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1. In this paper certain cyclic sequences generated by geometric
objects involving a connection are obtained and their certain properties
are discussed in the first two sections. Such sequences are then applied
to deduce Lie derivatives and some known formulae. In this connection
certain Lie derivatives, called here primary Lie derivatives, have been
introduced and made use of.

In a previous paper [2] the following algebraic system and its appli-
cation in Riemannian geometry was considered.

Let S be an algebraic system generated by a single element having
the following properties:

(1) Corresponding to every element a of S there exist two elements,
denoted by a* and a’, which are governed by the involutory properties
a** = a'’ = a.

(2) A commutative composition is defined in S, where every pair
of elements a, b of S is composed to form an element aob of § with the
properties:

aoa = a; if aob = aoe¢, then b =c¢; (aod)* = a*ob*; (aocd) =
=a'ob'.

Elements a* and a’ are called the associate and the conjugate of a,
respectively. The symbols * and ' appearing as upper indices may be
regarded as operations by which the associates and the conjugates are
formed. An element which is equal to its associate is called a self-associate,
shortly, s.a. element. Similarly, for the conjugate — a self-conjugate,
shortly, s.c. element. E.g., elements aoa* and aca’ are such.

In the paper [2] we were looking into the problem of finding, if
possible, an element of S which is both s.a. and s.c., and as a result we
were led to the following property stated here in the form of a theorem:

THEOREM 1. Let S be an algebraic system satisfying properties (1)
and (2). Assume that S has an element, say wu, which is both s.a. and s.c.
If the sequence of elements generated by a,

’ ’ P!
(3) t1=a,t2=a*,t3=a*,t4=a**,t=a**,...,
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happens to be a cyclic sequence having an even number p of terms, then under
certain circumstances u is given by

(4) u =1tot, ., r=1,2,3,...

provided that p[2 is even.

Application of this theorem was made in Riemannian geometry in
the following way. Let an n-dimensional Riemannian space with the
fundamental tensor g,; admit an arbitrary affine connection represented
by the coetficients I';» and let the covariant derivative with respect to I';}
be denoted by comma followed by indices. Further, let L} also represent
a connection. Put

_ ko ht : R
a=1Iy3, a" =ILj3+9"gs;, & =ITIy,

b =L aob = (I} + L.

R

(1.1)

This representation can be considered as giving a system of affine
connections satisfying properties (1) and (2) of an algebraic system S
as defined above. Evidently, I} is s.a. if the covariant derivative of g;;
with respect to it vanishes; it is s.c. if it is symmetric in the two lower
indices; and it is both s.a. and s.c. if it is the Christoffel symbol {}}. In
order to construct sequence (3) it will be advantageous to adopt, besides a
and a’, the following notations:

Fi?—rj? = AZ', gmgit,j = a?j = a,
gmgij,t = 7?)’ =Y ghtgim/l?jl = ﬁ?j = f.

Let us also write

a; =a, Pr=pF (i=vi=1.

Sequence (3) can, as in [2], be represented in the Riemannian geometry
as follows:

h=a, th=a+a, t;,=a+a, H=at+at+pf—v,
ts=a"t+a+B.—y, % =at+ata+g+p.—v,

(1.2) t, =a'+ata+p+p.—y, tH=a+e+p+p.—7,
ty =a+at+f+ph.—y, ty=0a+a+p,
hw=a+a+p, t,=a.

Sequence (1.2) is a cyclic sequence of 12 terms which are not necessa-
rily all distinct.

_However, it should be mentioned that in the system described by
(1.1), the representation of (3) by (1.2) is not unique. From (1.1) it follows
that the terms of (3) are all connections and this fact had indeed been
mainly taken into consideration in obtaining representation (1.2). For
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a different representation every term of (3) can be regarded, by virtue
of (1.1), as a geometric object f(x) involving a connection a and can,
therefore, be denoted by f = f(a). We can then write f* = f(a*) and
f' = f(a’). Of course, we can also write f(a*) = ¢(a), f(a') = p(b), so
that f* = ¢(a’) and f'* = p(b*). With the help of this understanding
we find, by a calculation,

a* = —a, yr = —y, 13* = a+ﬂ"'77

@ =a—a'+a+f, y =y—f—p, B = —B.
So
a*=a+a, a" =a+a =a+a+p, ete.

Using these results, we find that a representation of (3) under system
(1.1) is given by
t,=a, t,=a+a, t3=a+a+p, { =ata+p—y,
ts = atatf+p—y, to=atatatp+p—y,
(13) y tr=a"Fata++B,—y, tL=a+a+B+pf.—v,
to =0 +a.+P.—y, to=0a+a+p, t,=a+a,

t,, = a'.

This is also a cyclic sequence of 12 terms, but different from (1.2),
and the terms are, as before, not necessarily all distinct. Finally, it can
be observed that both sequences (1.2) and (1.3) satisfy the condition
imposed on (3) in theorem 1. Therefore, result (4) of the theorem holds, i.e.,

B 1 1 ,
(]-‘4) {7/]} = ”2“'(.tr+tr+b) = _é'(a’+a’ +a+ac+ﬁ+ﬂc—7)

r=1,2,3,...

Above-mentioned results can be stated in the form of the following

THEOREM 2. Any connection which is not both s.a. and s.c. can be
made to generate a cyclic sequence of connections from which the Christoffel
symbol, which is the connection both s.a. and s.c., can be obtained as shown
by formula (1.4). However, the generated sequence is mol unique and its
terms, 12 in number, are not necessarily all distinct. If the connection is s.a.
or s.c., the number of distinct terms cannot exceed 6.

2. Throughout the paper we suppose that I} is any connection
ether than the Christoffel symbol, that the covariant derivative with
rospect to it is denoted by a comma followed by indices, and that the
covariant derivative with respect to the Christoffel symbol is denoted
by a crooked bracket followed by indices. For future reference to the

sequence generated by I')} let us choose one of the two sequences (1.2)
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r (1.3), say (1.3), together with the method used to obtain it and stick
to it always. It is convenient to denote the terms of this sequence by

(2.1) iR, 2Tk sp}, ..., urk aerk,

Let F(z) be any geometric object involving I')}. Let us write, as
before, F = F(I'}). Then, evidently, F generates a cychc sequence whose
successive terms can be denoted by

(2.2) \F = F(I}), *F = F(*I}}), ..., *F = F(*I'}).

For example, let F(I';}) = T}, be the covariant derivative of a tensor
T; with respect to I';). Then, the sequence generated by T‘k consists
of the covariant derivatives of T; with respect to connections (2.1). That
is to say, if, in accordance with (2.2), the successive terms of the sequence
are written as T}, 2T}, ..., 12T} ,, the successive terms of the cyclic se-
quence are

lT’k = 6kT’+T8 -T iy o
T = 0k1*f+T*f<Tks+a k+am+ﬂ§k+ﬂis—yik)—
T(ij+a1k+akj+ﬂjk+ﬂk] i)y
25y = 0, T5+T; g —To 5.
It would follow from this sequence that
1
E(’T‘ 4T = {T,, r=1,2,3,...

However, it must be clearly understood that this formula holds if
I'? occurs linearly in T}, . In fact, we have the following general formula,

provided I’,f‘ ocecurs lmearly in F:

(2.3)

(2.4) o (’F(I‘,.;!)+'+6F(P,.;?)) =F({hH, r=1,2,3,...

Consider, for example, the case of a repeated covariant derivative
of a tensor, say T%,, in which I} occurs quadratically. In this case,
although T‘,d generates, as before, a cyclic sequence of 12 terms, we
cannot infer from the sequence a property of type (2.3), i.e.,

1 , .
?(r i+ T ) # { T

We can, however, arrive to the result {T%};, in the following manner:

Let the terms of the cyclic sequence generated by T}k be denoted
by p., P2y ..., P12 and let us write for the moment

1 T
E(pr‘*‘pr-ﬂ’;) = Dk r = 1’2737
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Of course, K}, = {Ti},. Further, let the terms of the cyclic sequence
generated by K,‘:k,, be denoted by ¢,, 95y ..., ¢;2. Then, forr =1,2,3, ...,

1 , ,
E (Qr+Qr+6) = {K;I»}l = {T;}kl'

This procedure can be extended to T;:,k,m, ... It can, however, be
observed that the above-mentioned method could be applied solely because
I'} was not allowed to appear explicitly in K},. However, even such
methods cannot be applied in all cases where I'; does not occur linearly.

For example, from the curvature tensor I defined by

(2.5) It =o,I—8, I+ Mg —T AT

1) 1)

which occurs in T% —T%. = —T'I}, —T" A5, the Riemannian curvature
tensor defined, as in Eisenhart [1], by

Bl

cannot be obtained, as before, by means of sequences. However, the
results obtained in this section can be stated in the form of the following

THEOREM 3. Any geometric object involving a commection other than
the Christoffel symbol can be made to generate a cyclic sequence of 12 such
objects, not mecessarily all distinct, by allowing the connection involved to
follow the procedure described in theorem 2. If the connection occurs linearly,
then from the sequence we can obtain a geometric object in which the involved
connection has been replaced by the Christoffel symbol, as is shown by for-
mula (2.4).

We give two useful formulae of which use will be made later.

First, ¢onstruct the cyelic sequence generated by v";, where v* is an
a.rbltrary vector. According to the adopted notation, the terms are " i
whe ... 12fv, For the sake of definiteness, we shall choose in the rest
of the paper a fixed value of r in (1.4), say r = 1. It can be seen after
straightforward calculation that

%(lvﬁj‘}"wﬁj) Z{”h}ij_"'vt[({ }{ } { Hjsk}) + (I I — Ty Ty) +

+({ }r,k+1’,s{fk} ({ }P,J+Ps;’§{]}

(2.7) 8 =Ty —1T}.

h
(2.6) RY = 0; {@k}

h _ h p1phy __ h h
{ij} — JOT+TY) = (2T}~ ).

wu—a
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It is now a matter of a simple algebra to see that
1
(2.8) ) (Wl +70") = (0"} + 30" (SE S5 — Sk 8%).

Secondly, let L, be a connection, let Vih = (I} +1}), and let
L}, and V,-Z,- be curvature tensors formed from L7, and V} in the same
manner as Iy, from I'}, as defined in (2.5). If we now put @} = I')} —
—L}, it can be seen that

1
(2.9) szk 0y ( z;k+L17k) (ngij—Q:j ) -

Now consider the cyclic sequence generated by I';: and, as usual,
denote its terms by Ik, 2Tk ... 1200
It then follows from (2.9) and (2.7 ) that

1
(2.10) Y (‘e +7Tyk) = Ry — (S 2S5 — 85 8%) s
where R}, is given by (2.6).

3. It is known that the Lie derivative of a tensor with respect to
a vector is generally expressed in terms of the covariant derivatives
with respect to the Christoffel symbol, although the Lie derivative is
independent with respect to the symbols appearing in the covariant
derivatives (cf. [3], p. 14-20), e.g.,
(3.1) LT = o {T}},—T;{v'},+ T; {v'}; = v'0,T; —T;0 v +T;0;".

v

That the terms in (3.1) involving Christoffel symbol cancel out each
other is due to the property that the symbol is s.c. and has nothing to
do with the property that the symbol is s.a. Therefore, the Lie deriv-
ative remains unaltered if it is expressed in terms of the covariant deriv-
atives with respect to any symmetric connection.

Let us discuss the situation in some detail. Consider the geometric
object (its form can be compared with that of (3.1))

(3.2) NT’1 = VTR e — T el —. T ol

71 .7 ]q ’
T 3 o+ Tk

where T}l ;P is a tensor and a comma followed by indices denotes co-
variant derlvatlve with respect to an arbitrary connection F,;' It can
be seen that p+¢q I’s occur in the first term of the right-hand member
of (3.2) and that the same number of I”s appear in the same number of
remaining terms, one in each, with the positive and negative terms equally
distributed. It can be easily seen that these terms would cancel out pro-
vided that I”‘ were symmetrlc, and a Lie derivative would follow. Now

1}(11“" a,nd (1T} +12T}) are symmetric connections, although they

g’
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are, in general, different. But from the sequence generated by the geo-
metric object N T,’f}j_'_'}g defined in (3.2) it would follow that
v

(8:2a) LTjyjp= dCNTj i+ NI ge) = $CN T + 2N T ).

This shows that
TN = RN
This is a speciality of the form of the geometric object (3.2). As

a matter of fact, if for a moment terms of the sequence generated by
N’l ’g are denoted by t,,1%,,...,%,, it will be seen that they are not

all distinct, but appear as t,,1l,, 85,8 = t3, 85 = 5, tg = b1, L7, tgy 9y L1o
= b9y 11 = lg) t1z = 5.

It is thus seen that the third and the ninth terms are s.a. and this
makes the seventh and the twelfth terms equal, and conversely. These
results may be stated in the form of the following

THEOREM 4. The geometric object NT’fl"'?g defined by (3.2), where

T‘l ’2’ 18 a tensor and a comma followed by indices denotes covariant deriv-
atwe “with respect to an arbitrary connection, has special significance in the
formation of the Lie derivative ,Q”T‘l ’p in which the sequence generated
by it has its seventh and twelfth terms equa,l or, which comes to the same thing,
its third and ninth terms self-associate.

Definition. If a Lie derivative is capable of generating a cyclic
sequence of 12 terms, it will be called a primitive Lie derivative and will
be denoted by 2%, otherwise it will be denoted, as usual, by #. Thus
we write a Lie derivative as £T.. if T.. involves either no connection
or involves only the Christoffel symbol, otherwise we write it as ZZLT'::

E.g., ZRY,., but 2%, where R}, and I';: are defined by (2.6)
and (2.5). In a simplified form we have '

(3.3) PLI =000, T —Tyi0,0" + Tk 0,0° + ik o;0° + T30, 0%
v

Throughout the rest of the paper we assume that the connection
I} # {}} is symmetric, the covariant derivative with respect to this
connection is denoted, as said before, by a comma followed by indices,
and that the Z as well as the 2.2 derivatives are always taken with respect
to a vector »" which, for the sake of brevity and without any ambiguity,
shall not be specifically indicated in writing below ¥ and Z2%. It should,
however, be mentioned that since I') is symmetric, the tensor I'j}, like
Ruk, has the following properties:
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It satisfies the cyclic law with respect to its three lower indices, it
satisfies the law analogous to the Bianchi identities, and it satisfies the
formulae analogous to ones known as Ricci identities.

We now formulate a number of formulae. We start by defining

the following £ derivative:
(3.4) PLTY = o+ Ty
Let us justify the definition. It follows from (3.4) that

1 1
5(19’.? +12¢I}) = (‘vu+’vu)+ E”t(l i+ L)

The left-hand member of this equation is Z{%}. So, by (2.8) and
(2.10), the equation reduces to

{ } = {fvh}u'f_'vth]_i" (S StsS‘?j) (Sh S )

Now, since I';} is symmetrie, so 8;} is also symmetric in 7,5 and,
therefore, the terms in §’s cancel. Hence, from formula (3.4) in 2% we
have deduced the following known formula in % and, therefore, the

justification:

(341‘) g{z;l} {vh}u +vtR1tJ
Again
PLul = vtuly —ul ol + ulol,,
and
(Luh); = otul +ulol; —uboh — ulohy,
Therefore,
PLuy — (L) ; = v (uly—uly) + Uty = (V' T+ %),
Hence, by (3.4), we establish the formula
(3.5) PLU — (LU) ; = WPLTL.
It follows immediately from (3.5) that
1, ko7 h 1, h 2 Pyt 1, h )
E( PLuy;+"'PLu;)— E[ (Lu") ;+(Lu") ;] = 3 ¥ (PLl +"'PLT
or
(3.5L) L{uy; - {Luh}; = w2 ).

Thus we have deduced from formula (3.5) in 2% the known formula
(3.5L) fully in 2.
In a similar manner we get

t t
gg(})i,] — (g(()1)'] =9 (wi,i! — CO,-’(}') — U)t’v’i]‘.
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Hence, using (3.4), we establish the formula
(3.6) .ngw,,]—(.?w,)J = —U)s?gpg.

It follows, as before, by taking half the sums of the first and the
seventh terms. of the sequences generated by members of both sides of
equation (3.6), that

(3.6L) L{w}j—{Lwi}; = ‘wsg{if}-

Thus we have deduced from formula (3.6) in Z% the known formula
(3.6L) fully in £.
Again, in the same way as above, we get

PLTY  — (LTH) =0 "I — Tijtk)"‘Ti'j'”,’;k—Tg —Tho
= T%(v sk‘l"v h) — Tf:j(”fik‘*"”tpuz)“T?s(”,j;‘F”tI}tlsc)-
Hence, by (3.4), we establish the formula
(3.1)  PLTh . —(LT), = T5PLTE—ThPLTE—ThPLT.

TFrurther, by taking half the sums of the first and seventh terms of
the sequences generated by members of formula (3.7), we get, as before,

(3.7L) LT} — (LT = ThL b} — T2 (3} —Th 2 ().

Thus we have deduced from formula (3.7) in 2% the known formula
(3.7L) fully in 2.
Finally, we have

(PLT]) p— (ggFiZ),j = (v’i-j + ’Utri’%) — ('vhik‘F'Ut[" h) i
= —v Ty + 0 Tyg + ' Tk, + Tifio' — Tyt
Hence, we establish the formula
(3.8) (PLTY)  — (PLT) ; = PLTy;.
Further, from (3.4) we get
("PLTY) v — (PLTR); = (0 +0 Ty o — ("0, i+ 0" T 5.
By (2.8),
oy = 2{0"}y; — 0+ v’Sm,
and, by (2.10),
Ty = 2RY;, — Tyl — ’S,,,,

17 — Colloquium Mathematicum XXVI
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where 87, = 8485 —8},8%, and 8y = I}—"T}.
Therefore, we get

(3.88) ("PLL]),—(PLTy),
= 2({0"}ij6 — {0"}ig) + 20" (Rl 1 — Rl 5) + 2 (03 Riyy — o' Rly) —PL Ty
Taking half the sums of (3.8) and (3.8a), we get
(3.8b)  (LL}e— (L {).s
= ({0} — (0"}ies) + 0 (Rl — R, j) + (01 Riyy — v Riye) -

Finally, taking half the sums of the first and seventh terms of the
sequences generated by both the sides of equation (3.8b), we get after
simplification

(3'81‘) {g{w}}k {,?{ }}J - sz
Thus we have deduced from formula (3.8) in £ the known formula
(3.8L) in Z.

Again we have the known formula
L9 = v 01945 — 9im ;9™ — Gim a;"”m
= Jim{0"}i + Gim (0" }i = {0:};+ {v;}:-

If #g,; = 0, the vector v; is known as a Killing vector.
Now it can be seen by calculation, although heavy, that

1
5 9 [(L9:s).i+ (Ljs),i — (ZL35) ]

= 22({i} — 1) +PLT i+ [0,0" + ¢ (V' 0sem + Gpm 05 v") ) ({5} — 1)
= Z{; }+[2{v”}m 9" ({Va}m — {0m}) 1{G} —T").
Therefore, we establish the formula

1
(3.9) -2—9""[(-‘5’91-3),1--1-(3’9;3 —(L9y),s] = LG +HL ({7} - T5),

where an = {’vh}m +ghs {’vm}s'
Taking half the sums of the first and the seventh terms of the sequences
generated by the two sides of (3.9), we have

1
(3.9L) 0 I {Lis}i + {L0is}i — {£9:},s] = L {5}

Thus from formula (3.9), which involves % but nevertheless is not
a usual formula in %, we have deduced the known formula (3.9L) wholly
in &.



STRUCTURES OF GEOMETRIC OBJECTS 259

Regarding the term H! in formula (3.9), it can be noted that if v; is
a Killing vector, then :

H?n = {'vh}m_ghs{vs}m = 0.

This is consistent with the formula, because if »; is a Killing
vector, there is Zg; = 0 = £ {}}, and this makes both sides zero.
We may state above-mentioned results in the form of the following

THEOREM 5. Introducing the motion of a primitive Lie derivative %L,
it has been possible to establish formulae (3.4) to (3.9), all but the last one,
in PL and to deduce from them the corresponding known formulae (3.4L)
to (3.9L) in £Z.

4. It is known that if a point transformation z'* = fi(z) leaves.
geodesics of the space unaltered, it is a projective motion. If the point.
transformation reduces to the infinitesimal transformation "% = &'+ v*édt,
where v° is a vector, the condition for the projective motion is

(4.1) LY = y(PLTE+'22T ] = 8tp;+ 8o,

where & is a Kronecker delta and p; is a gradient vector.
Let us write equation (3.8b) as

(4.2) (& 5D — (L), = Bly.
Obviously, B}, satisfies
From (4.1) we find

(4.2a) . B?kj = 6?pi,k_ 521’:',;‘-
Writing B}; = —B;;, we get
(4.2b) Bij = (n—l)pi,j-.

So (4.2a) can be written as

(4.2¢) (n—1)Bl; = 8" By — 8 B,.

tkj

Now, taking half the sums of the first and seventh terms of sequences
generated by both sides of equations (4.2a), (4.2b) and (4.2c), we get
the following known equations in % under infinitesimal projective motion:

(4.2aL) ZLRY; = 8} {pJ— Ou{pds)
(4.2bL) ZR;; = (n —1){Pi}j’
(4.2¢L) (n—1)ZR}; = 6}LR;— i LR;;.
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Besides, the projective motion, it is also known that if a point trans-
formation #'* = fi(x) leaves angle between two directions in the space
invariant, it is a conformal motion. If the point transformation reduces
to the infinitesimal transformation z'® = 2°4 v'd¢, where v* is a vector,
the condition for a conformal motion is

4.3) L9 = 2Py, where @ is a scalar,
(% L= 3(PLTE+'22T})] = 81D+ 87D, where &, = 9,D.
Referring to (3.9), it follows from (4.3) that in the case of an infin-
itesimal conformal motion there is
(4.3a) HY — 206", where H(= H?) = 20 = 2{»™},,.
Referring further to (4.2), it follows from the second of equations
(4.3) that
(4.4) sz; = Mdjik—5Z¢i,j—¢’h(gﬁ,k—gm,;’)—(gijcp,hk—gikd;’)-
Writing B,; = B,,,,, B} = g"B,; and B = ¢g“By;, it can be seen from
(4.4) that B‘U —( )¢i,j+(¢hgij),h; Sinlila;rly, fOI' B:’: and B.

Put
B, = — Y Y E" = ™E...
Y n_z T 2(n—1)(n—2)’ i =95
It can then be seen that
. B = @, — ——q,— —2 5 a8t Y s pg
(4 43’) U] 1,7 _9 gu,t 2(%—1) g St 2("’&—1)(%—2) g ot

Write
th = sz'*_ 5hEu 3 Ey+Erg; —Er gy

Substituting from (4.4a), we find after simplification that
t

(] d'g
. — h 6 8 st pq rq
(4 4b) uk (6 Jir— kgt]){n_l R (n—l)(n——2) [} ,t} +
‘@l hl

+ P, {(gijghl),k — (gikghl),:i} "o (95190 — 9ir9i1) ¢+

Now write

Ay = — by

and take half the sums of the first and seventh terms of the sequences
generated by both sides of equations (4.4), (4.4a) and (4.4b). Then, remem-
bering that the covariant derivatives of the g,; with respect to the Chri-
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stoffel symbol vanish, we get the known equations in % under infinites-
imal conformal motion,

(4.4L) gR?jk = 6?{¢i}k_ 62{(151‘}1'_gij{¢h}k+gik{¢h}j7
(4.4aL) LAy; = —{D;,
(4.4bL) 20 =0,

where O, is the conformal tensor. We can state the above-mentioned
results in the form of the following

THEOREM 6. Under infinitesimal projective and conformal motions,
equations (4.2a), (4.2b), (4.2¢) and equations (4.4), (4.4a), (4.4b) are obtained,
and from them the corresponding known equations (4.2aL), (4.2bL), (4.2¢L)
and (4.4L), (4.4aL), (4.4bL), all in %, are deduced.
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