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DUALITIES FOR STONE ALGEBRAS, DOUBLE STONE
ALGEBRAS, AND RELATIVE STONE ALGEBRAS

BY

BRIAN A. DAVEY (BUNDOORA, VICTORIA)

In [3]-[6] we developed duality theories for Stone algebras and
relative Stone algebras. In both cases the dual of an algebra was a Hom-set
endowed with a Boolean topology and the continuous action of the endo-
morphism monoid of an appropriate algebra; the dual of a Stone algebra
was also endowed with the pointwise partial order. Here we prove a gen-
eral duality theorem for a class of bounded-distributive-lattice-ordered
algebras from which the above-mentioned dualities for Stone algebras
and relative Stone algebras follow; the theorem is also applied to derive
a new duality theorem for the equational class of double Stone algebras.

The lattice theory necessary for our purposes may be found in [1]
and [9].

1. THE OATEGORY A

In this section we introduce the algebras to be studied.

For objects B, C of a category K, let K(B, C) denote the correspond-
ing Hom-set; and denote the monoid K(A4, A) of endomorphisms of
A by End(A). Denote the category of bounded distributive lattices with
bound-preserving homomorphisms by D, and denote the two-element
chain {0, 1} with 0 < 1 by 2.

In this paper we consider only those classes A of algebras which enjoy
the following properties:

(P,) There is a finite bounded-distributive-lattice-ordered algebra
A such that A = ISP(4), and hence A is a subcategory of D.

(P,;) There exists a € D(4,2) such that for all B e A the map
®:A(B,A) > D(B,2),



2 B. A. DAVEY

given by g@ = ga, has an order-preserving left inverse
@: D(B,z) —)A(.B, A), i.e. @¢ =idD(B,2)'

(P,) Let " =90 : A(B,A) >~ A(B,A); then for all ge A(B, A)
there exists ¢ € End(4) such that g = e, and Im(g) = (")(Im(e) | g = de).

(Ps) For all ge A(B, A) and all g€ D(A, 2) there exists ¢ € End (A)
such that (§8)© = {e.

Remark. It would be sufficient for our purposes to replace (P,) by
the assumption that 4 has a bounded-distributive-lattice reduct.

Before proceeding with the theorems, let us show that Stone algebras,
double Stone algebras, and relative Stone algebras satisfy these conditions.

1.1. Stone algebras. Let 3 denote the three-element Stone algebra,
0 < a < 1. Then 3 is an algebra of type <2, 2, 1, 0, 0> with operations
(v, A, * 0, 1>, where * is given by 0* =1, a* = 1* = 0. Since 3 and its
subalgebra 2 are (up to isomorphism) the only subdirectly irreducible
Stone algebras (see [13] and [14]), S = ISP(3) is the equational class
of Stone algebras.

It is easily seen that End(3) = {e,, ¢,}, where ¢, is the identity map
and e, is given by ce, = ¢** for all ¢ € 3.

(P,) Let a e D(3,2) be given by 0a = aa =0, la = 1. For each
prime filter F' of a Stone algebra B there is a unique maximal filter M (F')
with F < M(F) (see [9] and [10]). Define @ : D(B,2) - S(B,2) by

1 if zelp™,
2(fO) =1a if ze M(1p7Y)—1871,
0 if xreB-—M@18)7.

A lattice homomorphism ¢ : B — 3 belongs to S(B, 3) if and only if
{a,1}¢97' = M (1g~") (see [2] and [9]); hence SO e S(B, 3) and, moreover,
@ is an order-preserving two-sided inverse of ®.

(P;) This condition holds trivially since @60 = idgys, and hence
§ = g for all g € S(B, 3).

(Ps) It is easily seen that D(3,2) = {B,, .}, where f, =¢a = a
and B, = e,a. For all g € S(B, 3) and each k < 2 we have

(98)0 = (96,,0)O = (ge) PO = ge,,
and hence (P;) holds since § = g.

1.2. Double Stone algebras. Let 4 denote the four-element double
Stone algebra, 0 < a < b < 1. Then 4 is an algebra of type <2, 2, 1, 1, 0, 0>
with operations <A, v,* *,0,1)>, where * and * are given by

0*=1,a"=0*"=1*"=0, and 0t =ga* =0+ =1,1% =0.
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Since 4 and its subalgebras 2 and 3 are (up to isomorphism) the only
subdirectly irreducible double Stone algebras (see [12]), T = ISP (4)
is the equational class of double Stone algebras.

The algebra 4 has only three endomorphisms:

End(4) = {eo, €1, €2},

where ¢, is the identity map, O0e;, = 0, ae; = be, = b, 1le;, = 1, and Oe,
=0, ae; = be; = a, 1le; = 1.

(P,) Define a € D(4,2) by 0a = aa = 0, ba = 1la = 1. Since a double
Stone algebra B is both a Stone algebra and a dual Stone algebra,
for each prime filter F of B there are a unique maximal filter M (F) and
a unique minimal prime filter m (F') such that m(¥F) < F < M (F). Define
®:D(B,2) >T(B,4) by

if zem(187Y),

if zelp'—m(187"),
if ve M(187")—187",
if te B—M(187Y).

x(pO) =

8 oM

By the corresponding result for Stone algebras, and its dual, a lattice
homomorphism ¢ : B -4 belongs to T(B,4) if and only if {a, b, 1}g’
= M({b,1}¢g7") and 1g~' = m({db, 1}¢~'). Hence pO e T (B, 4); and again
© is an order-preserving two-sided inverse of ®.

(P,) Using § = gand 2 = ()(Im(e) | ¢ € End (4)), this is easily checked.

(P3) It is easily seen that D(4,2) = {B,, f1, Bz}, Where B, = ¢ya = a,
p1 = €0, and f;= e;a. That (P;) holds follows exactly as in the case of
Stone algebras.

1.3. Relative Stone algebras. An L-algebra is a Heyting algebra
satisfying the identity (z*y) v (y *z) = 1; the equational class of all L-alge-
bras is denoted by L,. An L-algebra B is a relative Stone algebra in the
sense that every interval [a, b] of B is a Stone algebra; in [a, b] the unary
operation * is given by z* = (z*a)Ab. For 2 <n < w, let n denote the
n-element chain as a Heyting  algebra, 0 = ¢, <c;<...<e¢,_; =1.
Then = is an algebra of type <2, 2, 2, 0, 0) with operations <A, v, *,0,1),
where * is given by

1 if a<b,
b if a>b.

Since n is an L-algebra, the equational class L, generated by n is
a subclass of L,; T. Hecht and T. Katriii4k have shown that every non-
trivial proper equational subclass of L, is of the form L, for some n. Since
n and its subalgebras 2, 3,...,n—1 are (up to isomorphism) the only
subdirectly irreducible algebras in L, (see [11]), it follows that L, = ISP (n).

a*b={
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If ¢ € End(n), then
(i) Oe = 0;
(ii) e is order-preserving;
(iii) there exists k¥ with 1< %k <un such that [¢;) = 1le”! and, for
1,j <k, ¢;e = c;je implies ¢ = j.
Conversely, any map e : n — n satisfying (i)- (iii) is an endomorphism
of n. It follows that |End(n)] = 2"2.
(P,) Let a e D(n, 2) be given by ¢,a = 0 forall ¥k < n—1 and 1la = 1.
It is shown in [11] that an L-algebra B is in L, if and only if for each
prime filter F' of A the set of prime filters containing F forms a chain
with at most » —1 elements. Let Be L, andlet P = Fyc F,_, < ...c F,
be the chain of all prime filters containing the prime filter #'. Define a map
dr: B —>nby
1 fzxeF =F,,
xgp =1{¢; fbeF;—F, , (1<1<k),
0 ifbeB-F,.

It is proved in [4], Proposition 1.1, that g5 € L,(B, n); gp is called
the homomorphism determined by F. Now define © : D(B, 2) — L,(B, n)
by O = gz, where F = 18~'. Then O is an order-preserving left inverse
of @; and @ is a two-sided inverse of @ if and only if #» equals 2 or 3.

(P;) This property is proved in [4], Lemma 1.3; in that paper the
map § is denoted by g, .

(Pg) Let e, be the endomorphism of » determined by the prime filter
[ci). Then D(nm, 2) is the set {B;, ..., fn_1}, Where B, = ¢, a for all k; note
that g,_, = a. If a map ¢ € L,(B, n) satisfies Im(g) = (¢,]U{1} for some
l < m—1, then g®O = g. Thus for each k with 1 < k¥ < n we have

(§8x)© = (era)O = (fe,) PO = Gey,
since Im/(ge,) = (¢;JU{1} for some ! < k. Hence (P;) holds.

2. THE REPRESENTATION THEOREM

We now describe the dual B* of an algebra B in 4 and show that B is
isomorphic to an algebra B** of continuous functions defined on B*.
Throughout this section it is assumed that A is a class of algebras satisfying
(Po), (P1), (P3), and (Ps).

A Boolean space is a totally disconnected compact space or, equiva-
lently, a compact space with a basis of clopen subsets. Any closed subspace
of a product of finite discrete spaces is a Boolean space, and hence for
all B € A the Hom-set A(B, 4) is a Boolean space (regarded as a subspace
of AB). The sets of the form

<bjay ={ge€A(B, A) | bg = a},



STONE ALGEBRAS b

where b € B and a € A, form a subbasis for the topology on A(B, 4);
and hence (b; U) = {J(<b;a) | ac U)is open in A(B, A) for every sub-
set U of A. Order A (B, A) pointwise and define a continuous action of
the monoid End(A4) on the space A(B, A) by the map e — & where
é: A(B,A) > A(B, A) is given by gé = ge.

Thus D(B) = B* = A(B, A) is an object of the category Z of partial-
ly ordered Boolean spaces on which End(A) acts continuously; the mor-
phisms of Z are continuous order-preserving maps which preserve the action
of End(4). A functor D: A — Z is obtained when D(h) = h* is defined
in the usual way: if h € A(B, (), then h*: 0* — B* is defined by gh* = hg
for all g € C*.

Define a Z-structure on A as follows: the topology on A is discrete;
the partial order on A4, which we denote by <* to avoid confusion with
the usual partial order <, is defined by a <* b if and only if p(a) < p(d)
for every unary polynomial p; the action of End(4) on A is simply ¢ = e.
Note that if a <* b, then a < b, and hence if § € D(A, 2), then § preserves
the order <* on A. Denote the free algebra in A with free generator z,
by FA(1). The following lemma is obvious:

2.1. LEMMA. Define o: FA(1)* -~ A by go = x,9; then o is an iso-
morphism in Z.
It is, in fact, natural to define a Z-structure on A so that it is iso-

morphic in Z to FA(1)*. For a discussion of this and of duality in general,
we refer to [5].

For each object B of A let B** denote Z(B*, A). We may define

& map 7g: B — B** by byz = I'y, where gI, = bg for all g € B*. Observe
that

(i) I, is continuous;
(ii) if g < b in B*, then for every unary polynomial p we have

p(9T,) = p(bg) = p(b)g < p(b)h = p(bh) = p(hT}),
and hence g1, <* kI, in 4; '
(iii) I, preserves the action of End(A) since

(gé) I, = b(ge) = (bg)é = (9I3)é.

Thus T}, is an element of B**, and so 75 is well defined. Before we can
show that 75 is an isomorphism we require the following lemma:

2.2. LEMMA. (i) g® = h® if and only if § = h.

(ii) g‘di = §®, i.e. ga = §a.

(iii) § = 4.

(iv) @D is order-preserving.

(v) 9@ < h® if and only if § < h.

(vi) Let ¢ € Z(B*, A); then, for all g € B*, gp € Im(g).
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Proof. (i) This is trivial.

(ii) §@ = gPOD = ¢gP.

(iii) From (ii) we have g& = §&P, and hence g d by (i).
(iv) This follows from the fact that a is order-preserving.

(v) Since O is order-preserving, g® < h® implies § = gPO < hdO = h.
Conversely, assume that § < h; then we have g& = §& < hd = hd by (ii)
and (iv).

(vi) Assume e satisfies g = Je; then gp = (de)p = (dp)e € Im(e).
Hence
gp € ((Im(e) | g = Je) = Im(g).

The proof of the representation theorem below follows the proof
of the corresponding result, Theorem 2.4, in [4]; it is interesting to note
that in the present more general setting the proof is slightly easier. The
main tool is Priestley’s duality for bounded distributive lattices (see [15]
and [16]): for every bounded distributive lattice B, the set D (B, 2) is a par-
tially ordered Boolean space with its order and topology inherited from
2B for each b e B, the set <b;1) = {geD(B,2)|bg =1} is a clopen
increasing subset of D(B,?2), Priestley’s duality states, in part, that
the map b — <b;1) is an isomorphism of B onto the lattice of clopen
increasing subsets of D(B, 2). Alternatively, let X (B) be the set of prime
filters of B, ordered by set inclusion, with

{X, |be B}JU{X(B)— X, |be B}, where X, ={xecX(B)|bea},

as a subbasis for the topology; then the map g — 19~' is a homeomorphism
and an order-isomorphism of D(B,2) onto X (B), and the map b — X,
is an isomorphism of B onto the lattice of clopen increasing subsets of
X (B).

2.3. THEOREM. For all B € A the map ng: B —~ B** = Z(A(B, A), A),
i8 an i8omorphism.

Proof. Since A = ISP(4), it follows that %z is one-to-one. The
operations in B** = Z(B*, A) are of course defined pointwise from the
operations on A. Let f be an n-ary operation and let g € B*; then

g(f(boa--- n—1) "73) = f(boy ---3 bp1)g = f(bogy .-y by_19)

=f(g(bo773 Yooy g(bn—lﬂB))’
and so

S(boy ..y b,_1)np = f(bompy --+y bn_1mB)-

Thus it remains to show that %5 is onto.
Let B = ker(®), that is, by Lemma 2.2 (i),

g =h(R) < g® — h® < ga — ha < § = h.
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Note that, by Lemma 2.2 (ii), [g]E = [§]R. The map @ is continuous
since, for all b € B,

;107 =<¢bi;la”’> and  Bb; 0007 = (b 0a7.

Thus & induces a homeomorphism ¢’ :B*/R — D(B,2). Define
a partial order on B*/R by

[IR< [A]R < gP < hd
and note that, by Lemma 2.2 (v),

[GIR<[h]D < < h.

Thus @’ is a homeomorphism and an order-isomorphism.

Let ¢ € Z(B*, A); the remainder of this proof is devoted to showing
that there exists b € B such that byyz = ¢, i.e. gp = bg for all g € B*. Now
U = 1(pa)™! is clopen in B* and, by definition, g € U <> gpa = 1. Wo
claim that ge U < §e U. Since Jp e Im(J) by Lemma 2.2 (vi), there
exists b € B such that §p = bj. Now assume that ge U, ie. gpa = 1.
Let g = §e; then

Jpa = bfa = bga = bfea = fpea = fepa = gpa = 1;

the second equality follows from Lemma 2.2 (ii). Thus § € U. Conversely,
assume that § € U, i.e. jpa = 1. Observe that if jp = b§, then gp = bg;
indeed,

gp = fJep = Jpe = bfe = byg.

Thus gpa = bga = bfa = Jpa =1, and 80 ge U.

It follows at once that U is a union of R-equivalence classes; for if
ge U and g = h(R), then § = h, and hence & = § € U, whence ke U.
Consequently, U/R is clopen in B*/R. Moreover, U/R is increasing since
U is, and U is increasing because U = 1(pa)~' is the preimage of the
increasing set {1} under the order-preserving map ¢a. Hence (U/R)9P’
is a clopen increasing subset of D(B,2), and so by Priestley’s duality
there exists b € B such that (U/R)®’ = <b;1). Since U is a union of
R-equivalence classes, this implies that, for all g € B*, gpa = 1 < bga = 1,
and hence

(%) for all g e B*, gpa = bga.

We claim that by = ¢, i.e. gp = bg for all g € B*. It is sufficient
to prove that, for all g € B*, dp = bj. Let g € B*; since D(4, 2) separates
the points of A, we need only to show that jpB = bgp for all g€ D(4, 2).
By Lemma 2.2 (vi), Jp € Im(4§), and thus there exists ¢ € B with jp = cd.
Let e D(A,2) and set h = (§8)@; then §f = §fOP = h® = ha. But
by (P;) there exists ¢ € End(4) such that b = de. Thus

cjB = cha = cjea = fpea = fepa = hea.
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Finally, using (%), we obtain

doB = cjB = hpa = bha = bgp,
as required.

In [4] the dual B* of an algebra B € L, was endowed only with the
action of End(4); no mention of a partial order on B* was made. The
proof of Theorem 2.3 is easily modified to cover this situation provided
A satisfies the following condition:

(P,) Let B € A; then for all g, h € B* with § < h there exists ¢ € End (4)
such that h = de.

It is easily seen that L, satisfies (P,); in fact, if Im(h) = (¢, JU{1}
with & < n—1, then for all g € B* with § < % we have h = e, where ¢ is
the endomorphism of A determined by the prime filter [¢;,,).

Let ¥ be the category whose objects are Boolean spaces endowed
with a continuous action of End(A4) and whose morphisms are continuous
maps which preserve the action of End(4). As an object of Y, A is topolo-
gized discretely and End(A4) acts on 4 via € = e.

2.4. THEOREM. Assume that A satisfies (P,). Then for all B € A the
map ng: B —B* = Y¥Y(A(B, A), A) is an isomorphism.

Proof. Firstly, we claim that if ¢ : B* —~ A preserves the action of
End (4), then ¢ preserves the pointwise partial order on the set {§ | ge B*}.
Assume that § < h. Then by (P,) there exists ¢ € End (A4) such that & = de.
Now a € Im(§) implies that a = b§ for some b € B, and so for each unary
polynomial p we have

p(a) = p(bf) = p(B)I<p(b)h = p(bh) = p(bde) = p(ae);
thus a <* ae in A for all ¢ € Im(§). But, by Lemma 2.2 (vi), jo € Im(§),
and thus
dp <* jpe = fep = ho.

The fact that ¢ is order-preserving is used only once in the proof
of Theorem 2.3; namely, to show that U/R is increasing. We claim that
it is still true that U /R is increasing.

If [gjJRe U/R and [h]R>[g]R, then §e U and §<h But U
=1a"'¢~!, and so Jp € la~’. Since Jp < hp and 1la~! is an increasing
subset of A, it follows that hp e 1a~!, whence h € U = 1a~'¢~'. Consequent-

ly, [W]R = [h]R e U/R, and so U/R is increasing. Thus the proof of
Theorem 2.3 carries over.

3. THE DUALITIES

Let K and X be categories and assume that D : K — X7 is left adjoint
to E: X — K; here K is to be thought of as a category whose objects
are algebraic and the objects of X are to be thought of as topological.
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Following [6], the pair (D, E) is a duality between K and X if the unit
7y :idg — ED of the adjunction is a natural isomorphism, and (D, E)
is a full duality if the counit ¢ :idy — DFE is also a natural isomorphism.
It is natural, from an algebraic point of view, to concentrate on dualities
rather than full dualities, although the latter yield more information
of course.

In the previous section we defined the functor D = A(—, 4): A - Y.
We define a functor £ =Y (—, A): Y - A analogously: if f is an n-ary
operation, then for all ¢y, ...,9,_, €¥Y (X, A) the map f(@oy...) Pp_1)
is continuous and preserves the action of End(A4) (i.e. ¥ (X, A) is a subal-
gebra of AX), whence FE is well defined.

is a duality between A and Y with 7 :id4 — ED a8 the unit of the ad-
Jjunction.

Proof. By Theorem 2.3 it is sufficient to show that » is a natural
transformation and that, for all B e A, 7ngz: B — ED(B) is universal to
D from B. That # is a natural transformation is easily seen. For each
homomorphism a: B — E(X) the unique fill-in map g: X — D(B) is
given by b(zf) = x(ba). It is easily checked that, forallv e X,28: B - A
is 2 homomorphism, and thus g is well defined. For all a € A we have
¢b;adp' = a(ba)™!, which is open in X since ba is continuous, and hence
B is continuous since the sets of the form <b ; a) form a subbasis for the
topology on D(B) = A(B, A). Let ¢ € End(A); then for all b e B

b((é)B) = xé(ba) = (x(ba))e = (b(xB))e = b(wxpé),

since ba preserves the action of End(4), and thus § preserves the action
of End(4). Hence $ € ¥(X, D(B)) as required.

The category Z is not quite as well behaved as ¥; for though Z(B*, A)
is closed under the pointwise operations for all B € A, it does not neces-

sarily follow that Z(X, A) is closed under the pointwise operations for
all X e Z. ‘

For the remainder of this section assume that X is a full subcategory
of Z satisfying:
(i) X is closed under Z-isomorphisms;
(ii) X contains the image of the functor D = A(—, 4);
(iii) for all X € X, BE(X) = X* = X(X, A) is a subalgebra of AX.
It follows easily that E = X(—, 4): X — A is a well-defined functor.
3.2. THEOREM. Let A satisfy (P,)-(Pg). Then <A(—, 4), X(—, A))

18 a duality between A and X with n: id, — DE as the unit of the ad-
Jjunction.
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Proof. This follows immediately from the proof of Theorem 3.1 once
we observe that if a: B — E(X) = X(X, A), then the map g is order-
preserving, and so § € X(X, D(B)).

Under what conditions will these dualities be full? One approach
is provided by the results of Davey [5]. Since Boolean spaces are precisely
the zero-dimensional compact spaces, the category of Boolean spaces
is denoted by ZComp. For each Boolean space X, the set ¥(X, A) of
continuous functions from X into A is a subalgebra of A%, and hence
¢(—,A): ZComp — A is a well-defined functor. If <D, E) is a full
duality between A and X, say, then it is easily seen that D¥(—, 4):
ZComp — X is left adjoint to the forgetful functor; and similarly for
the categories A and Y. The following is an immediate corollary to Theo-
rem 2.25 of [5].

3.3. THEOREM. Assume that A satisfies (P,)-(P;) and assume that
(i) X(X, A) separates the points of X for each X € X;
(i) DE(—, A) : ZComp — X i3 left adjoint to the forgetful fumctor;
(iii) A s imjective in A.
Then <A(—,A),X(—,A)) is a full duality between A and X. If
A satisfies (P,) - (P,), then an analogous result holds for the categories A and Y.

‘We can describe a reasonably general situation in which condition (ii)
of Theorem 3.3 holds. For each Boolean space X let #(X) = X X End(4)
and define the action of End(4) on #(X) by <z, f)é = (&, fe);
if ye®(X,Y), then define #F(y)e¥(#(X), F(XY)) by <x,edF ()
= {xy, e). Clearly, #: ZComp —Y is a well-defined functor. In an
attempt to lift # to a functor #: ZComp — X we define a partial order
on #(X) by

wy,e)< (y,f> ifandonlyif « =y and e<f.

Define uy: #(X) - D¥(X, A) = A(¢(X, A), A)by <z, e>ux = I,e.
The following is an almost trivial consequence of Corollary 3.3 of [4].

3.4. THEOREM. Let A be a finite nontrivial lattice-ordered algebra whose
bounds, 0 and 1, are nullary operations, and assume that every subalgebra
of A 1is subdirectly irreducible.

(i) D€(—,A): ZComp — Y i3 naturally isomorphic to F: ZComp
— Y and 18 left adjoint to the forgetful functor.

(i) D¥(—, A): ZComp — X is naturally isomorphic to ¥: ZComp
— X and 18 left adjoint to the forgetful functor.

Proof. The proof is almost identical to the proof of Theorem 3.5
of [4] except that for part (ii) we must check that ux is an order-isomor-
phism. It is clear that uy is order-preserving. Now assume that {(z, e)pux
< Y, Hux, ie. I e< I',f. Since ¥(X, A) contains the constant maps,















