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1. Let f be a real function defined in some neighbourhood of the
closed interval I, = [a,b]. Then f is termed smooth [symmetric]
at zel,, iff for h—> 0

fl@+h)+f(@—h)—2f(2) = o(h)
[f(@+h)+f(@—h)—2f(x) = o(1)].

Let F be the set of points of differentiability of f on I,. Zygmund
[56] has shown that if f is continuous and smooth on I,, then F is of the
power of continuum in every subinterval of I, and f' has Darboux prop-
erty on E. Neugebauer [3] proved that if f is measurable and smooth
on I, and if | n I| < |I]|for every subinterval I < I,, then ' has Dar-
boux property on E and the set {r: D*f(x) = + o0 and D f(z) = — oo}
is residual in I,. He also proved that if f is measurable and smooth on
I, and if the set {x: D*f(x) = + o0 and D, f(#) = —oo} is of the first
category, then there exists a dense open set @ in I, such that f’ exists
almost everywhere on G, and that if a continuous and smooth function
f is_ such that f'> 0 on F, then f is non-decreasing on I,.

In this paper we have shown that if f is lower semicontinuous and
smooth above, then f is continuous and that the results of Zygmund
remain true even when smoothness of f is replaced by smoothness above.
We have also obtained some results analogous to those of Neugebauer
by considering nowhere monotone functions which are smooth above.
It is also shown under certain conditions that if f is smooth above then
}' takes up every real value in every subinterval of I,.

2. A function f is said to be smooth above at a point x, iff

lim f(@o+h)+f(2g— h)—2f(x,) <0.

h—>0+ h
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Similarly, f is said to be smooth below at x, iff

f(@o+ k) +f(@o— h)—2f(,) >0.

Ji
o 7

r—>0+

If f is smooth above and below at z,, then f is smooth at =,.
If f is smooth above [below] at each point of I,, then f is said to be
smooth above [below] on I,.

THEOREM 1. Let f be smooth above at a point x,. Then (i) D*f(z,)
< D™ f(@o) and (ii) D, f(w,) < D_f(a,).

Proof. If possible, suppose that | = D* f(x,) > D™ f(x,) = m. Choose
& 0 <e< (l—m)/3. Since '

i J@ot @ =2f@) _
- h

there is a 6 >0 such that

(1) f(@o+ h)+f(a;&o_ h)—2f(2,) <e

for all b, 0 < h < 6. Since
im J(@o— h)—f () —-m

h—0+ —h

’

there is a d,, 0 < 4, < d, such that

f(@o—h)—f (@)
—h

for all A, 0 < h < 4,. Now since
im f@o+h)—f(@o) _ 1

h—0+ h

<m-te

there is an 2’,0 <A’ < d,, such that

flotM)—fo) o,

Hence

J@ot+h')+f(@o— ') — 2f (@)
hl

_ f(@o+1')—f () . F(@o—h")—f(2,)
- R’ —n

>l—m—2e>c¢,
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which contradicts (1). Hence D*f(x,) < D~ f(x,). Similarly, it can be
shown that D, f(x,) < D_f(x,)-

THEOREM 2. If f is smooth above at a point x, and if f has a minimum
at x,, then f'(x,) exists and f'(x,) = 0.

Proof. Since f has a minimum at x,, we have D_f(z,) >0 and
D~ f(x,) < 0. Hence, from Theorem 1, the results follows.

THEOREM 3. If f is lower semicontinuous and smooth above at x,, then
f 18 continuous at @,.

Proof. If possible let f be not upper semicontinuous at z,. Then
for some ¢, >0 there is a sequence {A,}, h, - 0, such that

F(@o+ hy) = f(20) + &-
Since f is lower semicontinuous at x,, we have

F(@o— hy) = f(@g) — —2—— for n> N.

We may assume k, >0 for all n. Then for n > N

f(w0+ h'n) +f(m0_ hn) —?’f(wo) ~ €o
hy, = 2h,

— 4 o0,

which contradicts that f is smooth above at x,. This proves the theorem.

Since from Theorem 3 lower semicontinuity and smoothness above
imply continuity, henceforth we shall consider continuous functions.
We recall that a real function f is nowhere monotone in an interval I, if
there is no subinterval of I in which f is monotone [1]. A nowhere mono-
tone function f is of the first species in I if there exists a real number
r such that the function g, where ¢g(z) = f(«)4rz, is monotone in I.
A nowhere monotone function f is of the second species in I if the function
g, where g(x) = f(x)+ rx, remains nowhere montone in I for every real
number 7.

LeMMA 1. Let f be continuous and smooth above in I,. Let — oo < A < oo
and let the function f(x)— Ax be nowhere monotone in I,. Then there exists
a dense set D in I, such that f'(x) exists and f'(x) = A for xeD.

Proof. Let 'J = [p, q] be any subinterval of I,. We shall show
that there is a point ¢ in J such that f'(&) = 1. Let g(x) = f(z)—Ax.
We shall now show that ¢ has a minimum in J. We may assume that
g(») < g(g). If there is a point &, p < § < ¢, such that g(£) < g(p), then,
since g is continuous, g/J attains its lower bound at a point in (p, g).
Hence g has a minimum in (p, ¢). If this is not the case, then g(x) > g(p)
for all = in (p, q). Let g(p) <% < g(g). Since g is continuous, there is
a point x,, p < 2, < ¢, such that g(x,) = 5. If there is a point 2’ in (p, ,)
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for which g(«’) > n, then, since g(q) > », by the above argument g has
a minimum in (2, ¢). So we suppose g(z) <y for all z in (p, x,). Since
g is nowhere monotone, there are two points z,, 2,, , < z,, in (p, )
such that g(x,) > g(x,). Also g(x,) > g(x;). Then by the same argument
g has a minimum in (x,, 2,). Thus we conclude that ¢ has a minimum at
a point £ in (p, q). Since ¢ is smooth above, by Theorem 2 ¢’ (&) exists and
g' (&) =0, i.e., f'(§) = A. This proves the lemma.

THEOREM 4. Let f be a continuous nowhere monotone function of the
second species in I,. If f i8 smooth above in I,, then in every subinterval
of 1, there are points where f' exists and takes up anmy prescribed value.

Proof. Let r be any real number and J be any subinterval of I,.
Since the function f(z)— rz is nowhere monotone, by Lemma 1 there is
a point ¢ in J such that f'(&) = r. This completes the proof.

THEOREM 5. Let f be continuous and smooth above in I,. Then the set
of points of differentiability of f is of the power of continuum in every subin-
terval of I,.

Proof. Let J = [p, q] be any subinterval of I,. If for some real
number 7, the function f(x)—rx is monotone in some subinterval J, of J,
then f’' exists almost everywhere in J, and hence the set of points of
differentiability of f has the power of continuum in J. So, we suppose
that for all real numbers 7, the function f(x)—rx is nowhere monotone
in J. Then, by Theorem 4, for each real number r, there is a point &, in
J such that f’'(£,) = r. Also distinet real numbers r correspond to distinct
points §,. For, if r; <r,, then f'(§,) =r, <7, =[f'(§,) and so &, #§,,.
Since the set of 7’s is of the power of continuum, it follows that the set
of points at which f' exists is of the power of continuum in J.

Note. It is interesting to observe that Zygmund [6] constructed
a continuous function -f such that

f@+h+fla—h—2f@ _
h ~

holds for all » uniformly in x, but f is nowhere differentiable; for m = 0
this no longer holds.

THEOREM 6. Let f be a continuous mowhere monotone function of
second species in I,. If f is smooth above in I, and if B = {x: xvely; f'(x)
exists}, then f' has Darboux property on E.

Proof. Let a, B¢ F and a < B. Let f'(a) < 4 < f'(B). Since the function
f satisfies the hypothesis of Theorem 4, there is a point & in (a, f) such
that f'(§) = A. This proves the theorem.

THEOREM 7. Let f be continuous and smooth above in I,. If f'(x) >0
for xeE, where E = {x: xely; f'(x) exists}, then f is mon-decreasing in I,.

< &0
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Proof. If possible, let there be two points « and g, a < 8, in I, for
which f(8) < f(a). Consider the function

f6)—f(a)
p—a

Then g(a) = ¢g(f). We shall show that ¢ has a minimum in (a, g).
If there is a point &', a < &' < B, such that ¢g(&') < ¢g(8), then since g is
continuous, g attains its lower bound at a point in (a, g). If there is no
such point, then g(z) > g(B) for all # in (a, B). Let =’ e(a, B) be such that
g(z’) > g(p). Choose n such that. g(z’) > »n > g(f). Then there is an z,,
¢’ <wxy<p, for which g(x,) = 7. Now g cannot be non-increasing in
{xy, B). For if g is non-increasing in (z,, §), then ¢'(x) <0, i.e.,

f (@) < —f(ﬂzg—-—fia) <0

almost everywhere in (z,, ), which is a contradiction. Hence there are
points @y, &y, ¥y < ¥; < ¥, < B, such that g(x,) < g(x,). So we conclude
that g has a minimum in (2’, 8). Hence, by Theorem 2, there is a £e(a, )
such that ¢'(&) = 0, i.e.,

J(&§) =

which is a contradiction.
For convenience we state the following lemma which is proved in [3]:

LEMMA 2. Let f be continuous in I, and let there be a dense set D and
a number A, —o0 < 1 < oo, such that D*f(x) < A for zeD. Then the set

4 = {o: ) < D, f(=)}

g9(x) =f(x)—

FB)—fla) _

0
f—a ’

18 of the first category.

THEOREM 8. Let f be continuous and smooth above in I,. Let there be
a sequence of positive numbers {s,}, s, — oo as n — oo, such that the function
f(z)+ s, & is nowhere monotone for each n. Then the set

A ={2: D, f(w) = — o0}
48 a residual set in I,.
Similarly, if there is {r,}, r, —> c© as n — oo, such that f(x)—r,x i3
nowhere monotone for each n, then the set

B = {w: D*f(a) = + oo}
18 a residual set in I,.

Proof. Let
A, ={x:xely; —s, <D, f(x)}
and
B, = {z:zely;r, > D' f(2)}.
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By Lemmas 1 and 2, 4, is of the first category for each n. Hence
I,— A is of the first category. So the set A is residual in I,. Similarly,
the set B is residual in I,.

THEOREM 9. Let f be continuous and smooth above in I1,. Let the set
A ={x: D, f(r) = —o0; D¥f(x) = + oo}

be of the first category.

Then there exists a dense open set G in 1, such that f'(x) exists almost
everywhere on @G.

Proof. Let I, be a subinterval of .I,. Then, for some real number
r, there is a subinterval I, < I, such that f(x)+ rz is monotone in I, and
hence f’'(x) exists almost everywhere in I,. Then the set @ = | ) I3, where
I° denotes the interior of I, the union being extended over all I, < I,,
has the desired property.

3. A function f is said to be symmetric above at a point =, iff

lim [f(2+ h)+F(@o— k) —2f(2,)] < 0.

h—0

Similarly, f is said to be symmetric below at z, iff

hl_n [f(@o+ k) +f(xo—h)—2f(w0)] > 0.
h—0
If f is symmetric above and below at a point x,, then f is said to be
symmetric at x,. If f is symmetric above [below] at each point of I,, then
f is said to be symmetric above [below] on I,.
LEMMA 3. Let f be Borel measurable in I,. Then D*f, D~ f are Borel
measurable in I, and for r,s >0 the set

A = {xy: 2oely; f(2)—F(2) < r(®—20), Ty < X < o+ 8}

18 Borel measurable.

This can be proved by a slight modification of the argument used
in [3] with the help of [4].

LEMMA 4. Let B c I, be a Borel set and assume that B is not of the
first category in I,. Then there exists an interval I < I, such that B N I
18 residual n I.

For the proof see [3].

THEOREM 10. Let f be symmetric above in I, and be of Baire class 1.
Then the set

8 ={z:2ely; D¥f(w) < D™ f(x)} U {@: vely; D, f(x) < D_f(x)}

18 of the first category.
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Proof. We shall first show that the set A = {x:xel,; D" f(x)
< D~ f(x)} is of the first category. For r rational let

, ={w:2ely; DYf(z) <r < D™ f(x)}
and for every positive integer j,

J(@)—f()

AT,]. == {%0; woeAr a‘nd 2 Z
— %

1
<r,% <m<w0+-;}.

By Lemma 3, A4,; is Borel measurable. Since 4 = U U A4,;, it

suffices to show that A4, ; is of the first category for each r a.nd 4. If this
is not the case, by Lemma 4 there is an interval (a, 8) = I, such that
A,.; 0 (a,B) is residual in (a, f). We may assume that f—a <1/j. Let

«' be any two points with a <2’ < 2" < p. Choose 6 > 0 such that
a<zr'—d<a <a'+o<a”. Let A'=A4,;n(s',2'4+0) and A" =A4,;n
N ("— d, ). Then A’ and A"’ are residual in (2’, 2’4 6) and (2'— 4§, '),
respectively. Let 4, = {y: ye(2'— J, ') and 22’ —yeA'}, the reflection of
A’ across #'. Then A, is residual in (2’'— 4, #’). Since the complements
of A" and 4, in (z'— 4, ') are sets of the first category, it follows that
A" n A, #0. Hence we can construct sequences {z,} and {y,} in A4,;
such that e <2, < o' <y, <o, v,+y, = 22, 2, > and y, - 2. Since
Xy Yped,; and z, <z’ <x,4+1/j, ¥y, <"’ <y,+1/j, we have

f@)—f@, g @5

&' —x, ' —y,

Now z,—z" <y,—«"". If r >0, we have

fy.)—f(z” W) —f(=") y,—az"

(1) — = - — <.
wn_w yn_a: Zp— &
Also
c f(wn)_f(m”)
x,—x"
So
f( n) +f(yn)_2f(w”)
x,— "’
Since
lim {f(@,) +1(9)} < 2f ("),
we have
2) J@=I@) L w <o <

r —a
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Also if 2" ed,; N (a,p), D" f(a”) >r. So, there is z'¢(a,s’’) such
that

-1,

r—o

which contradicts (2). If r < 0, interchanging «, and y, beginning with
inequality (1), we can arrive at the same contradiction. Hence A is of
the first category. Similarly, it can be shown that the set

B = {z:wely; D, f(x) < D_f(»)}

is of the first category.

COROLLARY 1. Let f be lower semicontinuous and symmelric above
tn I,. Then except a set of the first category in I,

D*f(x) =D f(x) and D, _f(x) =D_f().
Proof. Since f is lower semicontinuous, the set
{@: wely; D™f(x) < DY f(2)} U {z: wely; D_f(2) < D, f(w)}

is of the first category [2]. Hence applying Theorem 10, the conclusion
follows. '
Remark. Neugebauer [3] proved that if f is measurable, and sym-
metric in I,, then except a set of the first category in I,.
D*f(x) = D f(x) and D, f(x) =D_f(x).

COROLLARY 2. Let f be smooth above im I, and be of Baire class 1.
Then except a set of the first category in I,
Dtf(x) = D f(x) and D, f(x) = D_f(x).

Proof. Since f is smooth above in I,, it is symmetric above in I,.
So, by Theorem 10, the set

{o: wel,; D*f(2) < D=f(@)} U {w: wely; D, f(z) < D_f(a)}

is of the first category. Hence the result follows from Theorem 1.

The author expresses earnest gratitudes to Dr. S. N. Mukhopadhyay
for his kind help in the preparation of this paper.
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