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1. Imtroduction. The aim of this paper is to present a reduction of
a given Z,-action on a 3-manifold to simpler actions. The technique intro-
duced here enables us to classify Z, -actions on some manifolds, e.g.,
free Z,-actions on handlebodies and compact surfaces. Tollefson [22] has
constructed such a reduction for an involution of a 3-manifold M, provided
no summand of M is a 2-sphere-bundle over 8'. Kim and Tollefson [8]
have extended this result for involutions of an arbitrary closed 3-manifold.

We work in the PL-category. From now on, unless otherwise specified,
manifolds are connected. We assume that if a manifold M is orientable,
then it is oriented, and that if J,M is an orientable component of oM,
then it is oriented (the orientation of 0M is induced from M if M is ori-
ented).

In Section 2 we introduce some necessary definitions and lemmas
concerning 3-manifolds. In Section 3 we define a connected sum and a mul-
tiple of Z,-manifolds. In Section 4 we prove the main Theorem 4.1 describ-
ing the decomposition of a Z,-action along a compact surface and apply
it for F = 8%, D? and P2 In Section 5 we prove some facts which allow
us to apply the theorems from Section 4 to concrete calculations. In Sec-
tion 6 we prove some reduction  theorems. In Section 7 we discuss our
results and add some special corollaries on Z,-actions.

The author wishes to thank very sincerely Agnieszka Bojanowska for
her invaluable assistance.

The author is grateful to Krzysiek Nowiriski and Krzysiek Jaczewski
for their help in the preparation of this paper.

2. Preliminaries. The terminology of our paper is based on that
of Hempel’s book [6]. Moreover, we introduce some other definitions
and notation and formulate some “folklore” results on 3-manifolds.

2.1. Definition. A 3-manifold M is called decomposable if it can be
expressed as a connected sum of a finite number of prime factors. We put
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(M) = oo if M is not decomposable, and for M decomposable we define
i(M) to be the number of nontrivial ( # §?) prime factors of the prime
factorization of M. Moreover, i(8°) = 0.

2.2. Definition. (a) If a manifold M is orientable, then we put
M = M, and if M is not orientable, then we define M to be the orientable
double cover of M.

(b) M is the manifold obtained from the n-manifold M by capping off
each (n—1)-sphere component of 0 M with an n-cell.

Let M be a 3-manifold with compact boundary; we define:

(e) kypr to be the number of the boundary components of M.

(d) gen(M) = }(2kos — x(0M)).

2.3. LEMMA. Let M be a compact 3-manifold. Then =,(M) = 0 iff
M is a homotopy sphere with holes.

2.4. PROPOSITION. If a 3-manifold M is a conmected sum M, H M,,
where neither M, nor M, is a homotopy sphere, then a 2-sphere S* separating
two summands of M, 3= M, generates an element of =,(M) which does mot
belong to the =,(M)-invariant subgroup of =m,(M) generated by classes of
maps P? < O M, where P? is a projective plane (if M = @, then [8] # 0).

Moreover: (a) if S%<— int(M) does not separate M, then it generates
a nontrivial element of m,(M);

(b) each P* embedded as a 2-sided submanifold in intM generates
a nontrivial element of n,(M). '

The proposition seems to be a well-known “folk” theorem (cf. [13]).

2.5. Definition. (a) A closed surface F=— int(M?) is parallel to the
boundary if F is parallel to some component of the boundary, i.e., if there
is an embedding H: F X I M* such that

HEFEx{1}) =F and HEFxXI)NoM* = H(F x {0}).

(b) A projective plane Pic—.int (M?) is homotopy parallel to the boundary
if there is a 3-manifold (W, d,W, 0,W), embedded in M* with two boundary
components o,W = P; and 0,W = P;—0M, such that W is obtained
from a homotopy sphere Z* by factorization of X*— (int(D}) vint(D}))
by an orientation-reversing involution with two fixed points #, and z,
with invariant, regular neighborhoods D} and D}, respectively.

2.6. Remark. It follows from a theorem of Livesay [12] that if the
Poincaré Conjecture is true, then P? is homotopy parallel to the boundary
iff P? is parallel to the boundary.

2.7. Definition. Two 3-manifolds M, and M, are congruent if there
exist two homotopy spheres 2} and X3} such that M, # 2} = M, # Z3.
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2.8. Definition (see [21]). A manifold M*® with oM # @ is called
O-irreducible if for any proper embedding (D?, 0D?)es (M3, O M3) there
exists a disk D® embedded in M* with D*n (oM UD?) = oD* (proper
means OM* NnD?* = oD?).

2.9. LEMMA. If P?is a 2-sided projective plane in a 3-manifold M and
M 18 not irreducible (respectively, M is not congruent to an irreducible mani-
fold), them there is an embedding S*<—int (M) such that S>NP? =@ and
S? does not bound a 3-cell (respectively, a homotopy 3-cell) in M. Moreover,
if 83— int (M) does not bound a 3-cell (respectively, a homotopy 3-cell) in M,
then we may require 8* = V for any fized reqular neighborhood V of 82 UP2.

Proof is similar to that of [13] and [23]. Let M be not an irreducible
manifold. There exists an embedding S} int(M) not bounding a 3-cell.
We may assume that 8? is in a general position with respect to P?. Then
8} NnP? ig a collection of pairwise disjoint, simple, closed curves y;, ..., ¥
in P%. At least one of these curves (say, y,) bounds a 2-cell D, in P* with
D, nUJ y; = y,. To prove this we use the fact that y; is 2-sided in P? for

[

each ¢. Otherwise, y; changes the orientation in P?, so y, changes the
orientation in M, and this contradicts the fact that y; = 8} is contractible
in M. Let y, separate 82 into disks E, and E,. Since 8} does not bound
a 3-cell in M, either D, VE, or D, VE, does not bound a 3-cell in M.
We move slightly this sphere and obtain a 2-sphere S2 which does not
bound a 3-cell in M and 8; NP? consists of at most k—1 simple closed
curves. By repeating this process we obtain the desired embedding
8% c— int(M). Similarly we can prove Lemma 2.9 for M congruent to
an irreducible manifold.

2.10. CoroLLARY. If {Pi}}_, is a finile system of pairwise disjoint,
2-sided projective planes in M and M,, ..., M, are connected 3-manifolds
obtained by cutting M along \ ) P3, then

‘

(a) M is an irreducible manifold iff each M; is an irreducible mani-
fold;

(b) M is a manifold congruent to an irreducible manifold iff each M,
18 congruent to an irreducible manifold.

Proof. One way is easy, and the other follows from Lemma 2.9.

2.11. LEMMA. If P? is 2-sided in a 3-manifold M and M is not o-irre-
ducible (respectively, M is not congruent to a 0-irreducible manifold), then
there are two possibilities:

(a) there is an embedding S®<—int(M) such that S’NP® =@ and
82 does mot bound a 3-cell (respectively, homotopy 3-cell);

(b) there is a proper embedding D?*c— M such that D*NP* =@ and
0D? does nmot bound a 2-cell in OM.



202 J. H. PRZYTYCKI

Proof. If (a) is not satisfied, then M is irreducible (respectively,
congruent to an irreducible manifold) by Lemma 2.9. Thus there exists
a proper embedding Dj<— M such that 6D} does not bound a 2-cell in 0 M.
Now we use the “cut and paste” technique (similarly as in Lemma 2.9)
to obtain a disk D* with 6D* = éD; which satisfies (b).

The next corollary follows similarly as 2.10.

2.12. COoROLLARY. If {P3}}_, %8 a finite system of pairwise disjoint,
2-sided projective planes in M and M,, ..., M, are connected 3-manifolds

obtained by cutting M along \J P3, then the following holds:
i=1

(a) M 18 either an irreducible manifold without boundary or a 0-irre-
ducible, irreducible manifold iff each M, is an irreducible, O-irreductble
manifold;

(b) M 438 either congruenmt to an irreducible manifold without boundary
or to a O-irreducible, irreducible mamifold iff each M; is congruent to an
irreducible, 0-irreducible manifold.

Conclusions analogous to Lemmas 2.9 and 2.11 hold also for 8% and D?.

2.13. LEMMA. If D?is a proper disk embedded into a 3-manifold M and
M is not irreducible (respectively, congruent to am irreducible manifold),
then there is an embedding S*c—int (M) such that S°ND* = @ and §8* does
not bound a 3-cell (respectively, a homotopy 3-cell).

2.14. CorOLLARY. If {D3}!., %8 a finite system of pairwise disjoint
disks properly embedded in M and M,,..., M, are connected manifolds

n
obtained by cutting M along \UJ D}, then the following equivalences are
i=1
satlisfied:
(a) M 18 irreducible iff each M, is irreducible;
(b) M 18 congruent to an dirreducible manifold iff each M, 18 con-

gruent to am irreducible manifold.

3. Basic constructions. We define first a connected sum of Z,_-manifolds
as a generalization of an ordinary connected sum.

3.1. Definition. Let (M;,Z,,) be an n-dimensional manifold M
with an action of Z,, generated by T; (i = 1, 2). Let F; c 9, M, be a com-
pact manifold embedded in some component 9, M, of 0 M, such that T%(F;)n
NnF; = F, or @ for each j and that there exists a number j such that
Zy={9eZ,: g(F)=F;} (i=1,2). Let f: F, -~ F, be a Z;-equivariant
homeomorphism (which reverses orientation if J, M, and J,,M, are ori-
ented). We define the connected sum

(M, Z,) = (annl) #(Fl.rz.f)(Ma’an)
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as follows: Let

_ g.c.d.(n,, ny) o = T2 _Mm
’ j R R A
n = le.m.(ny, By) = jjo818s, and k& = jy8,8,.
Let
hy, hy, hie;—1 his
M,- Miz = Mt.a = cee = Mi,si = Mn

where ;o ... 0, =T (1 =1, 2).
For each j we identify &, ;...h, ,(¥,) with h,;...h,,(F,) using
the homeomorphism &, ;... hy, fh7} ... h7;. The Z -action on the obtained

manifold M is determined by the maps hy,;y ... by g s Bayy ooy by, (Fig. 1).

Fig. 1. Case jo =1, 8, = 3, 83 = 2

If j = 1 in the connected sum of Z,-manifolds, then we will write 3
instead of .

“Multiple” of Z,-manifold is the second useful method of constructing
new Z, -actions.

3.2. Definition. Let (M,, Z, ,) be an n-dimensional manifold M,
with an action of Z, ; generated by g. Let F,c 0M, (i =1, 2) be a compact
mamfold embedded in 6M such that, for each j, ¢/ (Fi) NF;, =F; or &
and ¢(F,)nF, =@. Suppose there exists a number j such that

= {g EZn1= g(F;) = F;}. Let f: F,—~F, be a Z;-equivariant homeomor-
phism. Let 8 and r be coprime natural numbers ((s,7) = 1). We define
the multiple

(M,Zn) = (Mn an)(sFl.Fz,f,r)
as follows:
Let n = n,8 and j, = 'n,/j Let

w2 a2y oy,
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where h, ... h, = g. For each ¢ we identify h, ;...h ... h(F,) with
-1

h; ... hy(F,) using the homeomorphism &, ... k,fa;* ... hZ';. The Z, -action
on the obtained manifold M is determined by the maps h,, ..., h, (Fig. 2).

¥y,

5

Fig. 2. Case s = 5, r = 3, jo = 2

3.3. Remarks. (a) We define (M,,Z, )% ¢ ;. n(Ms, Z,), Where
@, € int(M;) (¢ = 1, 2), isotropy groups of #, and @, are isomorphic to
Z;, and f maps Z;-equivariantly some Z;-invariant, regular neighborhoods
of », and o, (f(@,) = @;), as

n n2
(M, — HTf (Dz,), an) :ﬂ:(aDzl,anz.naDzl)(M 2 —HT§ (Ds,)s Zy,),
where T is the generator of the Z, -action and D, is a sufficiently small,
Z;-invariant, regular neighborhood of #; (1 = 1, 2).

Let Iz(M) denote the set of points with nontrivial isotropy group
(for a given G-action on M). If »; e int(M,;)—1z(M,) (¢ =1, 2), then we
write (My, Ty) #2009 (M2y Ty) instead of (M,,T) Hepzgn (Mas T)-
Moreover, if (M;—Iz(M,)) is orientable, then we assume that it is oriented
and f reverses orientation.

(b) We define (M, Z, )iz, z.r,ry PY & slight modification of Defini-
tion 3.2 (similarly as (a) is a modification of Definition 3.1).

From the definitions of Z,-connected sum and multiple we obtain
immediately the following facts:

3.4. ProrosITION. I. Let (M,Z,) = (M1, Z,,) Hm,m00(Mas Zy,)-
Then:

(a) If the manifolds M, and M, are oriented and T,, T, preserve ori-
entation, then Z, acts on the oriented manifold M preserving orientation.

(b) If the manifolds M, and M, are oriented and T,, T, satisfy the con-
dition: T; reverses orientation iff s; is odd, then Z, acts on the oriented manifold
M reversing oriemtation.

(¢) If conditions (a) and (b) are not satisfied, then M is a nonorientable
manifold.
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II. Let (M, Z,) = (M, Z,, ), F,1s) Then:

(a) If the manifold M, is oriented, g preserves orientation, and f reverses
orientation, then Z, acts on the oriented manifold M preserving orientation.
(b) If the manifold M, is oriented and g, f satisfy the conditions

(i) g preserves orientation iff 8 is even,

(ii) f reverses orientation iff r is even,
then Z, acts on the oriented manifold M reversing orientation.

(¢) If conditions (a) and (b) are not satisfied, then M is a nonorientable
manifold.

3.5. ProrosirioN. I,. If (M, Z,) = (My, Z, )¢ aps (May Z,,,), then

M =M, 4 .. #M1#M2# #Mz#slxsz# #SIXSZ
W—/
8 times 89 times k—81—82+l times
= (Ml)sl #(Mz)sz#(sl X S2)k—al—82+l
if Z, preserves orientation;
M = (M;)ye, 412 ( — M) 2y (M) g0y 412y HE ( — M 2)(g2 F (S xsz)k—sl—82+l
([z] denotes the integer part of x) if Z, reverses orientation;

M = (M), 3 (M) H (V) _oyn

(N denotes the momorieniable S*-bundle over 8') if M is nonorientable.
I.. If (M, Z,) = (Ml’Z”I):EI:(P%,Pg,f)(Mz’Z"z)’ then

M = (ﬂcll)a] #(ﬂg)sz#(sl st)k—sl—sz+l7

where M? is obtained from M, by capping off each 2-sphere component of
OM; which covers the projective plane from the construction.
II If (M ) = (Ml’znl)(a:l.:_cz.f,rb then

(M), (8" X 8)j,_1ys+1 if Z, preserves orientation,
M= 3 (M) o1y F (—M1)q0) (8" X8 s ys41 f Zn Teverses orientation,
(M), H (N ) (5y-1)s+1 if M is not orientable.

1L, If (M,Z,) = (M,,Z , then

o= (Mtll)s F (‘Sl X 8 )(jo—l)3+l'

The following easy proposition allows us to decrease the number
of constructions.



206 J. H. PRZYTYCKI

3.6. PROPOSITION. Assume that (M',Z,) and (M",Z,) are defined as
(M" Zn) = (-MU an) :E#(Fi,F;.f')(M” Zn2)7
(a)

(M”,Zn) = (MUZn (szznz)

) 3 (F{,Fy.f")

and that there exists a T;-equivariant homeomorphism h;,: M, -~ M, with
h(F;) = F (i =1,2) and (ho| F,)f' = f" (k| F}), or as

(b) (M’,Z”) = (MI?Z y (M",Zn) = (Muzn ’

LR A ey

and that there ewists a Z, -equivariant homeomorphism h: M, - M, with
W(F;) = F; (i =1,2) and (B F)f = f" (b F).

Then the following conditions hold:

(1) of M’ is nonorientable, then there exists a Z,-equivariant homeomor-
phism M' - M,

(2) if M’ is orientable and h (respectively, h, and h,) preserves orienta-
tion, then there exists a Z,-equivariant, orientation-preserving homeomorphism
MI — MII;

(3) if M’ is orientable and h (respectively, h, and h,) reverses orienta-
lion, then there is a Z,-equivariant, oriemtation-reversing homeomorphism
M - M".

Proposition 3.6 enables us to establish the following

3.7. PROPOSITION. (a) Let (M, Z,) = (M4, Z, )z,,z,.1,ry» Where dim M,
=2, M, —1z(M,) is connected, and x,, x, € int( M,) —1z(M,). Then (M, Z,)
18 independent of the choice of ®,,, €int(M,)—1z(M,). Moreover, if
M, —1z(M,) is nonorientable, then (M, Z,) is independent of the choice
of f, and if M,—1z(M,) is orientable, then (M, Z,) possibly depends on
whether or not f reverses orientation.

(b) Let (M,Z,) = (M, Z,)) #(zl,zz,f)(szznz), where M, —1Xz(M,)
8 connected (i = 1,2). Then (M, Z,) does not depend on the choice of the
points ., ®, and the homeomorphism f.

From now on, to avoid excessive notation, we use the simplified nota-
tion (e.g., 3 or i, instead of Hepz0.n) if it does not lead to misunder-
standing.

Proposition 3.7 follows from Proposition 3.6 and Lemma 3.8.

3.8. LEMMA. Let (M, T) be a Z,-manifold and x,, y, € int (M) —1z(M).
If there exists an arc y joining x, and y, and disjont with 1z(M), then there
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exists a Z,-equivariant homeomorphism h: M — M with h(»,) = y,, where
h preserves orientation if M — 1z (M) is orientable.

The proof is fairly similar to that for the nonequivariant case.

3.9. ProroSITION. If {M,},.. are manifolds such that M,—Xz(M,) i8
connected, then the operation 3 is associative and commulative.
The proof is easy (cf. Proposition 3.7 and Lemma 3.8).

3.10. Definition. An action of Z, on S' x 8? is said to be standard
if one of the following conditions is satisfied :

(a) Z, preserves orientation of S8'x §* and the action is given by
(2,y) - (€™"2,y), where (r,n) = 1;
(b) Z, reverses orientation of 8'x 8% and the action is given by

(2, y) > (e¥™""z, —y), where (r,n) =1 and » is even;

(c) Z, acts on 8'x 8 =N = Rx8/~, (t,y) ~(t+1, —y), and
the action is given by

(t,y) > (1+7r/n,(—1)y), where (r,n) =1 and # is odd.

8'% F denotes an F-bundle over S'.

3.11. ProPOSITION (multiple as a special case of a connected sum).
If (M, T) = (M) 9)izy.z5.1,ms Where g generates a Z, -action on a 3-manifold
M,, M,—1z(M,) is connected, and x,,z, cint(M,)—I1z(M,), then

(M,T) = (M,,9) E(f’) (Sli(SzaTz)y

where T, generates a standard action of Z,, on S'x 8%. Moreover, n, and s, are
any natural numbers which satisfy s,n, = sn, = n and (8,,8) = 1.

In order to prove Proposition 3.11 we use the following fact which
can be easily shown:

3.12. Facr. If (s, r) = 1, then for each n, the sequence
g.c.d.(r,ny), g.cd.(84+7,n,), g.c.d.(28+7,n,),...

contains each natural number a such that a divides n, and (a,8) = 1.

Proof of Proposition 3.11. We use the notation of 3.1-3.3. We may
join 0D, with g‘(anz) (for each ¢) using an arc y such that y is properly
embedded in

n o o
M,=M,— Ugj(DleDzz)

»
i=1
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and y, g(), ..., "1 (y) are pairwise disjoint. Let V¥, be a small regular neigh-
borhood of 9D, Uy Ug'(dD,,) in M, , and 9V, be its boundary in int (M, ,).

n
Then 9V, is a 2-sphere in M and | T7(9V,) defines some splitting of M.
j=1
It is easy to see that (M, Z,) is obtained as a connected sum (M,, g) and
M, = 8'x 8 with a standard action. s, is the number of connected

n
components of the manifold {J 77(V,). Since the component containing V,
Jj=1

is equal to

8—1
V, UTH (V) UTH (V) U ... = (J TRV, ugs+(V,) U ...),

j=0

we have s, = g.c.d.(st+ 7, n,). Now, we obtain Proposition 3.11 from
Fact 3.12.

Propositions similar to those of 3.7-3.11 are also true for multiple
and connected sum along a disk.

3.13. PrROPOSITION. Let
(M7 Zn) = (MI) Zz'o,l)(sDa,l,D:,_.2 »Jor) or (-M’ Zn) = (MU an) ﬁ(DzI’Dzz'n(Mz’ an),

where », € O;M,—1z(M,) for some component O, M, of OM,, and D,, is
a sufficiently small, regular neighborhood of x; in OM; (+ = 1, 2). If dimM,
>3 and O;M,—1z(M,) is connected, then (M,Z,) does not depend on
the choice of the point x, € ;M,.

The proof is very similar to that of Proposition 3.7.

3.14. Definition. An action of Z, on 8! X D? is said to be standard

if one of the following conditions is satisfied:
(a) Z, preserves orientation of 8'x D* and the action is given by

(21,2, ) — (€¥™""2,,2,), where (r,n) = 1;
(b) Z, reverses orientation of S§'x D® and the action is given by
(21, 25) = (™" 2,, %,), where (r,n) =1 and n is even;

(¢) Z, acts on 8' X D* = Rx D?* ~, (t,2) ~ (t+1,%), and the action
is given by

(t,2) > (t+7/n, Re(2)+(—1)4Im(z)), where (r,n) =1 and = is odd.

3.15. PROPOSITION. Let (M, T) = (M,, g)szl"Dzz'f")’ where g generates

a Z, -action on a 3-manifold M,, and @,, T (x,) lie in the same component
oM, of OM,. Moreover, ;€ M;—1z(M,) and D,, is a sufficiently small,
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regular neighborhood of ®; in OM, (¢ = 1, 2). If o,M,—1z(M,) is connected,
then

(M, T) = (My, 9) #m,,p,,.1y(8 X D*, T),
where T, generales a standard action of Z,, on 8' X D*. Moreover,

n,
g.c.d.(si+7,m,)

‘n2=

The proof is similar to that of Proposition 3.11.

4. Splitting Z -action along a compact hypersurface. In this section
we prove Theorem 4.1 which is a main tool in reduction of Z, -actions
on manifolds.

4.1. THEOREM. Let T be a generator of an effective Z,-action on a k-mani-
fold M. Let F be a compact, connected, 2-sided (k—1)-manifold, properly
embedded into M and such that for each j either T'(F)NF =@ or T/(F) = F
Then either

(M, Z,) = (My, Z,) 3@, 50\ Ms, Zp))

(M, Z,) = (My, Z, )ip,,F,1m)
where m; (¢ = 1, 2) divides n, M, is one of the connected manifolds obtained
by culting M along Lj T/(F), and M, is either F x[—1,1] with action
(,1) - (h(2), —1) (h gemmtes a cyclic actw'n on F) or one of the connected

manifolds obtained by cutting M along U T/ (F).
j=1
First we prove the following

4.2. LEMMA. Let M, be ome of the commected manifolds obtained by
cutting M along U T(F) with F < M 1+ Then one of the following conditions

i=1
holds:
(a) {T%(M,)}7_, contains each component obtained by cutting M;
(b) there exisis a second component M, such that M,NnM,> F, M, +
# T'(M,) for each i, and {T°(M,)}*, U{T'(M,)}>_, i3 the set of all compo-

n
nents obtained by cutting M along \J T(F).
i=1
Proof of Lemma 4.2. Suppose (a) is not satisfied. Then there exists
a component M, such that M, = T¢(M,) for each 4. Since M is connected

and we cut M only along | T%(¥), we have M, > T*(F) for some i. Thus
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T (My)NM, > F. We put M, = T7'(M,). It remains to verify that
{T"(M,)}., V{T*(M,)};., is the set of all components. Suppose P is not
of the form T*(M,) (¢ =1,...,n). Then P > T/(F) for some j, and so
(P NT!(M,)) > T!(F). Since T/ (M,) NT/(M,) > T?(F), we have P = T (M,).

Proof of Theorem 4.1. First we consider the possibility (b) from
Lemma 4.2. Let s; be the smallest natural number which satisfies 7% (M)
= M, (¢ =1, 2). Since M is connected, (3,, 8;) = 1. Let #; = n/s;,. Then

= T* generates a Z,-action on M, (¢ =1, 2). Let k be the smallest
natural number which satlsfles T*(F) = F. In our case, k is a multiple
of 8, and s, (T* preserves locally the sides of F). Thus k¥ = j,8,8, for some
Jo- Let j = n/k. Then 5, = jj,8; and n, = jj,8,. The surfaces F, T'(F), ...

., T*"}(F) cut M into s, + 8, components

M, M,=TM),.. 6 M,= ™ \(M,), My, M,, = T(M,),...
o My, = T2 (My).
Let
hll_TlM17 12—TI 1,27 ° IGI—TI 1,8;? 21—TlM27
1 By gy = T M
We may describe this as follows:

ki3 hi,e5—1 ki,

ki {
.M{= Mz—— M‘3= eee = Mi,l‘=
where h,, ...k, =T; (¢ =1,2). Moreover, let
i i
FLF s M,, F2F,c> M,, and f=ii': F,>F,.

Then f is TYo*12-equivariant.

Consequently, we obtain (M, Z,) = (M, Z,, ) ##,,r,.n (M,, Z,,).

Now we consider the possibility (a) of Lemma 4.2. The manifold
M splits into 8 connected components M,, T(M,) = M,, ..., T*"1(M,)
= M,, so T*(M,) = M,. Let k be the smallest natural number such that
T*(F) = F. We have two possibilities:

(a) T* changes locally the sides of F. Let V, be a small, regular,
T*.invariant neighborhood of F in M. We may assume that Vy = F X
X[—1,1], F = Fx{0}, and on V, we have T*(s,t) = (T*(x),—1).

Let ' = Fx{—1}. Then M splits along |J T¢(F') into %k manifolds
i=1

Z,;-homeomorphic to (Fx[—1,1], T*) and s manifolds Z,,s-homeomor-

phic to manifolds obtained in the last decomposition. We have reduced

the problem to the case (b) of Lemma 4.2.
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(b) T* preserves locally the sides of F. Thus k = j,8 for some j,.
Let j = n/k. We put

by = T\ My, by = T\ My, ... byy = T\ M, _y, b, = T| M.

Let g= ha coe hl= Tsl.Ml’ Fa-—- Fc—b Ml? a;nd F1= T—r(F) c—s ‘Ml’
where F ¢ M,NnT"(M,) ((r, 8) = 1 because M is connected). Let

f: By ————> Fy

I . I
T"(F) < F =Fc M,
n

M,

Now we obtain (M, Z,) = (M, Zy )iy, F,.s- This completes the proof
of Theorem 4.1.

4.3. COROLLARY. Let T be a generator of an effective action of Z, on
a decomposable 3-manifold M. If there is an embedding 8* —s int(M) such
that 8* does not bound a 3-cell in M and T'(8*)NS* = B or 8 for each i,
then either

(M, Z,) = (My, Z,,) $ay, 20 Mas Zny)

(M7 Zn) = (Ml’ an)(’zl,zz,!,r)i
where n; divides n and +(M,) < (M) (j = 1, 2).

Proof. We may obtain Corollary 4.3 similarly as Theorem 4.1. The
decrease of 1(-) follows from the form of M in multiple and connected sum
(Proposition 3.5). ‘

4.4. COROLLARY. Let T be a gemerator of an effective action of Z, on
a 3-manifold M with ¢(M) < co. If M contains a 2-sided projective plane
P?<_s int(M), not parallel to the boundary, such that T! (P*) NP = @ or P?
for each j, then either

(M’ Zn) = (MH an) #(Pf.Pg.f)(Mz’ an)

(M, Z,) = (M,, Z"l):Pf,Pg.f,r)’
where n; divides n and i(ﬁ,) < i(ﬁ) (j =1,2).

Proof. It remaiPs to verify i(llf[,) < i(ﬁ) () = 1, 2) and this follows
from the form of M in multiple and connected sum (Proposition 3.5)
and from the theorem of Livesay [12].

4.5. CoROLLARY. Let T be a generator of an effective action of Z, on
a decomposable 3-manifold M with a compact boundary. If there is a proper
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embedding (D*, 0D*)c— (M, 0M) such that D* does not cut out a 3-cell from
M and T!(D*)nD? = @ or D* for each j, then either

(M,Z,) = (M, Z,,) % o Mzs Zpy)

(D%, D3,
or
(M, Z,) = (My,Z,,)!,

2 Dy11)]

where n; divides n and one of the following conditions is satisfied (j = 1,2):

(a) gen(M;) < gen(M),

(b) gen(M;) = gen(M) and i(M,;) < i(M),

(c) gen(M;) = gen(M), i(M;) = i(M), and koy, > Kopr -

Proof. It remains to verify that one of the conditions (a), (b) or (c¢)
is satisfied. If 0D* does not disconnect 0M, then (a) is satisfied. If D*
disconnects M and (a) is not satisfied, then (b) must be satisfied. If D*
does not disconnect M and 4D* disconnects some component 9,M of oM
and (a) and (b) are not satisfied, then (c) is satisfied.

5. Possibilities of reducing down a Z,-action along §°, P’ and D’
The authors of the papers [22], [23], [8], [6] have studied a possibility
of reducing involution of a compact 3-manifold along a 2-sphere. Tollef-
son and Kim studied in [8] the possibility of reducing involution of
a compact 3-manifold along D® We study here the possibility of reducing
a Z,-action along 82, P?, and D®. Lemma 1 from [8] has the following
slight generalization:

5.1. THEOREM. Let T be an involution on a 3-minifold M. Suppose
that M is mot irreducible. Then there exists a 2-sphere S* in M not bounding
a 3-cell and such that either T (8*) NS> =B or T(8*)= 8 ani S*is in a general
position with respect to Fix(T).

5.2. THEOREM. Let M be a 3-manifold admitting an effective Z,-action.
Let T be a homeomorphism on M generating the given Zy-action. If int (M)
contains a 2-sphere disjoint from Fix(T) bounding no 3-cell, then there ewists
a 2-sphere 8* in int (M) bounding no 3-cell such that 8'NFix(T) = @ and
TSNS =0.

We will prove similar results for a Z,-action with dimIz(-) <O.

5.3. THEOREM. Assume that a finite group G acts on a 3-manifold M
which satisfies the following condition: there is an embedding i: 8; <— int (M)
such that S does not bound a homotopy 3-cell in M and S;nIz(M) = O.
Then there is an embedding S c—int(M) such that S*NIz(M) = 9,
8% does not bound any 3-cell in M, and g(8°)N8* = @ or 8* for each g €G.

First we prove some lemmas.
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5.4. LEMMA. Assume that a finite group G acts freely on a 3-manifold
M. Let N, be a =, (M)- and G-invariant subgroup of my(M) and let m,(M)—
— N, # O (G acts on :my(M) up to the action of m (M) on ny(M)). Then one
of the following possibilities holds:

(a) there is an embedding i: S*<—int(M) such that [i] ¢ N, and
g8 NS =B or 8 for each g € G

(b) there is a 2-sided embedding i: P* < int(M) such thats (x,(P*)) ¢ N,
and g(P*)NP? = @ for each g €@, g #* 1.

Proof. Consider the projection p: M — M* = M|G. We have
7 (M*)—p,(N,) O and p,(N,) is8 a =x,(M")-invariant subgroup of
7, (M*). Now, by the projective plane theorem, there are two possibilities:

(a) thereis an embedding ¢: 8*c— int (M*) with [¢] € w, (M) —p, (N,):
thus a lifting of ¢ to M satisfies condition (a) of Lemma 5.4;

(b) there exists a 2-sided embedding i: P’<»int(M*) such that

iy (Ra(PY) € (ma(3%) —p, (M)

thus a lifting of P? to M satisfies (a) or (b) of Lemma 5.4.

5.5. LEMMA. Let N, be a =,(M°)-invariant subgroup of n,(M°)
generated by projective planes embedded into M. Then an embedding
i: S*c—int (DMM®) such that either 8* does not disconnect M? or 8 gemerates the
connected sum M = M, 3 M,, where M, (j = 1, 2) i3 not a closed manifold,
satisfies [i] ¢ N,.

Proof. Let h: my(M?) — H,(M°) be the Hurewicz homomorphism.
Lemma 5.5 follows from the observation that A[¢] #+ 0 and A(N,) = 0.

Proof of Theorem 5.3. Assume first that M is compact. Thus
M is compact and decomposable. Let N, = m,(M) be the z,(M)-invariant
subgroup of x,(M) generated by all projective planes embedded into oM.
By Lemma 5.5 and Proposition 2.4, [¢] ¢ N,. Let N, = (p;‘(N 1) Where
¢: M —1z(M)=— M. Thus [{] ¢ N,. On the other hand, G acts freely on
M —1z(M). Now we use Lemma 5.4. If (a) of 5.4 is satisfied, Theorem 5.3
is proved. If (b) of 5.4 is satisfied, then let ¢,: P?c—int(M)—1z(M)
be the projective plane obtained in (b). Since 4y (%, (P?)) ¢ Ny, P* is not
parallel to the boundary. It follows from Lemma 2.9 that there is an embed-
ding Si<— M —1z(M) such that S? does not bound any homotopy 3-cell
and

sinUg(P*) = 0.
ge@
We cut out M along | g(P?) and repeat the procedure. Since M is
geG

decomposable, the decomposing process terminates in finitely many
steps (we use Lemma 5.4 and the fact that each step decreases i(M)).

4 — Colloquium Mathematicum 47.2
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Now assume that M is not compact. If S; does not disconnect M or
disconnects M into M, 3 M,, where M, and M, are not closed, then
Theorem 5.3 follows from Lemmas 5.4 and 5.5. Let 82 disconnect M into
M, # M, ,where M, is not compact and M, is closed. We may assume
that for each g,, g, € G either g¢,(82) = ¢,(82) or ¢,(87) is in a general
position with respect to g,(S;). Let Vi be an equivariant regular neighbor-

hood of U ¢(83). Thus V, cuts M into a finite number of components.
geG

Let E, be a sum of compact components and V. Then 8 does not cut
off a homotopy 3-cell from FE,. Since E, is compact, we can use the just
proved part of Theorem 5.3. Let S}<—int(E,) be a 2-sphere as in the
conclusion of Theorem 5.3. If 8} does not disconnect E,, then 83 is the de-
sired sphere. Otherwise, S generates the decomposition E, = E,, 3 E,,,
where E,, and E,, are not homotopy spheres. Thus, after glueing cutted
off parts of M, E,; (+ =1, 2) is either not modified or is not compact.
So 8} is the desired 2-sphere in M.
From Lemma 5.4 we obtain

5.6. COROLLARY. Assume that a finite group G acts on a 3-manifold
M which satisfies the following conditions:

(i) there is a 2-sided embedding Pi=—int(M)—1Iz(M) such that P: is
not homotopy parallel to the boundary;

(ii) the assumption of Theorem 5.3 is mot satisfied.

Then there is a 2-sided embedding P* < int (M) —1z(M) such that P* is
not homotopy parallel to the boundary and g(P?)NP* =@ for each g €@,
g # 1

Proof. We use Lemma 5.4 and the fact that if P} is not homotopy
parallel to the boundary, then P does not belong to the x,(M)-invariant
subgroup of x,(M) generated by projective planes embedded into oM.
We also use the fact that each self-homeomorphism of P? has a fixed point.

Kim and Tollefson studied [8] the problem of a possibility of reducing
down an action along D?, solving this problem for involutions.

We shall now prove Theorem 5.7 which is a partial generalization
of Lemma 2 from [8] to actions of a finite group.

5.7. THEOREM. Let a finite group G act on a 3-manifold M. Suppose
that there is a disk D* embedded in M such that 0D* lies in a preferred compo-
nent ;M of oM, D* N1z(M) = @, and 0D* does not bound a disk in O, M.
Then there exists a disk D} properly embedded in M with the following
properties:

(i) oD% c O, M,

(ii) oD} does mot bound a disk in 0,M,

(i) g(D3)ND: = B for each g €@, g # 1,

(iv) D! nIz(M) = O.
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Proof. Assume that N, is a normal subgroup of =,(9,M —1Iz(M))
equal to ker (nl(a,-M —Iz(M )) —m, (O, M )). Of course, [0D*] ¢ N,. Consider
the covering

P (M —Tz(M))]—> M; = (M —TIz(M))|Q.

TR e

Since IV, is a G-invariant normal subgroup of =,(9;,M —Iz(M)), p, (N,)

is a normal subgroup of x,(M;). We use the loop theorem for [p(9D?)]
¢p,(N,) to obtain a proper embedding

(D3, 0D}).= (M3, p (0;: M —Tz(M)))

with [0D;] ¢ p, (). A lifting D} of (D, 8D}) to (M —1z(M), 8; M —1z(M))
satisfies [0D}] ¢ N,. Thus we have 0 # [0Di]ex,(0;M), and so oD}
bounds no disk in 9; M. Of course, D? satisfies (iii) and (iv) of Theorem 5.7.

9.8. COROLLARY. Let a finite group G act on a 3-manifold M with
nonempty boundary. Suppose that M s congruent to an irreductible, not
0-irreducible manifold. If dimIz (M) < 0, then there exists a disk D* properly
embedded in M with the following properties:

(i) oD* does mot bound a disk in oM,

(il) g(D*)NnD* =B for each g @, g # 1,

(iii) D* NnIz(M) = O.

For the proof it is easy to see that the assumptions of Theorem 5.7
are satisfied.

6. Reduction theorems. Kim and Tollefson [8] proved the theorem
describing the decomposition of a closed manifold with involution into
a Z,-connected sum. This result is also true for decomposable manifolds.
In this section we prove the theorem of this type for Z,-manifolds.

6.1. Definition. A Z, -action described in Definition 3.10 (x) is called

a standard action of type ((x); n, 7, 0). A standard action of type ((x); », 7, k)
1+kn R
on (8 X §%), is defined as follows:

i=1 _ %
((a‘); B, 1, k) = ((a); ", 7, 0) 3 (;E:l (8' x Sz)ja Z1)1

where Z, denotes a one-element group;

(b); »,7, k) = ((b); =, 7, 0)42_1:( :tl: (8" x 8%);,Z,), where # is even;
j=1
_ k
((e); m,7, k) = ((a); m, 7, 0)3( 4 (N);,Z,), where k> 0.
j=1

6.2. THEOREM. Let T be a generator of a Z,-action on a decomposable
3-manifold M with dimIz(M) < 0. Moreover, each 2-sphere §* embedded in
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int (), such that 82 NT*(8%) = B for each 0 < i < n/2, T**(8?) = &, and
T™ preserves locally the sides of 8*, bounds a 3-cell in M. Then

(M, T) = (My, T(My) 3 ... #(M;, T(M,)),

where each T (M;) s a generator of a Z,;action on M, n; divides n, and

(a) of » <3, then M, (¢ > 1) is irreducible and M, i3 either irreducible.
or equal to #8' X §* with a standard Z,-action,

(b) if n >3, then M, (¢ > 1) i8 congruent to an irreducible manifold
and M, is either congruent to an irreducible manifold or is equal to 8" x §°
with a standard Z,-action.

Proof for » > 3. If M is not congruent to an irreducible manifold,
then using Corollary 4.3, Propositions 3.11, 3.7, and Theorem 5.3 we obtain

(M, T) = (M, T(M;))#(M;, T(M;)),
where (M) <i(M) (j =1,2).

Repeating the procedure (using the commutativity and associativity
of # (Propositions 3.9 and 3.11), we obtain

(M, T) = (M, T(M)H ... 3 (My, T(My)) 3 (M pys T(My 1)) 3 .
cor F(My,, T(My,),

where the first k, manifolds are homeomorphic to §' x 8? with standard
action and other manifolds are congruent to irreducible ones with Z, -
actions (m; divides n).

Now consider

ky
(M" T’) = ‘#I(Mii T(Mi)) .
We show that (M’, T") is a standard action.
We know that

(1) T generates a free action of Z,, on M’, where #' divides #;
ky R
(2) M'|Z,. is8 homeomorphic to (8* x §%);.
i=1

We must classify actions on #8' x 82 which satisfy (1) and (2).
The classification of Z,-actions on #8' x 8% with dimIz(-) <0 will be
done in [16]. We give only the outline of the proof of our special case. The
proof (with assumptions (1) and (2)) that the action is standard is similar
to that for free actions on handlebodies [17]. That is, we show that we may
change a connected sum by multiple and multiple leads from standard
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actions to standard ones. To prove our theorem it is sufficient to show
that we can obtain #’° = n. Up to now, we have proved that

(M, T) = ((x); 0,7y, kl):E-':(M"’ T,

where (M'’, T"’) can be described as a connected sum of manifolds congruent

to irreducible manifolds. To complete the proof of Theorem 6.2, we must
show that if

(M, T) = ((X); By, 7y, 0) 3£(M,, T (M),
where T generates a Z, -action on M, then
(M, T) = ((y); #, 72, 0) (M, T(IMy)).

Indeed, there is a 2-sphere 8% int(M) such that T¢(8*) n8* = @ for
each i (0 < i < ), 8* lies in the summand 8' X 8* (i.e., ((X); 1,75, 0)),
and 8? does not disconnect 8! x 8%, Such an S yields the expression for
(M, T) as a multiple of (M,, T(M,)). Thus we use Proposition 3.11 to
obtain the desired decomposition.

This completes the proof of Theorem 6.2 (b) (we use Proposition 3.9).
Since the proof of Theorem 6.2 (a) i8 very similar to that of 6.2 (b)
(using Theorems 5.1 and 5.2 in place of Theorem 5.3), we omit it.

We summarize the results of the paper as follows.

6.3. THEOREM. Let T be a generator of a Z,-action on a 3-manifold M
with compact boundary (possibly empty). We assume that dimIz(M) <0
and i(M) < co. Then we can obtain (M, T) using multiple and connected
sum from Z, -actions on manifolds M, where n; divides n and one of the
Jollowing possibilities holds:

(a) n <3 and (i) dimIz(M,) <O for each i, (i) M; is drreducible,
(iii) each projective plane, 2-sided im int M, is homotopy parallel to the
boundary, and (iv) if O M, # O, then M, is 0-irreducible;

(b) » > 3 and (i) dimIz(M;) < 0 for each i, (ii) M, is congruent to an
trreducible manifold, (iii) each projective plane, 2-sided in int M, is homotopy
parallel to the boundary, and (iv) if OM; + O, then M, is congruent to a 0-ir-
reducible manifold.

First we note that M is decomposable.

6.4. PROPOSITION. If M is a nonorientable 3-manifold, then i(M) < oo
implies i (M) < oo or, more exactly, i(M) > 2i(M)—1.
The proof is easy and we omit it.

Proof of Theorem 6.3 (a). (1) We may reduce our action down to
actions on irreducible manifolds using Theorems 5.1 and 5.2, Corol-
lary 4.3, and Proposition 6.4.
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(2) We may reduce an action on a manifold satisfying the conditions
(i) and (ii) of Theorem 6.3 (a) down to actions on manifolds satisfying the
conditions (i), (ii), and (iv) of Theorem 6.3 (a) using Corollaries 5.8, 4.5,
and 2.14.

(3) We may reduce an action on a manifold satisfying the conditions
(i), (ii), and (iv) of Theorem 6.3 (a) down to actions on manifolds satisfying
the conditions (i)-(iv) of Theorem 6.3 (a) using Corollaries 5.6, 4.4,
and 2.12.

Theorem 6.3 (a) follows immediately from (1)-(3).

Since the proof of Theorem 6.3 (b) is very similar to that of 6.3 (a)
(using Theorem 5.3 in place of Theorems 5.1 and 5.2), we omit it.

7. Corollaries and remarks. We may use the results of this paper to
classify Z,-actions with dimIz(-) < 0 on handlebodies, compact surfaces,

and #8'x 8 (up to free actions of Z, on §°). The author presents this
classification in [17] and [16]. Most of the results contained in this paper
can be probably extended to actions of finite groups on 3-manifolds.
We could improve Theorems 6.2 and 6.3 if the following conjecture is true:

7.1. CONJECTURE. Let a finite group G act effectively on a 3-manifold
M. Suppose that M is not irreducible. Then there is an embedding S*
«int (M) such that S* does not bound a 3-cell in M, g(8%) NS = B or §*
for each g € G, and §* is in a general position with respect to Iz(M). (P 1270)

7.2. Remark. Conjecture 7.1 for dim Iz(M) < 0 follows from the
Poincaré Conjecture.

7.3. Remark. Conjecture 7.1 for dim Iz(M)< 0 is true for any
(Z,, Z,)-solvable group @. This follows from Theorems 5.1 and 5.2.
G i8 (Z,, Z,)-solvable iff there is a sequence 1 =G, c G c...c @G, =G
such that G; is normal in G;,, and G;,/G; = Z, or Z,.
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