag €D,
(9) suppaqg C 3Q,
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(10) faq(:c) dz =0
(11) 07aq(2)] < 1QI7/27/"  for0 < |y[< 1.
It is known (see [10,12]) that each f € F;’-q has a smooth atomic de-
composition
f= ;SQGQ ,

where {ag}q is a family of smooth atoms and the sequence s = {sg}q
satisfies

(12) sl .0 = ||(§(|Q|-°/“|sq|zq)q)” I, <

where Xq is the “L%-normalized characteristic function” of the cube Q:
Xo(z) = |Q|~Y?xq(z). Furthermore,

(13) 1 £l g0 ~ inf {llslljo.0 : £ Zsoaq}

The usual caveats go with this definition; in partlcular, it must be modified
if p = oo:

(19 Wljge =sup (1P [ 3 (101 lsqlRa(z))rdz)
P QCP

Elements of the Besov space B;"q also have smooth atomic decomposi-
tions. The corresponding sequence space is (',g,q with norm given by

19 el = (S X D)7

vel LQ)=2—v
In analogy with (13) we have

(16) 111 g0 ~ inf {lsllyg.e - f quaq}

See [10] for details.

2.2. Almost diagonal operators and matrices. The class of Calderén—
Zygmund operators is closely related to a class of matrices studied in [12].
Keeping in mind that 1 < p,¢ < 00 we let

(17) wa(t) = (1 + t)"(n+6) ,
_(UQ)\" [ lzq—zp| \ (4Q) , &(P)\ "+
(18) ”‘"’“’"‘"(t(P)) we (z(Q)ve(?)) (e(P)"e(Q)) '

(We use the conventions: @ A b = min{a,b} and a V b = max{a,b}.) We
say that a matrix {Aqp} is almost diagonal (for Fg'? or B29) if there is a
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é > 0 such that

(19) |AQp| < 65.QQP(5 a)

for all dyadic cubes, @ and P. An almost diagonal matrix induces a bounded
operator on the sequence spaces fp 9 and b""’ with norms depending only
on the values of a, p, ¢, §, and c;.

Remark. Complete results for the Triebel-Lizorkin spaces can be found
in [12]. For those familiar with interpolation theory the result for Besov
spaces follows from the result for Triebel-Lizorkin spaces from the reitera-
tion theorem. A more elementary route is to notice that the proof for the
Triebel-Lizorkin spaces simplifies to give a proof for the Besov spaces.

Furthermore, almost diagonal matrices are closed under composition and
hence form an algebra. See [12, §2, §3, and Appendix D]. It is particularly
important to note their Theorem D.2 which gives this result in a quantitative
form. Let A; and A; be almost diagonal matrices, and let §; and c5, be
the constants for these matrices; then A = A; A, is almost diagonal with
constants § and cs. If 6; # 8, we can take § = 6; A 6> while if they are equal
we can take é to be any value less than their common value. The value of
¢s is determined only by the constants explicitly given.

A notion almost as basic as that of a smooth atom is that of a smooth
molecule. In [12, §3] the notion of a family of smooth molecules is intro-
duced, which is a system {mg}q that satisfies the four conditions (3.3)—(3.6)
in that paper. We will call these smooth molecules of the first kind. They
introduce a second kind of family (not named in their paper) which satisfy
four related conditions: (3.7)-(3.10). We call these smooth molecules of the
second kind. Lemma 3.8 in their paper can be rephrased to say that if {ng}¢o
and {fg}q are families of smooth molecules of the first and second kind,
respectively, then {(6g, 7p)}qp is an almost diagonal matrix with constants
6 and cs independent of the choice of the families of smooth molecules, for
all admissible values of a, p, and g.

It is easy to check that if {mg}q satisfies the following three conditions:

(20) Jme(z)dz =0,
(21) Ime(2)] < 1QI72(1 + |z - z0/16(Q))~"*),
(22) |mq(z) — mo(y)l

<IQITVI Mz gl sup (14 |z -z - 2ql/¢Q))" ™),
lz1<|z -yl

then {mg} is a family of smooth molecules of both the first and the second
kind, provided |a| < e <1 and 1 < p,q < o0.

ProrosITION 2.1. If {ng}q and {8g}q both satisfy conditions (20)-(22)
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then

{(6q,np)}oP

and its adjoint are almost diagonal matrices for |a] < e <1 and1 < p,¢ <
oo, with the constant cs independent of the choice of the families.

Proof. In view of our discussion above this follows from Lemma 3.8
of [12). =

Remark. The following facts are easily verified.

o If {ag}q is a family of smooth atoms, i.e., satisfies conditions (8)-(11),
then ag = emg where {mg}q satisfies (20)—(22) with € = 1.

o If  is the function we chose to define our spaces, i.e., satisfies (1)-(4),
then pg = emg where {mg}q satisfies (20)-(22) with € = 1.

This is immediate from the definitions.

We say that a continuous linear operator T' : D — D’ is almost diagonal
if its associated matrix {(Tvp,pq)}qp is almost diagonal. This definition
does not depend on the particular choice of . In fact, we have the following
characterization:

LEMMA 2.2. Suppose that {ag}q and {bg}q are families of smooth
atoms. Then an operator T is almost diagonal if and only if there are
6 > 0 and cs > 0 such that

| (Tbp,aq)| < cs2qp(é,a),

where 6 and cs do not depend on the choice of the families of smooth atoms.

Proof. This is an easy consequence of the fact that the class of almost
diagonal matrices is closed under composition. To see this we assume first
that T is almost diagonal. Let Agp = (ap,pq) and Bgp = (bp,¥q).
It follows from Proposition 2.1, and the remark that follows it, that A =
{Agp} and B = {Bqp} as well as their adjoints are both almost diagonal
with constants that are independent of the choice of families of smooth
atoms. We have

ag =) Argyr, Tbp=) BspTys,
R S
(Tbp,aq) = ZEARQBSP (Tes, ¢R) -
R S

The double sum on the right hand side represents the composition of three
almost diagonal matrices and this establishes one direction.
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For the other direction we note (see the proof of 9.12 in [12]) that the
function ¢ has a smooth atomic decomposition:

(23) Z( +|k|)LaQOk

kez"

for any (fixed) sufficiently large value of L with a value of C that depends
on L. Let B = {Bgp} where

¢/(1+ g - zp|/HQ))E if £(P) = £(Q),
Bar { if 4(P) # €(Q)

Then by the expression for ¢ in (23) we can write
PQ = Z Bprqar,
R

where the smooth atoms ag are obtained from the ag, by dilation and
translation. Similarly,

Tep = ZBSPTbS-
5

Hence,
(Top,pq) = E Z BrqgBsp (Tbs,aR) .
R S

This is again the composition of three almost diagonal matrices and this
completes the proof. =

2.3. CZO'’s and the weak boundedness property. The class of Calderén-
Zygmund operators is defined as follows. Suppose that T is a continuous
linear operator from D(R™) to D'(R™). By the Schwartz kernel theorem
there is a distribution K in D'(R™ X R™) such that

(T8,n) = (K,n®8), 6,7€D.

The distribution K is called the kernel of T. We say that K is a Calderdn-
Zygmund kernel if its restriction to the set {(2,y) ER* X R" : z # y} is a
continuous function K(z,y) that satisfies:

(24) |K(z,y)| < ¢ for all z # y,

|z — y|™

(25)  |K(z,9) - K(z,y)] < e LY

Iz — g+ whenever 2|y — ¢'| < |z - y|,

e
(20)  1K(z,9) - K@\ I < elZ2h whenever 2z — 21 < J2 - o,

for some constant ¢ and an ¢, 0 < € < 1. In this case we say that T is a
Calderon-Zygmund operator, and write T € CZO. If we wish to emphasize
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the “Lipschitz condition of order ¢’ we write T € CZO(e€). A consequence
is that if T € CZO, 6,7 € D, and suppfd Nsuppn = @ then

(T8,n)= [ [ K(=z,9)8=z)n(y)dzdy.
R” xR™

In a similar vein, if T € CZ0O, 6 € D, and z # supp @ then

To(z) = [ K(z,y)8(y)dy.
R"

The reader is warned that several slight variants of the definitions used
here are also commonly used.

This class of operators, which is a generalization of the singular inte-
gral operators of the now classical Calder6n-Zygmund theory [1], was first
systematically studied by Coifman and Meyer [3]. Their work, and that
of many others, culminated in the celebrated “T'1-theorem” of David and
Journé [6]. In order to state this result we need to recall another definition.
Suppose @ is a function that is defined on R, z € R™, and ¢t > 0. Set

6; () = 178((z - 2)/1)

for all z in R™. We say that a linear and continuous operator T : D — D’
satisfies the weak boundedness property, and write T € WBP, if for each
bounded subset B of D there is a constant ¢ = ¢(B) such that for all 8,7 € B,

(27) | (T(67),m7)| < ct™™ for all z and ¢.

Notice that if T" is bounded on L? for any p, 1 < p < oo, then T € WBP.
It is often convenient to use a stronger condition than (27), since it may be
easier to establish. To wit: For all 8,7 € D with supports contained in balls
of radius ¢t > 0,

(28)  |{T6,n)| < ct™(||0ll> + tl| VO L )|l Lo + 2|Vl ) -
We are now in a position to state the theorem of David and Journé.

PROPOSITION 2.3 (T'1-Theorem). Suppose that T € CZO. Then T is
bounded on L? if and only if T € WBP, T'1 € BMO, and T*1 € BMO.

David and Journé showed in [6] that the proof of this theorem can be
reduced to the case: T1 = 0, T*1 = 0, and the reader is referred to their
paper for details and further references. The reader is also referred to the
opening pages of [9] where the authors of that paper show how to make
sense of T'1 and T*1 as linear functionals on Dy = {¢ € D : [y dz = 0}.
In this paper we will consider various versions of the “reduced form” of the
T'1-theorem.

Our approach for proving boundedness results is, to a large extent, stan-
dard and depends on two technical lemmas. To state these properly we need
a slight extension of the class CZO=CZO(¢). We say that T € CZ0, =
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CZO(e) if it satisfies all the conditions for a CZO except for (25). That is,
we only require smoothness in the first variable of the kernel K.

PrOPOSITION 2.4 (Meyer). Suppose T € CZO, N WBP and T1 = 0.
Then T maps D into L>® and there exists a constant ¢ such that if the
support of @ € D is contained in a ball of radiust > 0 then

(29) 1Tz~ < e(llbllLe= + tVO]L).

This result appears in [17]. It also appears in [23, Lemma 4.1.4] in a
form that is important for later applications. A trivial but crucial corollary
of this last proposition is:

COROLLARY 2.5. Suppose {ag}q is a family of smooth atoms and T
satisfies the conditions of Proposition 2.4. Then for all Q)

(30) ITag|lL> < c|Q]|~/?

where ¢ is a constant that is independent of the choice of the family of smooth
atoms.

Proof. The result is immediate from conditions (9) and (11) for smooth
atoms. m

It is well understood that under the conditions of Proposition 2.4 the
function T'9, 6 € D, can be defined pointwise. (See the discussion prior to
Lemma 4.1.22 in [23].) With T8(z) defined in this sense we obtain:

ProPOSITION 2.6 (Meyer). Suppose T € CZO, N WBP and T1 = 0.
Suppose further that x and z' are distinct points in R*, & € D has support
in {z:|z-2'| < 4|z - 2|}, and &(2) = 1 when |z — 2’| < 2|z — '|. Let
¥ =1-¢&. Then for all € D

To(z) - TO(z') = [K(=,y)(8(y) - 8(<))B(y) dy
- JE @, 9)0) - 0(=))d(y) dy
+ [(K(z,9) - K(=',9))(6(y) - 0(z")¥(y) dy
+(6(z) — 6(a"))T¥(z),
where the various integrals are all absolutely convergent.

Proposition 2.4 is proved by Meyer in [17], but the reader is referred to
the treatment by Torres [23, Lemma 4.1.22] for a formulation and proof that
we will need in the following section.

3. Calder6n-Zygmund operators

3.1. The classical case. The boundedness on the Besov spaces, B,‘,"q,
under the conditions of the following theorem was proven by Lemarié [15].
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THEOREM 3.1. Suppose 1 < p,g < oo and0 < a<e<L 1l IfT €
CZO,(e) N WBP and T1 = 0 then T is an almost diagonal operator on
Fa,

P

Proof. As indicated above it will suffice to show that {(Tbp,aq)} is
almost diagonal where {ag}q and {bg}o are families of smooth atoms. We
also may assume that zp = 0. In the proof that follows é is a positive
number that is less than min{e,2a,2(e — a)}.

Suppose £(Q) > {(P) and that P is far from Q: 6,/nQN3P = @. Then bp
and aqg have disjoint supports. Furthermore, whenever 2 € 3Q and y € 3P
then 2|z — zg| < |tg — y|- Using the fact that ag has a vanishing moment,
the size estimates for the atoms, and the smoothness estimate for the kernel
we obtain

|(Tbp,aq)| =| [ Tbp(2)aq(s)ds|

3Q

=| [ (Tbp(z) - Thp(zq))aq(z) da:l
3Q

=| [ [ (K@)~ K(zq,v)br(y)aq(z) dyds|
3Q 3P

< [ JIK@y) - K(zq,v)| bp(v)] lag(2)| dy de
3Q 3P

Ix—qu 1 1
: a[ ) w=zqr PR IQEE W
< C‘fsz;?—fﬁ |PIV2IQIM2 = e(£(Q))" /(4 P))?/|zql™**
f_(@ a—(n+6)/2 1
<(i8) (ealz@yre ~ Par:2),

provided 6 < 2a A e.
Now suppose £(Q) < £(P) and P is far from Q: 6,/nP N3Q = @. Then,

as above,
|{Tbp,aQ) | < c(&@))"/**<(&(P))"/?/|xq|™**
_ (@) e 1
(P))  (lzal/tP)™

@ a+(n+6)/2 1 .
< "’(f(P)) zal/t(@)yws ~ “ar(0-2)

provided 6 < 2(e — a) Ae.
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Next we consider the case where {(Q) > ¢(P) and P is close to Q:
6y/72Q N3P # 0. Then

[(Tbp,ag)| < | [ Toq(z)agz)dse|+| [ Tbo(z)iql(e)ds
3Q\6P 6P ‘
=I+1r.
By Corollary 2.5
11 < | P|7Y21QI7216P| < (| PI/1Q1)'/2.
For the first term we have

I=| [ [ K@ ybe(v)aq(z)dyde]
3Q\6P 3P

1 1PN, 19
< <
< J ] |:r:--y|"|c.2|1/2u°|1/2"”"z C(IQI) o |p| -

3Q\6P 3P

Thus,

| (Tbp,aq)| < c(£(P)/4(Q))"*1og(£(P)/4(Q))
< o(€(P)/€(Q))*~ "0/ & 2gp(8,a),
provided § < 2a.

For the final case, £(Q) < £(P) and P is close to Q: 6,/nP N3Q # 0.
We use the fact that ag has moment zero:

(31) (Tbp,ag)= [ {pr(z)—|3Q|‘1 [ pr(z)dz}aql (z)dz
3Q 3Q
= f|3Q|'l f{pr(:c)—pr(z)}dzaq(z)dz.
3Q 3Q

Take a & € D that has support in {y:|y| < 4} and &(y) = 1 when |y| < 2.
Fix a pair z,z € R", z # 2z and set &(y) = ®(ly - 2|/|lz - 2|) and ¥ = 1 - &.
We use Proposition 2.6:

Tbp(z) - Tbp(z) = [K(z,y)(bp(y) - br(=))B(y) dy
= JK(zy)(bp(y) - bp(2))B(y) dy
+ [(K(2,3) - K(2,9))(bp(y) - bp(2))¥(y) dy

+ (bp(z) — bp(2))T&(2)
=I+II+III+1V.

Recall that supp® C {y : |y — 2| < 4|z - z|}. Thus if y € supp® and
z,z € 3Q, it follows that

|z -yl < |z — 2] + |y — 2| < 5|z - 2| < 15v/nl(Q)
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We use the smoothness estimate for atoms:

1 |z —
Il<c dy
. Iz-y|<lsfﬁt(o) [z =yl [P/
_ 1 1 HQ) 1
= cIPll/n+l/2 f [z — |1 dy < g(p) PPz

|z—y|<15 /RUQ)
By an analogous argument

{Q) 1
<c——= .
IS <3y TPpre
We use the smoothness estimate for atoms and Proposition 2.4 to obtain

|P|1/ +1/z =uP PP

We turn to the estimate of /1. We may assume, without loss of gen-
erality, that 0 < € < 1. Notice that supp¥ C {y: |y — 2| > 2|z — 2|}. We
break the integral into two parts. Set

A1 ={y:2jz - 2| < |y - 2| < 6Vnl(P)},
A2 ={y: |y —2| > 64/nl(P)}.
The integral over A; is dominated by

=2l 1 (e(cz))‘ 1
* J—rrin Y <\ap)

The integral over A, is dominated by

|z -z _ly—2| |2 - 2| 1
¢ f — z|nte 1/2+41/n dy =¢ 1/24+1/n f — 2|nte-1 dy
A ly=2l"*<|P| LT R

€ —€ 1 ¢ 1
< U UPY iz = (5 T

Assembling the estimates we see that if 2,2 € 3Q then

£ A |
|Tbp(z) — Thp(2)| < C(zé?»g) Pz

Put this into (31) to get
1 e(cz))‘ 1
<
op.00)1 < el (031 7

(@) (@) s

provided § < 2(e — a). This completes the proof. =
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Remark. We note that when a # 0 almost diagonal operators do not
map smooth atoms into smooth molecules. This was observed by Torres [23]
in the discussion that follows Theorem 4.2.32.

Remark. As we observed earlier, almost diagonal operators preserve
the Besov spaces and so our proof also establishes the result of Lemarié
referred to before the statement of Theorem 3.1.

3.2. Meyer’s version. Meyer [18] considered the following variant of the
class of Calderén-Zygmund operators. As a substitute for the size condi-
tion (24) we now require a pair of conditions:

(32) [ |K(z,y)ldy<c forallz €R",
r<lz—y|<2r

(33) [ |K(s,y)ldz<c forally €R",
r<|z—-y|<L2r

for all r > 0. In place of conditions (25) and (26) we assume that there is a
sequence of nonnegative numbers, {€¢(k)}, k =1, 2,..., such that

(34) 1l |K(z + u,y + v) — K(z,y)| dy < (k)

2k r<|z—yl<2tHr
for all z € R™ and k£ > 1, and
(35) f |K(z + u,y + v) — K(z,y)|dz < (k)

2k r<|c—y|<2k
fory e R*, k > 1, and |u| + |v| < r and for all > 0.

Remark. Central to our approach is the need that the conclusions
of Propositions 2.4 and 2.6 hold for the operators we are considering. So
let us suppose that T is an operator with a kernel that satisfies the four
conditions (32)-(35). In order to be able to make sense of the condition
T1 = 0 we need the integrability of 70 away from the support of 6 € Dy,
as in the opening pages of [9]. The argument there is easily adjusted and
this conclusion follows from (33) provided Y, (k) < oo. If we follow the
proofs of Torres [23, Lemmas 4.1.4 and 4.1.22], we see that the conclusions of
Propositions 2.4 and 2.6 do hold for operators satisfying Meyer’s conditions
providing only that {e(k)} is summable.

The following proposition was proved in [18]:

PROPOSITION 3.2. Suppose T is an operator with a kernel that is contin-
uous off the diagonal in R® X R™ and satisfies (32)—(35), and that T € WBP,
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Ti1=0,T*1=0. If
(36) Zke(k) < o0

then T is bounded on F{'' = B° ! and on its dual F™ = B%.

Our next theorem shows that by requiring slightly more we get bound-
edness on all Triebel-Lizorkin spaces Fo'q 1<p,q<o0.

THEOREM 3.3. Suppose T is an operator with a kernel that is continuous
off the diagonal in R™ x R™ and satisfies (32)—(35), and that T € WBP,
T1=0,T*1=0. If

(37) ik"’e(k) < 00
k=1

then T is bounded on F‘g'q‘for allpandq,1 < p,q < o0.

Proof. It will suffice to show that the matrix {{T'¢p, ¢g)}qp is bound-

ed on the sequence spaces fg’q. Recall that an almost diagonal matrix is
bounded on these spaces. If we examine the proof of Lemma 2.2 we see that
{{Tep,¢q)}qp is bounded on f3? if and only if {(Tbp,aq)}qp is bounded

on jg,q whenever {bg}q and {ag}q are families of smooth atoms.
In Corollary 10.3 of [12] Frazier and Jawerth give necessary and sufficient
conditions for a matrix A = {Aqp} to be bounded on all f9, 1 < p,q <

co; namely, A must be bounded on the “four corners”: 'f’l, j25°°, '{)'°°,
and f%!. This much is trivial, but more importantly they quantify these
conditions in (10.2)—(10.5):

(38) A is bounded on f iff S‘;}’Z |[Agprl(IPI/1QNM? < oo,
Q

(39) A is bounded on f% iff sgpz |Agp|(1Q1/IP)? < oo,
P

(40) A is bounded on f2*° iff
sup Bl [[{ 3 Aqrlpi?}
PCPy
(41) A is bounded on fO1 iff
suplQol[[{ 3 derlai?},
QCQo

From Meyer’s result (Proposition 3.2) we know that A is bounded on fo 1
and f%° so we only need to check (40) and (41). By the symmetry of these
conditions and the symmetry of the assumptions on T and T it will suffice

< 00,

‘0,
eiin=

‘0,
e
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to show that (40) is satisfied. That is, it will suffice to show that there is a
constant ¢ such that

(42) sup|Po ”{ E AQP|P|1/2}

PCPy

<c

£0, -
QU

for all dyadic cubes F,.
The next reduction follows the argument of the first part of the proof of
Theorem 10.3 in [12]. To prove (42) we split the dyadic cubes into disjoint

families: A= {Q:Q C 25\/nPy} and B={Q:Q ¢ 25\/nP}.
For A the estimate follows from (39):

Rl |{ 3 1(Tbr, a0} P12}

PCPo

=Rl [ sup( Y [{Tbp,aq)|IP|Y?Ko(2)) de

25\/7-1Po PCP,

<csup Y [(Tbp,aq)|(IPI/1QN)"/*

PCP,

< csgpz (Tbp,aQ) I(I1PI/1QI)!/.

Q€A

fo

For B we use the embedding fo e, ° e

Rl |{ 3 1(Top,a0)] |P|1/2}

PCPy

<RI |{ X 1(Ter,aq) 1P

fo,l
PCPo !
=|R|™ > ). |(Tbp,aq)|IPI'*IQI"/.
PCPo Qg25/nP,
To complete the proof we show that there is a constant ¢ such that

(43) Y ) (Tbp,ag) ||IPIM?QIM? < | Ry

PCPo QZ25/nPo

for all dyadic cubes Py, where c is independent of Py and the choice of the
families of smooth atoms.

In order to establish (43) we start by fixing a cube Py, £(Pp) = 27#°. By
translation invariance we may assume that zp, = 0. For each fixed P C Py,
¢(P) = 2~#, we divide B into three mutually disjoint families:

Q1 = {Q ¢ 25v/nP, : {(P) < £(Q) < {(Py)},
Qs ={Q ¢ 25V/uPy : £(Q) < {(P) < €(P,)},
Qs ={Q ¢ 25/nPy : {(P) < {(Py) < £(Q)}.

QeBll =

Q€B
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For each Q € Q; we set £(Q) = 27. The strategy in each case is to fix Py
and P C P, and then to estimate

> 1(Tbp,aq) | |PI*/?|QI'/.
QEQ;

Once we have that estimate, we sum over P C Py, and notice that when one
sums over such P’s of a fixed length, the sum of the measures of the P’s is
the measure of Py.

We start with Q;. Fix P, and P C Py. Observe that puo < v < . Since
lap| < |QI-1/2 and suppag C 3Q,

|{Tbp,ag)| < [ITbp(z)|lag(z) dz < |QI7/? [ |Tbp(z)|dz.
3Q

Sum over @ € Q; of fixed length, and observe that since £(Q) < ¢(Pp) and
Q ¢ 25/nP, it follows that 3Q N 19 /n P, = @. This yields

Y (Tbp,aQ)| <3"QITY2 [ |Tbp(z)da.

Qe R™\19\/nP,
(Q)=2""

There are s — pip + 1 admissible values of v so

(44) Z | (Tbp,aq) | |P|1/2|Q|1/2

Qe
Sc(p-po+DIP? [ |Tbp(z)ldz.
R"\19/nPo
Use [bp(y)dy = 0. Then for z ¢ 3P,
(45) ITbp(a)l=| [ {K(z,9)-1BPI" [ K(z,2)dz}br(y)dy|
y€e3P z€3P

=BPI7Y| [ [ (K(z,9)- K(z,y+u)bp(y) dudy
y€3P u€e3P-3P
=3Pt P|712 | [ IK(z,y)- K(z,y + u)| dudy.
v€3P |u|<3/nl(P)

Use (45) in the right hand side of (44), and then use (35) to get the bound

- 1
cl‘_ll}i;TL [ [ IK(z,9)- K(z,y + u)| dz dudy.
3P |u|<3/ml(P) R"\19/nP,
For any y € 3P,

o

RP\19valP)C |J {=z:2'3Val(P)<|c - y| < 2**13/nl(P)}.

k=p—po+1
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So for y € 3P, |u| < 3/nl(P),

(> o]

[ |E(zy)-EK@y+uld< Y ek).

R"\19/nP, k=p—po+1
Thus,

oo

—po+1
3" [{Tbp,aq) | |P[V?|Q|'? < cﬁ—l—‘,‘;’,——wmlm Y k)
QEL k=p—po+1

(o o]

=cu—po+ )P D (k).

k=p—po+1
Sum over P C Py of fixed length, £(P) = 27#, and then over p > py, to get

46) Y > [(Tbp,aq)||PM?Q?

PCPo Qe
oo oo oo k+1
SclPol Y (n-mo+1) Y, ek)=clhl) (", )elk).
B=po k=p—po+1 k=1

We now consider Q3, £(Q) < &P) < {P), po < u < v. Use
Jag(z)dz = 0, estimates on the size of ag and bp and the fact that
3PN3Q = 0. Then

|{Tbp,aq)|
=| [ {moe)-13Q1" f pr(z)dz}aq(:c)dxl
3Q Q

=| fiQI f (Tbp(z) - Tbp(2)) dzaq(z) da|
3Q

3Q
<13QI7MQITV [ [ |Tbp(z) - Tbp(2)| dzdz
3Q 3Q
<BQITMQITYAPITY? [ [ [IK(z,y)- K(z2,y) dydzdz

3Q 3Q 3P
QIR [ [IK(z,9) - K(z +u,y)| dyduda.
3Q |u|<3vne(P) 3P
Collect cubes @ of fixed length 2=
> |(Tbp,aq)||PI'|Q/?

QEQ:
{Q)=2""

<o f [ J K@) - K(z+u,y) dedudy.
3P |u|<3v/n(Q) R™\19v/nPo
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Dominate the integral on R™ \ 19,/n Py by the integral over the shells *

{z:283v/nl(Q) < |z — y| < 2**13VRl(Q)}, k2w —po+1,
and use (35) to obtain

0o

Y 1(Tbp,ag) ||IPMQIM < c|P| ) «(k),
Q€EQ: k=v—uo+1
o(Q)=2""

Y Top,aQ) [IPIMQIME < elP|Y . ) (k)

QER2 v2pk=v—po+1
=c[P| D (k+1-(p—po+1))e(k).
k=g —po+1

Now sum over all P C Py of fixed length {(P) = 27 and then over p > po
to get

@) T Y [(Thra)l P01

PCP, Q€Q:

<elPl Y, Y (k+1-(n—po+1)e(k)

B2 po k=p—po+1

= ¢|Py| g (’“; 1) (k).

Finally, we consider Q3. We have {(P) < {(Py) < £(Q), v < po < p.
Recall the remark at the beginning of this subsection. We see that under
the conditions of this theorem Tbp is integrable. From this and the fact
that T7*1 = 0 it is not hard to see that [Tbp(z)dz = 0. Use (9) and (11)
to obtain

|(Tbp,ag)| < [ITbp(2)llag(z)|dz < |QI7/* [ |Tbp(2)]dz.

3Q
Use (9), (11), and [ Tbp(z)dz = 0 to get
(48) |(Tbp,aq)| < [ITbp(z)|lag(z) - aq(zp)|dz
-1/2 '.’E $p|
<lQl f )~

provided zp ¢ 3Q (in which case ag(zp) =0). If zp € 3Q then

(49) |(Tbp,aq)| < QI f sz( = le—2pl 4
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Sum over Q € Q3 of fixed length £(Q) = 2~¥. For at most 3" of these cubes
(49) holds and for all the others we have (48). Since the cubes of fixed length
are pairwise disjoint we have

> (Tbp,aq)||P|/?|Q"?

QEQ;
(Q)=2""
<2-3"|P|'? [ |Tbp(z)[(1A 2"z — zp|)dz.
R'l
Thus
> 1(Tbp,ag) |IPM*QIM2 < ¢ Y |PM? [ |Tbp(2)|(1A2"|e~zp|) dz .
Q€Qa v< o R™

We will split the integral into two terms and use Lemma 2.5:

Y IPM? [ |Tbp(2)l(1A2"]c - zp|)de

v<po 19/nP
<e ) |PIV?19vnP||P|7}/22"¢(P)
v<po
< c|PlE(P) Y 2¥ = c|P|¢(P)2*.

v< o

Sum over P C Py of fixed length £(P) = 27* and then over u > ug to get
the bound

(50) c|Py| Y 247 = 2¢| Py.

B2 po

Now we use (45):

SIPM? [ |Tbp(z)(1A2%]e - zp|) da

v<po R™*\19/nP
<y et f [ K(=z,y)- K(z,y+u)]
v<po R™*\19/nP v€3P |u|<3/nl(P)

X (1A 2%¢(P)2") du dydz

o0

sepp [ ] X J

v<uo y€3P |u|<3/nl(P) k=1 2*3./mYP)<|z—zp-y|<2*+'3/me(P)
|K(z,y) — K(z,y+ u)|(1 A 2¥¢(P)2") dudydz

< ¢|P| i Y (1A 25(P)2¥)e(k).

k=1v<po
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Sum over P C Py with {(P) = 2™# fixed and then over u > po to get the
bound

(51) c|P0|Z(Z Z(1A2"£(P)2"))e(k)
k=1 pu>po v<po

=clPol YY) (1 A2k-(+)e(k)

k=1 s=0 t=1

- clPolk}Z ((k : 1) +(k+ 2)) (k).

Combine (46), (47), (50), and (51). We obtain

> > KTop,ag) [IPI2IQI < (14 Y Ke(k)) ol

PCPo Qg25/nPo k=1
This completes the proof of Theorem 3.3. m

Remark. The conditions in the last theorem can be somewhat relaxed.
For example, instead of (34) we may assume

[ IEG@+uy+o)-K(=zy)ldy<qk), z€R", k21,7>0,
2*r<jo—yl |
provided |u| + |v] < r, and make a similar change to (35). It is now enough

to require that ), k€(k) < 00.This can be relaxed even further by carefully
checking the proof.

3.3. Another version. We turn next to a version of a slightly different
nature. In this subsection we will be considering operators T that have
a kernel that satisfies (32) and (33) but in place of (34) and (35), with
conditions on the sequence {¢(k)}, satisfies:

(52) [ |K(z,y)- K(z,y+v)lde<c, v,yeR",
le—y|22[v|

(53) f |K(z,y)— K(z + u,y)|dz < ¢, u,z € R™.
lz—yl2>2(u|

These conditions are satisfied if the kernel satisfies (34) and (35) with
{e(k)} summable, which is certainly true if (36) or (37) holds. These con-
ditions are the analogues for a general kernel of the conditions proposed by
Hoérmander [14] for convolution kernels.

To motivate our next theorem we note that a convolution operator is
bounded from BY"' to BY'! if and only if it is bounded from BY! to B>,
(We return to this circle of ideas at the end of proof of our theorem.) Of
course, for a general kernel this equivalence does not hold and we need
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to study each of these cases separately. Meyer’s result, Proposition 3.2,
deals with the first case. The second case is the subject of the following
theorem.

PROPOSITION 3.4. Suppose T is an operator with a kernel that is con-
tinuous off the diagonal in R™ x R™ and satisfies (32), (33), (52), and (53),
and that T € WBP, T1 = 0. Then T is bounded from B! to B>,

Proof. The proof is easy. It will suffice to show that the matrix
{{Tbp,aqQ)}qp is bounded from b9 to 6", where {ag} and {bg} are
families of smooth atoms. It is easy to check that this will follow if

(54) supsup Y |(Tbp,aq)|(IQI/IP|)'/? < oo.
PV qu@=e-v
That is, given a dyadic cube P and v € Z,
(55) > 1{Tbp,ag)| < c|P|/22mI?,
Q:4(Q)=2"~

where c is independent of P and v. The crucial fact for this proof is that by
an extension of the remarks at the beginning of the previous subsection the
conclusion of Proposition 2.5 and its corollary hold for operators satisfying
the conditions of this theorem. In particular,

(56) |Tbp(z)| < ¢|P|~Y/*  for all z € R,

where {bg} is a family of smooth atoms, and c is independent of the choice
of the family. Use the size and support condition for ag to get

|(Tbp,aQ) | < QI [ |Tbp(z) dz=2"/? [ |Tbp(z)|dz.

3Q 3Q
Consequently,
Y. 1(Tbp,aq)| <3"2™/* [|Tbp(z)|dx.
Q:4(Q)=2"" R"
Thus, to establish (55) it will suffice to show that
(57) [ ITbp(z)| dz < c| P|'/?

Rﬂ
We may assume that 2p = 0. Use (56):
(58) [ ITbp(z) dz < | P||P|~V/? = c|P|/2.
9/né(P)
Now use [bp(z)dx = 0 and the size condition on bp. If |z| > 9/nl(P)
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then, as in the estimate (45), we have

ITop(z) < cP|¥? [ [ |K(z,9)- K(z,y+ v)| dudy.
3P |u|<3/nl(P)

Use this estimate, Fubini’s theorem, and (52) to obtain

(59) [ ITop(e)lde
|z129/n&(P)

<P [ [ [ |E(z.9)-K(zy+v)dudydz
|z|29v/n€(P) 3P |u|<3/nl(P)

< ¢|P|~3/? f f f |K(z,y) — K(z,y+ v)| dr dudy
3P Ju|<3/nl(P) |z|29/nl(P)

< ¢|P|732|P? = ¢| P|'/2.
From (58) and (59) we get (57), and this completes the proof. m

COROLLARY 3.5. Suppose T is an operator with a kernel that is contin-
uous off the diagonal in R™ X R™ and satisfies (32), (33), (52), and (53),
and that T € WBP, T1 = 0, T*1 = 0. Then T is bounded from Bg'l to
B,

Proof. From the symmetry of the conditions on T and T* we see that
T* also satisfies (54). This can be reformulated as

(60) supsup Y |(Tbp,ag)|(|PI/|Q])/* < oo.
kb p.yP)=2-»

It is easy to see that this implies that the matrix {(Tbp,aq)} is bounded
from 52! to 62>, which implies that T is bounded from B%! to B%>. By
interpolation (see, for example, [19, Chap. 5, Thm. 6(i)]) it follows that T
is bounded from BY"! to By'™. »

Remark. In the particular case of a convolution operator the corol-
lary guarantees the L?-boundedness of the operator. From the results of
Hormander [14] for the classical singular integral operator theory we then
get the boundedness of the operator on all LP-spaces, 1 < p < oo. In
this way the classical result of Hérmander for convolution operators can be
incorporated into the theory for more general kernels.

For the sake of completeness we finish this section with the proof of our
claim.

PROPOSITION 3.6. Suppose that T is a convolution operator that maps

'g’l continuously into Bg ' Then T is bounded on L*.
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Proof. Let ¢ and 9 be functions that satisfy (1)-(4) where ¢ = 1 on
suppp. Forg € §'

v+1 v+1
low #gllgen ~ D llewrpuxglla< Y lellinallen +gllee
u=v—-1 u=v-1

= 3llellL2llew * gll L2 = 3lellLallw * @ * gl| L2
< 3llellLr sup [l * 9 % gll2 ~ 3llellrllew * gll oo -
v

But we also have the continuous embedding BY"! — B3 and so ||| o1 ™~
< 2

lIll go.e2+ 1 < @1, g2 < 00. Since B3? = L2,
1/2 A\ 1/2
ITfllea ~ (3o (lew + TAIL2)?) < (Do (e « Tfll g )?)
/ /
= (ST * Nllgs=)?) " < e(Xlllew * fllgo=)?)

<e(Xlliew « Al?) " ~clfllze. s

This result is a simple consequence of the Littlewood-Paley characteri-
zation of the Triebel-Lizorkin and Besov-Lipschitz spaces by means of equa-
tions (5)—(7), together with the fact that the characterization does not de-
pend on the choice of the function ¢.

4. e-Families of operators. Recently, Christ and Journé [2] have stud-
ied families of operators which capture enough of the structure of Calderén—
Zygmund operators to make it possible to study them with techniques used
for the study of Calderén-Zygmund operators. We will consider such fami-
lies in this section.

Throughout this section we fix parameters p, ¢, a, and € with 1 < p,q <
oo and |a| < € < 1. We say that D = {D,},¢z is an e-family of operators
and write D € F ifeach operator D, is given by a continuous kernel D, (z, y)
that satisfies the following size and smoothness conditions:
(61) |Du(z,y)| < 2""we(2"(z ~y)), =,y €R",
(62) |Du(z,y) = Du(z,y')| < 22|y — ¢'[*w2e(2(z - 9)),

z,y,y' €R",

whenever 2*|y — y'| < 2(1 + 2¥|z — y]).

We are interested in conditions on a family, D = {D,}, that will imply
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that
©3)  Wfllsge ~ | (S@eDd?)”|| itp# e,
vel

> /
60 Mlsge~sp(iP [ Y @D S@DdE)
P

v=-log, {(P)

©)  Illspe ~ (S0 Aly) "

vel
for an appropriate range of a, p, and ¢, where we interpret this in the usual
way if ¢ = oo.
Remark. We are using the convenient, but sometimes confusing, con-
vention of denoting an operator and its kernel with the same symbol.

4.1. Boundedness results. Suppose D = {D,},ez is an e-family of
operators. We say that D is bounded on the Triebel-Lizorkin space Fy9 if

(66) |(Z@=1o1y) ™|, < elfllsse
vel

forall f € 1:";,"'9, for some constant ¢, modifying this as in (64) when p = oco.
Similarly, we say that D is bounded on the Besov space B;’ 9 if

- \1/q
(67) (@ =D, flle)?) " < ellfl g
vel
for all f € Bg"q, for some constant ¢. For the case p = ¢ = 2 and a = 0,

where F2'? = B)'* = L2, this definition of boundedness for an e-family was
introduced in [2].

Our next lemma makes a useful connection between ¢-families and almost
diagonal matrices.

LEMMA 4.1. Suppose 1 < p,q < o0 and |a| < € < 1. Suppose further
that D = {D,},ez € Fc and D,1 =0 for allv € Z. Let {ag}q be a family
of smooth atoms. For each dyadic cube Q, £(Q) =27, let

(68) Agp = |Q|'/? sup |D,ap(z)|.
T€EQ

Then A = {Aqgp}qp is almost diagonal for a, p, and q.

Proof. Fix a cube Q and an z € Q, and set mg(y) = |Q|'/?D,(z,v)
where £(Q) = 277, It is routine to check that the function mq satisfies the
following three conditions:

me(y) dy =0,
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Ime(y)| < clQI?we(ly - z4l/4Q))

Imq(y) — mq(y')| < ¢|@7/2=¢/"y — ¢'|¢ o Sup lwze(2”(ly - z—-zql)),
z|<|y-v

where ¢ is a positive constant that does not depend on @ or the point
z in Q. That is, {mg/c} satisfies the three conditions (20)—(22). Since
Dyap(z) = (mqg,ap) the lemma follows from Proposition 2.1. »

Remark. The factor |Q|'/? in the definition of Agp above is due to
the fact that the definitions of smooth atoms, almost diagonal matrices, and
related concepts all involve an L2-normalization, while the definition of an
e-family has an L!-normalization.

The lemma gives us the boundedness result.

THEOREM 4.2. Suppose 1 < p,q < 00 and |a| < € < 1. Suppose further
that D = {D.}.ez € Fe and D,1 =0 for all v € Z. Then D is bounded on
Fet and B2,

Proof. Let A be the matrix with entries Agp defined as in (68). Ac-
cording to the lemma, A is almost diagonal. Suppose f = ) pspap is a
smooth atomic decomposition of f. Let s denote the sequence {sg}¢g. Since

E xq(z)=1

Q:4(Q)=2-*
we get

IDf)< ). (As)eXe(z).

Q:4(Q)=2-*
Thus,
/

(Zee1ouie) " < {T(e=r| ¥ iz, )}
vel v Q:4(Q)=2""

< ||Asl gg.a < cllsll ggue -

Taking the infimum over such representations the boundedness on the Besov
spaces follows from (16).

The result for the Triebel-Lizorkin formula follows from a similar argu-
ment, and is left to the reader. =

4.2. Converse estimates. Inherent in the Littlewood—Paley characteri-
zations of the Triebel-Lizorkin and Besov-Lipschitz spaces (which is to say:
in equations (5)—(7)) is a non-degeneracy condition such as equation (4),
which implies that f — Y7 ¢, * ¢, * f is the identity. In the case of an
e-family of operators, D = {D,}, we shall require a similar condition. We
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shall assume that

(69) Y D, =1.

The adjoint of D, is the operator D} that is represented by the kernel
(70) D:(zvy) = Du(ysz)'

We set D* = {D}},ez. In order to get our converse estimates we shall
assume that

(71) D, D" € F.

for some ¢, 0 < € < 1, and that

(72) D,1=0, D;1=0
for all v.

EXAMPLE. Consider a system of kernels {S$,},ez with S, (z,y) =
S.(y,z) for all z,y € R™ and assume that each S, satisfies conditions (61)
and (62) for an e-family. Suppose further that fn- S.(z,y)dy = 1 for all
z € R™. Such systems are easily constructed (even in the more general set-
ting of a space of homogeneous type). Let D, (z,y) = Su+1(2,y) — S.(2,¥)
forallve Z,z,y € R*. Let D = {D,},ez be the family of operators asso-
ciated with these kernels. Then D is an example of type we are considering.

We continue with our general assumption that |o] < ¢ < 1 and 1 <
p,q < oo.

Let us return to consideration of condition (69) in order to motivate our
next two lemmas. Operating at a purely formal level we have

I=Y D,=) D,) Dy=) Y Du.D,
v v mn B v

-M-1 oo 0o M 00 0o
= Z Z Du+uDu+ Z (Z Dy+u)Dy+ E z Du+uDu-
p=—00 V=—00 v=—00 v=-M p=M+1v=—00
If we set
(73) E, = Z Du4,D,,
T
(74) Dﬁ’!= Z Du+v,
u=-—-M
) M
(75) ¢y = Y DYD,= Y E,,

v=-—00 u=-M
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we see that
-M-1

(76) ZE+ZE

p=-—00 p=M+1
In the two lemmas that follow we will show that on the basis of (70)-(72),
3>, D, € CZO(¢) n WBP and that each E, is bounded on the Besov and
Triebel-Lizorkin spaces with a norm bounded by ¢2-#l¢ for some o > 0.
This justifies the formal manipulations above. Furthermore, it follows that
if M is large enough then the norm of I — @)y is less than 1 and this implies
that @y is invertible. From this we will obtain the equivalences (63)—(65).

As our first step we establish the properties of 3 D,.

LEMMA 4.3. Suppose D = {D,},ez is a family of operators such that
DeF.and D,1 =0 forallveZ; and set E= Y, D,. Then E1 =0 and
E € CZO,(¢)NWBP when0 < ¢ <e< 1.

Proof. It is trivial that E1 = 0. Sum the estimate (61) over v to get
the estimate |E(z,y)| < ¢z —y|™". Sum the estimate (62) over v to get the
estimate |E(2,y) - E(2,y')| < cly—y'||z—y| 7"~ when 2|y—9'| < [z —y|.
To complete the proof we show that £ € WBP.

Suppose 8 and 7 are functions in D and there are points zg and yo such

that supp8 C {z : |z — yo| < t} and supp7n C {z : |z — z¢| < t} for some
t > 0. In the Appendix we will show that
(M) [D.8,m)| = | [Du(a,y)8(y)n(e) do dy
B
et®= 277 (|0l L + UV 6| Lee Il oo

for all 0 < € < € < 1 where ¢ depends on ¢ but is independent of t > 0.
Sum these estimates over v:

| (D6, )| < et™([16llL= + 2| VO] Lo )([InllLe + t[VllL>) -

We see that E satisfies equation (28) and so satisfies the Weak Boundedness
Property. This completes the proof. =

Our next step is to establish the properties of E,,.

LEMMA 4.4. Suppose that D = {D,} is a family of operators such that
D,D* € F, and D,1 = D;1 = 0 for all v € Z, and that |o| < € < 1,
1<p,gq<Loc. ThenE, E Du+.,D,, is bounded on F""q and B"‘"’ with a

norm bounded by c2"“|" for positive constants ¢ and o.

Proof. We claim that E, € CZO(€') for each 0 < € < € and that its
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kernel satisfies
(78) |Eu(z,y| < 27|z — y| 7",
(79) |Eu(z,y) — Eu(2,y')| + |Eu(y, 2) — Eu(y', 2)
< e27lloly — gz — g7t
whenever |y — y'| < 1|z — y| for positive constants ¢ and ¢. Furthermore,

E, € WBP with constant c2~I#l¢', Tt is clear that E,1 = Ej1 = 0. Since

operators with these properties are bounded on Fg"q and B;"q (see Theo-
rem 3.1 and the remark immediately after the proof of that theorem) with
norms proportional to the constants in (78), (79), and in the Weak Bound-
edness Property, this will prove the lemma.

To prove (78) we note that

Euz,9)=)_ [ Dusu(e,2)Du(2,y)dz.

s R"

In the Appendix we show that

(80) f Duyu(2,2)Du(2,y) dzl < 32_'”|e’(kvu)nwe'(kvu(‘” -9))
R"

where k,, = 2V A2Y*# and c is a constant that depends on ¢’ and ¢. Consider
the cases 1 > 0 and u < 0 separately, and sum over v to obtain (78). In the
Appendix we will show that '

(81) | fD“+,,(:v,z)D,,(z,y)dz— fD,,+,,(m,z)D,,(z,y')dz
R" R"

< 2 Mo (2¥]y - ¥ w4 (24(3 — y)

whenever |y — y'| < 1|z — y|, where ¢, o, and T are constants that depend
on € and €. Sum this estimate over v to obtain one half of (79). From the
symmetry of the conditions we get the other half. To extend the result to
Lz -yl < ly—9'| < }|z — y| use (78). This shows that E, € CZO(¢') with
constant bounded by ¢2-I#lo,

To show that E,, € WBP with constant bounded by c2~1#l° we will show
that it satisfies (28). That is, we take two functions 8,7 € D, suppb C { = :
|z — yo| < t} and suppn C {z : |z — z¢| < t}, where t > 0 and 2o, yo € R™.
We will show that

(82) | (E,0,7)| < c2~#I€t" B(8, n)

with
B(0,n) = (||0llL~ + t|[VO||L= )(lInllLe + ]IVl Leo)
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where ¢ depends on € and ¢ but is independent of 6, n, t, and u. Let
Lo= [ [ [ Durul@,2)Dulzy)0(y)n(z)dz dydz.

R* R* R"
Then
(Eu0,m)=) I, .
vel
-In the Appendix we show that
(83) Ml < €27 (ky) =<t~ B(8, ),
(84) | < 27 M€ (K, )" B(8,7).

Consider the cases 2 > 0 and p < 0 separately, sum over v and (82) follows.
This completes the proof of the lemma. =

We can now prove the following converse of Theorem 4.2:

THEOREM 4.5. Suppose that D = {D,} is a family of operators such that
D,D*eF.,, D,1=D;1=0 forallvelZ, and ) D, =1. Then

@) Wlsga <c|(Sepny?) | i p#w,
vel

(88)  Ifllpge <eswp(IPI [ 3 _(2"°'|Duf(m)|)qdz)l/q,

P v=log, {(P)

/
681 fllsge < (T @IDA) .

vel

Proof. We will prove (85) for 1 < p < oo, and offer a hint for p = 1
and for (86). We leave (87) as an easy exercise for the reader.
As we saw at the beginning of this subsection

-M-1 0o

I-dpm= > E,+ Y E,.

p=—00 p=M+1
By Lemma 4.4
1T = @a)fllgge S € D IEufl

|]>M

<e > 2 fl| pa < 27MOY| £l poe -
lul>M

It follows that if we pick M large enough then &3} exists and is bounded
on Fg‘vq . This implies that

||f||j=';.q = ”45}{,145Mf”13“;,q < cM||d5Mf||12~;.q .
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To complete the proof it is enough to show that
1/q
(88) I2as fllige < of| (@) -
vel

To see this we use the usual “converse to Holder’s inequality argument”.
Suppose g € Fp—’a,q with ||g| 7-a..r = 1. Suppose that p # 1,00. From the
"

definition of #s we have

(89) |(@uf,0)|=|2 [ DY(D.A))g(x)ds]
v R™

< (Sa=iusnr) " | (Seaeivzane) .

By Theorem 4.2
' 1/¢'
-va * q . , .
||(2V:(2 D3al*) " |, < llallpen <e

Insert this into (89) and take the supremum over all such functions g to
get (88) provided p # 1 and p # co. For the limiting cases, p = 1 or
p = 00, one needs a modified version of the “converse to Holder’s inequality”.
See [12, §5] for details. w

5. A concluding remark. It is generally understood that much of
classical Calder6n-Zygmund theory does not depend on the special structure
of R™. Indeed, a natural setting for the theory is provided by the spaces of
homogeneous type (see [4] and [5]). It has recently been shown by David,
Journé, and Semmes [7] that the T'1-theorem (and, more generally, the Tb-
theorem) also has an analog on these more general spaces. Similarly, it is
now possible to develop a theory of Triebel-Lizorkin and Besov spaces on
spaces of homogeneous type. For this we need to avoid the convolution
structure in the definitions of the spaces (as in Theorems 4.2 and 4.4) and
we need a substitute for the identity I = 3 ¢, * ¢, (as in equation (69)).
See our discussion in the Example of the preceding subsection. Details will
appear elsewhere.

A. Some details for Section 4. We begin with an elementary lemma.

LEMMA A.1. Suppose 0 is a C! function and supp8 C {z : |z — o] < t}
for some zg ER™ andat > 0. Thenif 0 < € <1,

10(y) - 6(2)| < 4ly — 21t (|16l + tl|V6]|L)
for all y,z € R™.
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Proof. Let G = {z : |z —z¢| < t} and let G* be the double of G. There
are three cases to consider.
Case I: y,z ¢ G. Then 8(y) = 0(2) =
Case II: y,z € G*. Then |y — z| < 4t and so
16(y) = 8(2)] < ly = 2l V8]l = ly = 2It=t]| VO Lo Iy ~ 21/2)" =
<4y - z|t||VO|| Lo .

Case III: One of y, z is in G, the other is not in G*,say y € G, z ¢ G*.
In this case |y — z| > t and therefore

18(y) = 8(2)] = 16(¥)] < NlBllzee = ly — 21t ||6l] o (2/ly = 21)°
< ly—2|“t7¢)|6]l L -
This completes the proof. =
Proof of (77). One half of this is trivial. Since |D,(z,y| < 2"",
| [[Du(z.v)8)nz)dzdy| <2 [ [ 1dedy|6]lz= 7]z
ly—wol<t |z—zol<t
< 2 |6]| L ||| oo -
Use D,1 =0, (61), and Lemma A.1 to get

(D8, m)] = | [ [ Dula,y)8(y)(z) da dy
=| [ Dz, 9)60() - 0(z) Ji(e) dz dy|

< f f ly - z|t~¢ dydz
> +

X (||0IIL°° +8{[VO]|)|7ll L=

e 2vn (2|2 — y|)¢
= gve'y-e dz dyC(8,
a‘[ lx_z{gt (5 2]z — ypyrre 22 W CE)

=2“1=¢ [ F(y)dyC(6,n),
Ru

where

C(0,m) = (|16l + t]|VO||Le)lInll oo
and F is the convolution of the integrable function

27(2")z — y|)¥ (1 + 2%|z — y|) ™"
and the characteristic function of { z : |z — zo| < t}. Therefore [, Fdy <
ct™ where ¢ depends on € and € but is independent of . Thus,

|(D,8,9)| < 27*¢t"~<C(8,7).
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This completes the proof of (77). =

Proof of (78). An obvious change of variables and the symmetry of
the conditions reduces (78) to the following lemma.

LEMMA A.2. Suppose ¢ > 0 and
1
<
Ig(za y)l = (1 + |-'L' yl)n.l.el

|z — y|*
l9(z,2) - g(z,y)| < t]e —y)yrata

for all z,y € R™,

fJorallz,y,z € R"

with |y — 2| < fmax{1+ |z - y|,1+4 |z - 2|},
fh(z,,/)dy= 0,
okn

l < l ith 0 < <e.
|h(z,y)| < 15 2%z = g+ for all €;, €3, 6 with0 < €1,€3,6 <€

If k is a non-negative integer and 0 < € < € then
2-kc'
| a‘!‘ g(x’ Z)h(z, y) dzl S c(l + 2k|z _ yl)n+el I

where ¢ depends on € and ¢ but does not depend on k.

Proof. It is enough to estimate

f l9(2, 2) - 9(z, y)| |h(z,y)| dz.
"

Dissect R*: R™ = T U I U III where
I={z:2ly- 2 < max{l+ |z - yl, 1+ |z - 2|},
II={z:2y—z|>1+|z—2|2>21+|z-1y|},
IHI={z:2ly—z|>1+|z-y|>1+ |z - z2|}.
We have
2-—k€2

f .dz f 21"1(2k|y—‘z|)62 dz
J S A ey T 2k — 2

2—keg
-y
provided 8 > €. Take ¢ = €', ¢, =0, and § = €. Then

.dz < -
St oy A el
2-ks 1
< 21+n+6 — = d
- (1+ |z - y|)mta J Iz — g|n+s °

lz=y|2(1+|z-yl)/2
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2—k6
~@H Tz —ghrrars
provided § > 0. Take § = ¢’ and ¢ = 0. Then

. 1 2kn
..dz<2 dz
g S T ar o

—ké

2 f dz
(I+]z—yh)m+e o (14 ]z - ZI)"+€1
2-—1:6

BTk
provided €; > 0. Take § = ¢ and ¢; = €. This completes the proof. =
Proof of (83) and (84). (84) follows easily from (80):
< [ [ | [ Drula, 2)Du(z,v) d2| dz dy|[bl|ze inll
lz—zo|<t |y-vol<t R"
< 279 (k, )27 |6)| oo || oo -

Consider now (83). Use Lemma A.1, D,1 = 0, and the size estimates
for D, to get

\ul = | [ [ [ Dosul®, 2)Du2,9)(6(y) - 0(2))n(2) do dy dz
2(u+p)n

f f f (1 + 2u+#|z - zl)n+e

zER™ yeER™ |z-z0|<t

< 21+n+6

vn
a2y
(19l + 1961zl
oo 2/(2nly = #|)°
=ct™€27¢
[ 1

— z|)nte
e e (T2 =2DT

— 2|t dz dydz

2( v+ p)n

X
|z-z£$t (1 + 2v+“|y - zl)n+e

X ([16]lz~ + t||V0||L°°)||n||L°°
—€ - 2V (2Vnly — 2|)¢
— C VE
ct™¢2 ff(l T 2oy — 2])nte dyF(2)dz
X ([16llz= + tIVO|l Lo )lInll Lo »

where F(z) is the convolution of an integrable function with the character-
istic function of a ball of radius t centered at z¢. Thus, f F(z)dz <ect". If

drxdyd-z
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g < 0 then k,, = 2¥*# and so
1Ll < et™ 27 (||6]| L + t]IV6]| oo )l|ll Lo
= ct™¢ (ku) 271 (||6]| e + 8lIVE]Lo0 )Iml| o -
If p > 0 then k,, = 2¥, and by an analogous calculation

ol < et 274 (gl L + ]|Vl o )16 o=
= o™ (kuu) " 27 M (Il + |Vl )16l -
This completes the proof of (83) and (84). =

Proof of (81). Unlike the situation with the proof of (78) we can not
reduce this to the case where k is a non-negative integer, but by the usual
change of variables we can reduce it to the following lemma:

LEMMA A.3. Suppose k is an integer, ¢ > 0, while g and h are functions
on R™ x R" that satisfy the following conditions:

1
<

ly - 2|
- <
l9(z,2) — g(z,y)| < (1+ |z — y|)n+ee

if 2|z —y| < max{l+ |z —y|,1+ |z - 2|}
2kn

h ) <s ’

&S Ty e

2k (2% |y — ')

if 2-2%|y — y'| < max{1 +2¥|z - y|,1+4 |2 - ¢'|}.

|h(z,¥) = h(z,¥')| < (

Set
F(z,y,9") = [(9(,2) - 9(z,9))(h(z,9) - h(z,9")) dz.
If0<é <eandd|ly—y'| < |z —y| then

1€
Flz. v.u")| < co-Iklo ly - ¢'|
(90) I (:L, y’y )I —_— 62 (1 + Ia: _ yl)n+el+f ’

where ¢, o, and T are positive constants that depend on € and €' but are
independent of k, z, y, and y'.

Proof. A consequence of (80) is that

(91) |F(2,9,4')| < e(er)27%
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whenever 0 < ¢; < € and 4|y — ¥’| < |z — y|. If we can show that, under the
conditions of the lemma,

rl€2
Nl < ly - ¢l ‘
(92) |F(zv .Y )l = 0(62163)(1 + |z — y|)nteate

whenever 0 < €3, €3 < € then (90) will follow. To see this takea 8,0 < 6 < 1.
From (91) and (92) we have

2= klexdyy _ ylleg(l—O)
(14 |z — y|)(n+e)(1-0)+ea(1-6)

IF(:B, Y, y’)l S c(61)06(62, 63)1—0

Fix an €3, € < €3 < €. Then take a 8 such that
0 < 6 < min{ez/(n + €3),(e— €')/e}.

It follows that (n 4+ €3)(1 — 8) > n and that there is an €, 0 < €2 < ¢, such
that (1 — #)e2 = €. For ¢; take any admissible value. Let 0 = f¢; and
T = (n + €3)(1 — ) — n. This yields (90).

Our basic plan is to split R™ into five pieces and establish the esti-
mate (92) for the integral over each piece. This works except in one case.
We will deal with that when we come to it. We proceed with the estimate:

|F(z,y,9) < [lo(=,2) - 9(z,9)| Ih(z,9) - h(z,9")| dz
= on(z,y,z)Ak(z,y,y')dz.
For each of Ap and A, we split R™ into three pieces, much as we did in the
proof of Lemma A.3. On each piece we get the indicated estimate.
Io={z:2ly—z[<max{l+|z-2z|,1+[|z-yl}},
|y — 2[°
Ap < :
"7 Tz -y
ILh={z:2ly—z|>14+|z-z|21+|z-y|},
1
Ag <2 :
N CEAFRIEE
Iy ={z:2ly—z|>1+|z-y|>1+|z -2},
' 1
Ap <2 ;
(AP o
Iy = {2:2-2%|y — ¢'| < max{1+ 2%y — 2,1 + 2¥|y' - 2|} },
kn(okl,, _ 2 l]\E
A< 2 Zly=vl)F
(1 + 25y — 2o
I ={z:2-2y - ¢| > 14 2"y’ — 2| 2 1+ 2¥|y - 2|},
2kn

<2 ;
=T+ 2y - D)

A
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L, ={z:2- 2%y —9'| > 14+ 25y — 2| > 1+ 2F|y' — 2| },
2kn

;<2 ‘
* 7 T 2Ey 2

This presents us with nine (logically possible) cases. Fortunately, four of
these are void.

Notice that (IIp U IIly) N (II; U III;) = @. To see this note that if
z € IIgUIII, then |y — 2| > (14 |z — y|) and that if 2 € II; U ITI) then
2¥|y — y'| 2 3(1 + 2*|y — 2|). Thus

A

2|y — o| > % (1+2"-%(1+Iz—yl)) =%+%2k+%2"|z-y|.
This implies that 4|y — y'| > |z — y|, but 4|y — ¥'| < |z — y|, a contradiction.
Five cases remain: (I, Ix), (o, I1Ix), (lo,I11y), (11y,Ix), and (111, I}).
Four of these verifications are routine. The fifth requires special considera-
tion when k is negative.
In what follows, 0 < €1,€2,€3,€4 < €, and they will be selected in each
individual case as needed.

(IO’ Ik):
J odes [l 2kn(2k]y — y'|)e>
A N S (1 n Iz _ yl)n+€1+€2 (1 + 2k|y - zl)n+€3+64

|y — y'|92k(co-a) - 257 2Ky — 2|)
=Wl —yhrrara J T+ 2y - s)rree

€ ) Iy_ ylle;»,
Y+l ghara

where €; and ¢; are free and €3 = ¢4 = €.

= ¢(€z,

(Io,IIk):
jy= 2 2k
.dz <2 d
o e T e e ey e
< ol+ea ly — oI 26n

T+l shava ] T y=ays &

ly —y'|¢
T+ ]z —yara’
where €¢; and ¢; are free and €3 = €.

< ¢(€e)

(lo, II1I};): The argument is identical to that immediately above except
that |y’ — z| replaces |y — 2| in the denominator of the integrands.
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(IIo,Ik):
(93) f .o.dz
IIoNI,
1 2kn(2Hy - y')°
2 f
T (14 z —y)mre (14 2F|y — zf)rteate
— q'|€3 2kn
S 21+63 Iy y | - d,?,'
(L] —gl)rere ly—2I2(1+fIx—y|)/2 (1+ 28y - 2y
ly — y'|*
< s & ’
< ¢(e, 6.3)(1 Tz —yprrate
where €; and €3 are free and ¢4 = ¢;.
(111, Ii):
99 [ ...dz
IIIgNI;
1 2kn 2L| _ I|)63
<2 (27ly—y
=2 T Te = 2DFa (L4 24y - al)rota
— y'|€3
< 14n+4e3teq |y ) ' —-k€4 l
= Grle—rerat ] T3 R- e
< C(€3, 64)2-4:64 |y - y,|€3

T+ e - ymrora’

where €3 and ¢4 are free and €; = €3. If k is non-negative this is just fine.
In fact, it gives us (90) directly with o = 7 = ¢4.

To complete the proof we suppose that £ < 0. From (80) we have the
bound
(95) c(8)2K(n+9)

provided 0 < é§ < €. If 0 < @ < 1 then from (94) and (95) we have the bound

(96)  c(es, €4)1~Pc(8)P2K(E(n+8)-(1=6)er) ly — y|(1=9)
v (1 + |z — y|)(r+ed(1-0)+es(1-0) *

We are done if we can show that given 0 < ¢ < € < 1 we can choose €3, €4,
6, and € such that

(97) (1-0)es =€,
(98) (n+e€)(1-6)>n, O(n+8)—(1-0)eg >0.

We can rewrite (98) as

(99) n<1—0€4<n+6.

0
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The first thing to do is to take a §, 0 < é < ¢, and fix it. From (97) we
see that the admissible range for (1 — 8)/8 is (¢'/(e — €’),00). If ¢ is small
enough we see that ((¢ — €¢’)/e')e4 < n. Take such an €4 and fix it. For this
value of ¢4 there is an admissible value of @ such that ((1—6)/60)es > n + 6.
By continuity there is an admissible value of 8 such that (99) is satisfied.
That value of @ determines an €3 for which (97) is satisfied. For 6, €3, €4,
and 6 so chosen we have the bound

e
no-lkle ly - vl
C(€ ) (1 + l.’L - yl)n+e'+f

where 6 = 0(n+6)— (1 —0)es >0and 7= (1-60)(n+€¢)—-n>0.
This completes the proof of Lemma A.3. =
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